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NOTE ON BOUNDARY OBSTRUCTION TO JACOBIAN
CONJECTURE OF TWO VARIABLES

MUTSUO OKA

1. Introduction

We consider a polynomial mapping Φ = (f, g) : C2 → C2 where f(x, y), g(x, y)
are polynomials with coefficients in C. (Every argument which follows in this
note is also true over any algebraically closed field K of characteristic 0). Put
J(Φ) = J(f, g) the Jacobian, which is given by

J(f, g) := fx(x, y)gy(x, y) − fy(x, y)gx(x, y)

where fx, fy are partial derivatives with respect to x and y respectively. We can
also understand J(f, g) by (df ∧ dg)(x, y) = J(f, g) dx ∧ dy. Suppose that the
mapping Φ : C2 → C2 is an automorphism in the sense that it has an inverse
polynomial mapping Ψ : C2 → C2. Then by the composition rule of the Jacobian,
we have the equality J(Φ) ≡ c for a non-zero constant c. The Jacobian conjecture
is concerned with the converse assertion:

(JC): If J(f, g) ≡ c, c ∈ C∗, (f, g) : C2 → C2 is an automorphism.
The first essential contribution to this conjecture was made by Suzuki [4],

Abhyankar [1] and the author did a small work about outside faces of mixed
weights using Newton diagram [3]. There are many papers since then about this
topic but it seems that there are few further progress on this conjecture of two
variable case.

This note is a rewritten version of [3] for a conference talk in Hanoi, October
2006. We tried to make some argument simpler than that of [3] and we gave
some new results. Several new examples are given in §5 to illustrate the difficulty
of the problem. We believe that some assertions are interesting for themselves.
We hope that this note will be of some interest to those who are studying this
conjecture.

2. Preliminaries and Key Lemmas

2.1. A graded ring. A polynomial h(x, y) is called a weighted homogeneous
polynomial of degree d with respect to the weight vector P = (a, b) if it satisfies
the equality: h(xta, ytb) = tdh(x, y). Here (a, b) 6= (0, 0) and a, b are coprime
integers, possibly zero or negative. Thus P is a primitive integer vector. If a = 0
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for example, it is necessary to have b = ±1 for P to be primitive. We call d
the degree of h with respect to the weight vector P and we denote d as degP h.
We can extend this definition to rational functions. Namely a rational function
h = h1(x, y)/h2(x, y) is called a weighted homogeneous rational function of degree
d if h1, h2 are weighted homogeneous polynomials of degree d1, d2 respectively
with respect to a common weight vector P = (a, b) and d = d1 − d2. It satisfies
the Euler equality:

d h(x, y) = ax hx(x, y) + by hy(x, y).

Let Wn(P ) (or simply Wn) be the set of weighted homogeneous rational functions
of degree n with weight vector P and let W(P ) (or simply W) be the graded ring
defined as W(P ) = ⊕i∈ZWi(P ). For a f ∈ W(P ), we write fn the degree n
component of f . Note that Wn ·Wm ⊂ Wn+m. Note that the ring of polynomials
C[x, y] is a subring of W .

2.2. Canonical factorization. A weight vector P = (a, b) is called a strictly
positive (respectively mixed) weight if a, b > 0 (resp. ab 6 0). Let h(x, y) be
a non-zero weighted homogeneous polynomial of degree d with weight vector P .
Then there is a unique factorization

h(x, y) =

{
cxp yq

∏m
i=1(x

b + ciy
a)νi , if a, b > 0

cxp yq′
∏m

i=1(x
by−a + ci)νi , if a 6 0 < b

(2.1)

where c1, . . . , cm are mutually distinct non-zero complex numbers. Similarly we
can factorize any weighted homogeneous rational function F (x, y) as above. The
only difference is that the exponents p, q, νi might be negative integers.

2.3. Tchirnhausen approximate roots. Let f(x, y) =
∑

ν=(ν1 ,ν2) cνx
ν1yν2 be

a polynomial. The Newton diagram ∆(f ; x, y) is the convex hull of integer
points ν = (ν1, ν2) with cν 6= 0 ([2]). A face Ξ ∈ ∂∆(f ; x, y) is called an outside
face if the line supporting Ξ does not pass through the origin and ∆(f ; x, y)
and the origin O are in the same half plane. Let P = (a, b) be a fixed weight
vector. Let degP f be the maximal degree of the monomials in f(x, y) and put
∆(P ) = {(ν1, ν2) ∈ ∆(f ; x, y)|aν1 + bν2 = degP f}. Obviously ∆(P ) is either a
face or a vertex of ∆(f ; x, y). Let fP (x, y) =

∑
ν∈∆(P ) cνx

ν1yν2 . If ∆(P ) is an
outside face, we have degP f > 0. By the definition, fP is a weighted homogeneous
polynomial of degree degP f . Let Ξ = ∆(P ). We also use the notation fΞ(x, y)
instead of fP (x, y). Then we can factorize fP (x, y) as

fP (x, y) =

{
cxp yq

∏m
i=1(x

b + ciy
a)νi , if a, b > 0

cxp yq′ ∏m
i=1(x

by−a + ci)νi , if a 6 0 < b.
(2.2)

The face multiplicity m(f, P ) of fP is defined as the greatest common divisor of
the integers p, q (or q′), ν1, . . . , νk. Namely m(f, P ) is the maximum of the pos-
itive integers s such that f1/s

P is a polynomial. The outside boundary multiplicity
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m∞(f) is defined to be the greatest common divisor of all boundary multiplicities
m(f, P ) such that P corresponds to an outside face. Put

W6N := {F ∈ W(P )| degP F 6 N}.

Lemma 2.1. Let r = m(f, P ). Then for any negative integer N , there exists a
rational function h(x, y) ∈ W such that degP (f − hr) < N .

We call h an approximate r-th root of f modulo W6N . For simplicity we use
the notation f ≡N hr if degP (f − hr) 6 N i.e., f − hr ∈ W6N .

Proof. The proof is easily obtained by a standard approximate root argument.
Assume that fP can be written as fP = hr

d0
for a weighted homogeneous polyno-

mial hd0(x, y) of degree d0 with d = d0 r. Write f, h in degree components:

f(x, y) = fd(x, y) + fd−1(x, y) + · · ·+ fe(x, y), d = degP f

h(x, y) = hd0 + hd0−1 + · · ·+ hd0−m

We solve the equality

]k : fk = (hr)k, k = d, d− 1, . . . .

inductively from the above, starting from k = d. Here (hr)k is the degree k com-
ponent of hr. The first equality is simply hr

d0
= fP . Assume that hd0 , . . . , hd0−s

is determined, using the equality of ]d, . . . , ]d−s. Then taking k = d− s − 1, we
have the equality of the degree d− s− 1 components:

fd−s−1 =
∑

j1+···+jr=d−s−1

hj1 · · ·hjr .

In the right hand side, the terms which contains hd0−s−1 is equal to rhr−1
d0

hd0−s−1

and the other terms are polynomials of hj , j > d0 − s. Thus we can use the
equality ]d−s−1 to determine hd0−s−1. Now we put h>µ :=

∑
j>µ hj . Then we

have the inequality by the definition:

degP (f − hr
>µ) < d− (d0 − µ) = d− d0 + µ.

Thus we need simply take h = h>µ with µ < 0, |µ| sufficiently large. �

Lemma 2.2. (Approximate inverse) Let φ ∈ W. Then for any N < 0, there
exists a rational function ψ ∈ W such that φψ ≡N 1.

The proof is exactly same as that of the approximate root. Assume that
φ = φm + φm−1 + · · · with m = degP = φ. We can determine ψ inductively so
that ψ = ψ−m + ψ−m−1 + · · · where ψ−m = φ−1

m , ψ−m−1 = −φm−1φ
−2
m , . . . and

so on. We call ψ an approximate inverse of φ.
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3. Boundary obstruction

3.1. Similarity lemma.

Lemma 3.1. ((17.4),[1] and Proposition (2.7),[3]) Suppose F (x, y), G(x, y) are
weighted homogeneous rational functions of degree d1, d2 with d1 6= 0 such that
J(F,G) = 0. Then there exists a non-zero constant c so that F d2 = cGd1.

The assertion is immediate from the equality d log (F d2/Gd1) = 0 which follows
by the Euler equality and the assumption J(F,G) = 0. In case d2 = 0, Lemma
3.1 implies that G(x, y) is a constant.

Assume that f is a given polynomial and we consider the existence problem
of a “partner polynomial” g such that J(f, g) = 1. We consider a fixed weight
vector P = (a, b), gcd(a, b) = 1 as before. Let us consider the decomposition by
degP (=degree with respect to weight P ):

f = fn + fn−1 + · · ·+ fn0 , g = gm + gm−1 + · · ·+ gm0 .

Put ε = a+ b. Then J(f, g) has the decomposition:

J(f, g) = J` + · · ·+ J`0

where ` = n + m − ε, `0 = n0 + m0 − ε and Jk =
∑

i+j=k+ε J(fi, gj). The
assumption J(f, g) = 1 implies that Jk = 0 for k 6= 0 and J0 = 1. In particular
we have

Corollary 3.1. Assume that n+m−ε > 0. Then J(fn, gm) = 0 and there exists
a constant c 6= 0 such that gn

m = c fm
n .

Definition 3.1. When the condition F d2/Gd1 = c ∈ C∗ is satisfied, we say F, G
are similar. Two polynomials f, g are similar if fP , gP are similar for any
weight vector P such that fP corresponds to an outside face Ξ.

3.2. Degree estimation of Jacobians of approximate roots. Let us assume
P = (a, b) with b > 0 for simplicity. Then we can factorize fP (x, y) as in (2.2).
Assuming n + m > ε and putting r = m(f, P ), we write n = n0r, m = n0s.
Take a sufficiently large negative N . Let h be an approximate r-th root of f (in
W(P )) of modulo W62N so that f ≡2N hr. We also fix an approximate inverse
k(x, y) ∈ W(P ) of h of modulo W62N .

Lemma 3.2. Taking N a negative integer with |N | sufficiently large, we have

J(f, hj) ≡N 0, 0 6 j 6 [m/n]
J(f, kj) ≡N 0, 0 < j 6 [(n− a− b)/n0].

Here [p/q] is the largest integer which is less than or equal to p/q.

Proof. Put R = f −hr . By the definition of an approximate root, degP R 6 2N .
Thus

0 = J(f, f) = J(f, hr) + J(f, R) = rhr−1J(f, h) + J(f, R).
Recall that degP J(φ, ψ) 6 degP φ + degP ψ − ε by the definition of Jacobian.
Thus we have the inequality

degP J(f, h) = degP J(f, R)− (r− 1)n0 6 n+2N − ε− (r− 1)n0 = 2N +n0 − ε.
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Now for any 0 6 j 6 r and N with |N | sufficiently large, we get

degP J(f, hj) = degP J(f, h) + (j − 1)n0 6 2N − ε+ jn0 6 N.

For the second inequality, put S := hk − 1. Then degP S 6 2N . Thus

2N + n − ε > degP J(f, S) = degP J(f, hk)
= degP (kJ(f, h) + hJ(f, k)) .

As degP k = −n0, we have

degP J(f, k) 6 max{2N + n− ε, degP J(f, h) − n0} − n0 6 2N + n − ε 6 N.

The assertion follows immediately. �

3.3. Normal form of g(x, y). Now we can describe the normal form of a partner
polynomial g in a slightly modified form [3].

Theorem 3.1. (cf. Proposition 3.3, [3]) Let f, g be polynomials with J(f, g) = 1
and let h, k be as above. There exist constants cj, 0 6 j 6 s and dk, 0 < k 6 α
with α = [(n− ε)/n0] so that

g = csh
s + cs−1h

s−1 + · · ·+ c1h+ c0 + d1k + · · ·+ dαk
α +R

with degP R = −n + ε. Then J(fP , RP ) = 1.

Proof. We apply Lemma 3.1 repeatedly. Assume that n+m > ε. Then we have
that gP = csh

s
P for some cs 6= 0. Put g = csh

s + gs. Then by the assumption
J(f, g) = 1, we have J(f, gs) ≡N 1. If n + degP gs > ε, we apply Lemma 3.1
repeatedly so that we arrive at the situation:

g = csh
s + cs−1h

s−1 + c0 + d1k + · · ·+ dαk
α + R, degP R+ n 6 ε

and J(fP , RP ) = 1. This implies that degP R = ε − n and the assertion follows
immediately. �

This gives the following necessary condition as a corollary.

Theorem 3.2. (Lemma (3.4),[3]) Assume that J(f, g) = 1 for a pair of polyno-
mials f, g. Then for any outside face (or a vertex) Ξ with a weight vector P , there
exists a weighted rational function φ(x, y) with weight P such that J(fΞ, φ) = 1.

Definition 3.2. We say that f(x, y) has no boundary obstruction if the
condition in Theorem 3.2 is satisfied for every outside face Ξ ∈ ∆(f ; x, y).

Proposition 3.1. Suppose that m(f, P ) = 1. Assume also that neither (1, 0)
nor (0, 1) are on the outside face of a positive weight. Then f does not have any
polynomial partner g with J(f, g) = 1.

In fact, assume that the face multiplicitym(f, P ) = 1. Put ` = m(g, P ). Then
if J(f, g) = 1, we can find a constant c` so that degP (g − c`f

`) < degP g. Thus
in the normal form discussion in Theorem 3.1, we can simply use f , instead of h
and g takes the form

g = c`f
` + · · ·+ c1f + g0, degP g0 < degP f
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and the point is that g0 ∈ C[x, y]. Then J(f, g) = 1 will imply that J(fP , g0P ) =
1. This implies that fP (x, y) (respectively gP (x, y)) contains a linear term y or
x (resp. x or y ). Then P cannot be positive by the assumption. For a mixed P ,
this is not possible by Lemma 5.1 (see §5). �

Remark 1. If f(x, y) = c y +
∑n

i=1 cix
n with some c 6= 0, we can take g(x, y) =

x/c.

4. Vanishing of the obstruction

We consider the Jacobian condition J(f, g), as a polynomial equation for g with
J(f, g) = 1. More precisely, using Theorem 3.2, we consider the existence problem
of a weighted homogeneous rational function solution φ(x, y) with respect to P
satisfying the equality J(fP , φ) = 1.

4.1. Strictly positive faces. We first consider the case where P = (a, b) is a
strictly positive weight vector (i.e., a, b > 0). This case has been studied by
Abhyankar [1]:

Let σ be one of x, y, xb + cya, c 6= 0. Let F (x, y) be a non-zero weighted
homogeneous rational function with a factorization

F (x, y) = cxp yq
m∏

i=1

(xb + ciy
a)νi , c, ci 6= 0, νi 6= 0(4.1)

We define valσF = p, q, νi, 0 for σ = x, y, xb + ciy
a and xb + cya, c 6= ci respec-

tively. An important key lemma is

Lemma 4.1. (Lemma (2.8),[3]) Assume that a, b > 0 and F (x, y) is a non-zero
weighted homogeneous rational function of degree d 6= 0 and let σ be as above.
Then valσF = 0 implies valσJ(σ, F ) = 0.

The following is fundamental for the cancellation of strictly positive faces.

Theorem 4.1. ([1, 3]) Let h(x, y) be a weighted homogeneous polynomial of
degree d > 0 with respect to a strictly positive weight vector P = (a, b). Assume
that there exists a weighted homogeneous rational function φ(x, y) with respect to
P such that J(h, φ) = c, where c 6= 0 is a constant. Then h and φ are one of the
following list up to a multiplication by a constant.

(1) h(x, y) = xpyq and φ(x, y) = xy h−1.
(2) a = 1, h(x, y) = xp(y + c xb)q and φ = x(y + c xb)h−1.
(3) b = 1, h(x, y) = yp(x+ cya)q and φ = y(x+ c ya)h−1.
(4) a = b = 1 and h(x, y) = (x+ c1y)p(x+ c2y)q and φ = (x + c1y)1−p(x +

c2y)1−q.
where p 6= q and c, c1, c2 are non-zero complex numbers.

Proof. First we factorize h, φ (up to a multiplication by a constant) as

h(x, y) = xα−1yα0σα1
1 · · ·σαk

k , φ(x, y) = xβ−1yβ0σβ1
1 · · ·σβk

k τγ1
1 · · ·τγ`

`
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where α−1, α0 > 0 and αi > 0, i > 1. Here σi (i = 1, . . . , k), τj (= 1, . . . , `) are
mutually distinct divisors of the type xb + ciy

a or xb + djy
a. A key observation

is:

Assertion 4.1. (Assertion 1, [3]) There are inequalities:

(1) For i = −1, 0,

αi + βi >

{
1, αi > 0
0, αi = 0

(2) αj + βj > 1 for j = 1, . . . , k.
(3) γs > 1, for s = 1, . . . , `.

Theorem 4.1 follows from an easy degree estimation, using Assertion 4.1. �

4.2. Reduction of Newton diagram. We consider a polynomial mapping Φ =
(f, g) : C2 → C2 with a non-zero constant Jacobian J(f, g) ≡ c. Assume that
f(x, y) =

∑
ν cν x

ν1yν2 . For any outside face Ξ, we can attach a unique weight
vector P = (a, b) such that gcd(a, b) = 1 and fΞ(x, y) is a weighted homogeneous
polynomial with weight P and degP (fΞ) > 0. A vertex R = (α, β) ∈ ∆(f ; x, y)
is called an outside vertex if it belongs to an outside face. We can find a weight
vector (not unique) P = (a, b) for a given R such that degP f is given by aα+bβ.
Observe that there is no vertex (α, α) on the diagonal ν1 = ν2 by Theorem 4.1.

Now suppose that ∆(f ; x, y) has an outside face Ξ with a strictly positive
weight vector P = (a, b). First, by a linear change of coordinates if necessary, we
may assume that f(x, y) does not have a face described in (4) of Theorem 4.1.
Then by Theorem 4.1, we can write fP (x, y) = exp(y + cxb)q with e 6= 0, p 6= q,
permuting x and y if necessary. We take the triangular change of coordinates
x1 = x, y1 = y + cxb. Then the face Ξ shrinks to a vertex (p, q) in ∆(f ; x1, y1)
and we can easily see that ∆(f + t; x1, y1) ( ∆(f + t; x, y) for a generic t ∈ C.
Note that ∆(f + t; x, y) is the convex hull of ∆(f ; x, y) and the origin. Repeating
this process, we may assume that ∆(f+ t; x, y) for t generic has a minimum area.
This implies there exists no strictly positive outside faces. After this reduction,
if f reduces to a linear function, Φ is certainly an automorphism. So in the next
section, we consider the case when f is not a linear function and ∆(f ; x, y) has
only non-strictly positive faces.

There is another face we can eliminate. A face Ξ is called horizontal (resp.
vertical) if the weight is given by P = (0, 1) (resp. P = (1, 0)). We say that Ξ is
an elementary horizontal face of f is fP takes the form

fP (x, y) = e yq(x+ c)p, c 6= 0, p 6= q, e 6= 0.(4.2)

An elementary vertical face is defined similarly. If f has such a face, we can
take the parallel change of coordinates: x1 = x + c, y1 = y. By this change
of coordinates, the face Ξ of ∆(f ; x, y) shrinks to a vertex (p, q) but any other
face Ξ remains as it was. This implies that ∆(f + t; x1, y1) ( ∆(f + t; x, y) for a
generic t.
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Assumption. Thus from now on, we assume that f is not a linear function,
∆(f ; x, y) has neither strictly positive face nor elementary horizontal nor elemen-
tary vertical faces. If this is the case, we say that f is strictly reduced. The
Jacobian conjecture is equivalent to the non-existence of a Jacobian partner g for
any non-linear strictly reduced polynomial f .

Assume that f(x, y) is a non-linear strictly reduced polynomial. Then there
exists a unique vertex (α, β) ∈ ∆(f ; x, y) so that

∆(f ; x, y) ⊂ {(ν1, ν2) | ν1 6 α, ν2 6 β}.
We call (α, β) the top vertex of f .

4.3. Faces with mixed weight vectors. We assume that Ξ is an outside face
of ∆(f ; x, y) with a mixed weight vector P = (a, b), where P is chosen so that
degP fΞ > 0. We call Ξ an upper face (resp. a lower face) if b > 0 > a (resp.
a > 0 > b). In Figure 1, Ξ1, Ξ2,Ξ3 are upper faces and Γ1, Γ2 are lower faces.

y

Ξ1

Ξ2

Ξ3

ν1 = ν2

Γ2
Γ1

x

Figure 1. Newton diagram

Now we consider the boundary obstruction for fΞ. We consider a weighted ho-
mogeneous polynomial h(x, y) with weight vector P = (a, b), b > 0 > a and
degP h > 0. We assume that

h(x, y) = expyq
k∏

i=1

(xby−a + ci)αi, e 6= 0(4.3)

The assumption degP h > 0 is equivalent to qb + ap > 0. The condition of the
existence of a weighted homogeneous rational function solution φ for the equation
J(h, φ) = 1 is more difficult to be given explicitly. The weight vector P = (−1, 1)
is called to be exceptional. This is the only case for which we can give the complete
answer. In fact, we have

Lemma 4.2. (Theorem (5.2),[3]) Assume that P = (−1, 1). Then the necessary
and sufficient condition for the existence of the rational solution φ for the equation
J(h, φ) = 1 is degP h 6= 0.
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Proof. If p 6= q, we can take φ = c′xy h−1, c′e(p−q) = 1. If p = q, degP f = 0 and
thus degP φ = 0 and φ is a rational function of one variable xy. Thus J(h, φ) = 0
and there exists no solution. �

Thus we consider hereafter non-exceptional weight vector P = (a, b), a 6 0 <
b. Assume that Ξ is the line segment AB where A = (p, q) is the left end and
B = (p+bN, q−aN) is the right end where N =

∑k
i=1 νi. We say Ξ is a crossing

face if q − aN < p + bN . This means that B is in the lower side of the diagonal
ν1 = ν2 and the left half line of LΞ starting from B intersects with the diagonal
y = x. Similarly we define crossing faces for lower faces. For example, in Figure
1, Ξ2,Ξ3 are crossing but Ξ1,Γ1,Γ2 are not crossing faces. Note that if the top
vertex (α, β) is below the diagonal, i.e. α > β (resp. above the diagonal i.e.,
α < β), there exists an upper crossing (resp. a lower crossing) face but no lower
crossing (resp. no upper crossing) face. Now, we modify Lemma 4.1 for the mixed
weight situation:

Lemma 4.3. ([3])(Lemma (2.8),[3]) Assume that F (x, y) is a non-zero weighted
homogeneous rational function of degree d 6= 0 with a mixed weight vector P =
(a, b), b > 0 and let σ be either x, y or xby−a + c, c 6= 0. Then valσF = 0 implies
valσJ(σ, F ) = 0.

Proof. We present a simpler proof than that of Lemma (2.8) in [3], as the original
proof treats both cases where P being strictly positive or mixed weight simulta-
neously and it was not so clear. Assume F (x, y) = xpyq

∏k
i=1(x

by−a + ci)νi .
(1) For σ = x (or y), valσF = 0 implies p = 0 and q 6= 0 as degP F = qb. (If
σ = y, q = 0 and d = pa 6= 0. Thus a, p 6= 0 in this case.) Put σi = xby−a + ci.
We use the equality:

J(x, F ) =
∂F

∂y
= q yq−1

∏

i

σνi
i −

∑

j

νjax
by−a−1σj

−1
∏

i

σνi
i .

Thus the above equality implies the assertion, as J(x, F )|x=0 6= 0.
(2) Next we consider the case σ = xby−a + c with c 6= c1, . . . , ck. Consider a
unimodular matrix:

A =
(
a a′

b −b′
)
, ba′ + ab′ = 1, A−1 =

(
b′ a′

b −a

)
.

We use the toric coordinates (u, v) where
{

x = uava′

y = ubv−b′ ,

{
u = xb′ya′

v = xby−a
.

Note that degP u = 1 and degP v = 0. Thus

df ∧ dg = J(f, g; x, y)dx∧ dy = J(f, g; u, v)du∧ dv

where we used the notations J(f, g; x, y) and J(f, g; u, v) to distinguish Jacobians
in two coordinate systems (x, y) and (u, v). In the toric coordinates (u, v), we
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have simply

σ = v + c, F = uαvβ
∏

i

(v + ci)νi , whereα = bq + ap, β = pa′ − qb′.

Thus α = degP F 6= 0 and

J(v + c, F ; u, v) = −∂F
∂u

= −αuα−1vβ
∏

i

(v + ci)νi 6= 0.

Now recall that dx ∧ dy/xy = du ∧ dv/(uv). Thus we see immediately valσF = 0
implies valσJ(σ, F ; x, y) = 0. �

Now we state a modification of Assertion 4.1.

Assertion 4.2. Assume that h(x, y) is a weighted homogeneous polynomial of
degree d 6= 0 with a non-exceptional weight vector P = (a, b), b > 0 > a and
assume that h has a factorization:

h(x, y) = exα−1yα0

k∏

i=1

(xby−a + ci)αi , e 6= 0.

Assume that J(h, φ) = 1 for some weighted homogeneous rational function φ and
consider the factorization of φ:

φ(x, y) = e′xβ−1yβ0

k∏

i=1

(xby−a + ci)βi
∏̀

j=1

(xby−a + dj)γj , e′ 6= 0.

Then either βi = min(αi, 1− αi) or βi = αi(a+ b− d)/d and γj > 0.
In particular, if d (a+ b) > 0, we have βi > 1 − αi if αi > 0, βi > 0 if αi = 0

and γj > 0 for any j.

Proof. Put σ−1 = x, σ0 = y, σi = xby−a +ci for i > 1. The proof of this assertion
works in the same way as that of Assertion 4.1 using Lemma 4.3. The proof of
the assertion about γj is immediate. Fix i, −1 6 i 6 k with αi 6= 0 and consider
ψ = φαi h−βi . Then valσiψ = 0. A slight difference is in Case 1.
Case 1. Assume that degP ψ = 0. Then we have the equalities

d+ degP φ = a+ b, αi degP φ− βi d = 0.

From this, we get the second possibility: βi = αi(a+b−d)/d. If further d(a+b) >
0, we get

βi

αi
=

degP φ

d
= −1 +

a+ b

d
> −1

which implies βi > −αi or αi + βi > 1.
The case degP ψ 6= 0 can be treated exactly as in the proof of Assertion 1 in [3]

as follows. Consider J(h, ψ) in two ways. On one hand, J(h, ψ) = αiφ
αi−1h−βi .

On the other hand,

J(ψ, h) = J(ψ, h/σαi
i )σαi

i + J(ψ, σi)αiσ
αi−1
i h/σαi

i .



NOTE ON BOUNDARY OBSTRUCTION TO JACOBIAN CONJECTURE 133

Comparing the multiplicity of σi, we get

(αi − 1)βi − αiβi = αi − 1, or βi = 1 − αi.

�

If d (a + b) < 0, the inequality βi > 1 − αi may not be true. We thank
to P. Cassou-Noguès for informing us an counter-example of this case. We call
such a polynomial a negatively crossing. Geometrically, the supporting line of h
intersects at a negative part of the diagonal ν1 = ν2.

4.4. Nice crossing faces. Assume that f(x, y) is strictly reduced and Ξ is an
upper non-exceptional face of ∆(f ; x, y) with weight vector P = (a, b), b > 0 > a
and fΞ(x, y) is given as

fΞ(x, y) = e xpyq
k∏

i=1

(xby−a + ci)αi, e 6= 0.

Assume that A,B are the left and right end of Ξ. Let us consider the line
LP = {(ν1, ν2) | aν1 + bν2 = a + b}. We call LP the (1, 1)-line of weight P . Note
that (1, 1) ∈ LP and degP x

αyβ = a + b for (α, β) ∈ LP ∩ N2. Let E be the
intersection of OB and LP (see Figure 2). We call a face Ξ a nice face if E (the
intersection LP ∩ OB) is an integer point and (a+ b) degP fΞ > 0.

Lemma 4.4. (Theorem (5.5),[3]) Assume that there exists a solution φ for
J(fΞ, φ) = 1 and (a+ b) degP fΞ > 0. Then Ξ must be a nice face. In particular,
if Ξ is a non-crossing face, Ξ cannot be nice and there does not exist any rational
solution φ, J(fΞ, φ) ≡ 1.

The same assertion holds for a lower face.

A

E

B

O

(1, 1)

ν1 = ν2

LP

A

B

(1, 1)

E

O

ν1 = ν2

LP

Figure 2. non-crossing(left) and crossing(right)
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Proof. Put h = fΞ for simplicity. Assume that Ξ is not nice but there exists a
solution φ, J(h, φ) = 1 and put ψ = hφ. Then by Assertion 4.2, ψ is a polynomial
which can be factorized as

ψ = e′xrys
k+∏̀

i=1

(xby−a + ci)γi , γi > 1, e′ 6= 0.

Let Θ be the support segment of ψ. It has two end points C, D where C = (r, s)
and D = (r + bN, s− aN) with N =

∑
i γi. As degP ψ = a + b, the supporting

line LΘ contains the point (1, 1) (which implies LΘ ⊂ L). Thus D is either (1, 1)
or situated in the lower part of the diagonal line ν1 = ν2. Now we examine the
equality : J(h, ψ) = h. Recall that

J(xayb, xcyd) = (ad− bc)xa+c−1yb+d−1.(4.4)

Thus this Jacobian vanishes iff three points (a, b), (c, d), (0, 0) are colinear. Con-
sider the right end of the support of J(h, ψ). This must be B by the assumption
J(h, ψ) = h. As D is an integer point and E is not an integer point by the
assumption, D 6= E, and this implies O, D, B are not colinear. Thus for B to
be the right end of the support of J(h, ψ), we need to have D = (1, 1). Now we
consider the left end of the support of J(h, ψ). We have two possibilities:

(a1) C = D, ψ = xy, or (a2) O, C, A are colinear.
By Assertion 4.2, ψ is divisible by xby−a + c1. Thus (a1) is impossible. For (a2),
C must be (0, 1) and p = 0 (thus ψ = e′y(x + c1)) but this is only possible for
P = (0, 1). Thus h is horizontal. However by the assumption that f is strictly
reduced, h is not elementary and k > 2. This implies that (x + c1)(x + c2)|ψ
which is obviously impossible. If Ξ is non-crossing, E cannot be an integer point
(see Figure 2, the left side). This completes the proof. �

The following Lemma shows the difficulty of nice crossing faces.

Lemma 4.5. Assume that fP is crossing where P = (a, b) and assume that

fP (x, y) = xp yq
s∏

i=1

(xb′y−a′
+ ci)r,

where c1, . . . , cs are mutually distinct and a′/b′ = a/b and

1 + sb′

1 − sa′
=
p+ rsb′

q − rsa′
.(4.5)

We assume that (a+ b) (pa+ qb) > 0. Then fP is nice and J(fP , φ) = fP has a
polynomial solution if and only if there exists a non-zero constant α such that

s∏

i=1

(xb′y−a′
+ ci) = xsb′y−sa′

+ α.

If this is the case, φ = c (xsb′y−sa′
+ α), c−1 = α(p − q) and ψ = φf−1

P satisfies
J(fP , ψ) = 1.
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Proof. By Assertion 4.2, φ is divisible by xy
∏s

i=1(x
b′y−a′

+ ci). Note that
O, (1 + sb′, 1 − sa′), (p + rsb′, q − rsa′) are colinear by the assumption. Thus
φ cannot have further divisor by (4.4) and φ = cxy

∏s
i=1(x

b′y−a′
+ ci). Now

we examine the condition J(fP , φ) = fP . Write fP = xp−ryq−rφr. Then
J(fP , φ) = J(xp−ryq−r, φ)φr. Thus we must have J(xp−ryq−r , φ) = xp−ryq−r .
As

J(xp−ryq−r, x1+jb′y1−ja′
) 6= 0

for j = 1, . . . , s− 1 by the assumption (4.5), we must have

c1 + · · ·+ cs =
∑

i 6=j

cicj = · · · = c1c2 · · ·cs
s∑

i=1

1
ci

= 0.

This implies that c1, . . . , cs are solutions of ts + α = 0 for some α ∈ C∗ and
c−1 = α(p− q). �

Example 4.1. Let h(x, y) = y2n(1 + x3nyn)1+3n. This has a Jacobian solution
ψ = xy(1 + x3nyn)/(−2nh(x, y)).

5. Reformulation of results and examples

Now we consider the Jacobian problem from the viewpoint of existence problem
of Jacobian partner polynomial g(x, y) such that J(f, g) = 1 when f(x, y) is given.
We assume always that f(x, y) is a non-linear strictly reduced polynomial. We
collect various non-existence assertions, translating the assertions for weighted
homogeneous rational functions.

5.1. Various non-existence assertions.

Proposition 5.1. If f : C2 → C has a critical point, there does not exist any
partner g.

This follows from condition J(f, g) = fxgy − fygx = 1 which implies that
fx = fy = 0 has no solutions. This condition cannot be read from the outside
boundary.
For the weighted homogeneous polynomials, the non-existence for a partner g
becomes trivial.

Lemma 5.1. For any non-monomial weighted homogeneous polynomial h(x, y)
with a mixed weight vector P = (a, b), there does not exist any weighted homoge-
neous polynomial φ(x, y) such that J(h, φ) = 1.

Proof. Put h(x, y) = fP (x, y) and factorize it as

h(x, y) = cxpyq
k∏

i=1

(xby−a + ci)νi , k > 1.

Note that degP h = bq + ap. First for the condition J(h, φ) = 1, it is necessary
that h and φ must have a linear term x or y. Thus we may assume that q =
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1, p = 0. Suppose that degP h 6= 0. Then b > 0 and h, φ take the form

h(x, y) = y
k∏

i=1

(xby−a + ci)νi , φ = x
∏̀

j=1

(xby−a + dj)µj .

Put N =
∑k

i=1 νi, M =
∑`

j=1 µj . Then the right ends of the supports of h and
φ are given by B = (bN, 1− aN), D = (1 + bM,−aM) and we see that B, D, O
cannot be colinear as det(B,D) = −1 − bM + aN < 0. This implies J(h, φ)
cannot be a constant, as it contains the term xb(M+N)y−a(M+N).

If degP h = 0, this implies b = 0, P = (1, 0) and h(x, y) = h(y) and φ = x φ1(y).
But the condition J(h, φ) = 1 implies that φ1(y)h′(y) = −1 which is only possible
if h(x, y) = cy, φ = c′x. This is also not possible as h(x, y) is not a monomial by
the assumption. Thus J(h, φ) = 1 is possible only if k = 0 and ` = 0 which is a
contradiction to the assumption that h(x, y) is not a monomial.

�

Recall that f(x, y) is convenient if f(x, 0), f(0, y) are non-constant polynomi-
als.

Theorem 5.1. Let f(x, y) be a polynomial which is non-linear strictly reduced
polynomial and assume that f is not convenient. Then there does not exist any
polynomial g(x, y) such that J(f, g) = 1.

Proof. Suppose there exists g(x, y) such that J(f, g) = 1. We may assume that
f(0, y) ≡ 0, taking f(x, y) − f(0, 0) if necessary. This implies that f(x, y) does
not have the monomial y. Thus g(x, y) must have y with non-zero coefficient
and g(0, y) is a non-constant polynomial. Thus ∆(g; x, y) has a face Ξ touching
ν2-axis outside of the origin. Let P be the corresponding weight vector. Then
either J(fP , gP ) = 0 or J(fP , gP ) = 1. The first equality is impossible. In fact
degP f > 0 is not possible, as ∆(f) cannot have a face which is similar to the
support of gP (x, y), by the assumption on f(0, y) ≡ 0. Thus degP f = 0. This
implies fP is a constant by Lemma 3.1, which is also not possible. The second
equality J(fP , gP ) = 1 is impossible by Lemma 5.1. �

Example 5.1. Let f(x, y) = x+ ψ(xpyq) where ψ(t) is an arbitrary polynomial
and p > 2. Then f has no critical point but f is not convenient. Thus there does
not exist any polynomial g(x, y) such that J(f, g) = 1.

The following is a generalization of Proposition 3.1.

Theorem 5.2. Assume that f is non-linear, strictly reduced polynomial with
m∞(f) = 1. Then there is no polynomial g such that J(f, g) = 1.

Proof. If f, g are not similar, there exists an outside face Ξ with a weight vector P
such that fP (x, y) and gP (x, y) are not similar. Then we must have J(fP , gP ) = 1
which is impossible by Lemma 5.1. Therefore ∆(f ; x, y) and ∆(g; x, y) are similar.
By Lemma 3.1, we see that degP g/ degP f is independent of P . We fix a weight
vector P which corresponds to a face Ξ of ∆(f ; x, y). Put s = m∞(g). Thus
the assumption m∞(f) = 1 implies that degP g = s degP f . Thus we can find a
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constant cs 6= 0 so that degP (g − csf
s) < degP g. As J(f, g − cf s) = 1, we can

apply an inductive argument so that ∃cs, · · · , ∃c1 so that

g0 := g − (csf s + · · ·+ c1f), J(f, g0) = 1.

Now degP g0 < degP f . Thus it is impossible that g0 and f are similar. �

Combining the criteria we have shown in previous sections, we get a following
partial result (essentially stated in [3]) for the Jacobian conjecture.

Main Theorem. Assume that f(x, y) is a non-linear strictly reduced polynomial
which has a Jacobian partner polynomial g(x, y), J(f, g) = 1. Then the following
conditions are necessary.

(1) f : C2 → C has no critical point.
(2) ∆(f ; x, y) is convenient.
(3) ∆(f ; x, y) have no boundary obstructions.
(4) The outside boundary multiplicity mult∞(f) of f is strictly greater than

1.

Proof. The third condition is due to Theorem 3.2. The last condition follows
from Theorem 5.2. �

Remark 2. Under the above condition (3), ∆(f ; x, y) has only exceptional faces
and nice crossing faces or negatively crossing faces without boundary obstruction.

5.2. Concluding remark and examples. Our strategy to prove (or disprove)
the Jacobian conjecture of two variable case is to show that there is no polynomial
f which satisfies four conditions in Main Theorem.If there exist such polynomials,
we have to look for “inside obstructions.” So far, we do not have any examples of
polynomials which satisfy four conditions but there are many polynomials which
satisfy all conditions but (4).

Example 5.2. Consider

f1(x, y) := y2 (1 + xy)4 + 3 y (1 + xy)3 + (3 − 8/3 y) (1 + xy)2 − 4 xy + x

f3(x, y) := (xy + 1)3 y3 + 2 y2 (xy + 1)2 + 2 y (xy + 1)2 + 2 xy + x

f4(x, y) := y2
(
1 + xy2

)3 + x
(
y4x+ 1

)2 − x3y8 + 3 xy2

f4(x, y) does not satisfy the condition (3). It has a non-crossing, non-exceptional
face AB.
f1(x, y) and f3(x, y) satisfy (1), (2) and (3) of Main Theorem but they do not

satisfy (4). In both cases, the faces AB are exceptional and the faces BC are
crossing without obstruction. We can see that there are birational solutions:

J(x(1 + xy2)3, y(1 + xy2)−2) = 1, J(x(1 + xy3)2, y(1 + xy3)−1) = 1.

P. Cassou-Noguès informed us that she has an example of a polynomial satis-
fying four conditions (1) ∼ (4).
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A(0, 2)

(1, 1)

C(1, 0)

(2, 3)

y2(1 + xy)4

LP B(4, 6)

ν1 = ν2

x(1 + xy2)3

Figure 3. Newton diagrams ∆(f1)

A(0, 3)
(2, 4)

(1, 1)

C(1, 0)

y3(1 + xy)3

LP
B(3, 6)

x(1 + xy3)2

ν1 = ν2

A(0, 2)

y2(1 + xy2)3

x(1 + xy4)2

ν1 = ν2

B(3, 8)

C(1, 0)

Figure 4. Newton diagrams ∆(f3) (left), ∆(f4)(right)
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