Q**-FACTORIAL SUBALGEBRAS OF A POLYNOMIAL RING**

MASAYOSHI MIYANISHI

Abstract. We give an algebraic characterization of a log affine pseudo-plane and the quotient surface \mathbb{A}^2/G of \mathbb{A}^2 with a small finite subgroup G of $GL(2,\mathbb{C})$ in terms of Q-factorial normal subalgebras of a polynomial ring $\mathbb{C}[x, y]$. Then we consider the cancellation problem for these surfaces.

1. Subalgebras of a polynomial ring

Let X be a normal affine surface defined over the complex field $\mathbb C$ and let *A* be the coordinate ring of *X*. We then say that *X* (or *A*) is Q-factorial if the divisor class group $C\ell(X)$ (or $C\ell(A)$) consists of elements of finite order. Further, X is said to be a *log affine pseudo-plane of type d* if there exists an \mathbb{A}^1 fibration $\rho: X \to C$ such that *C* is isomorphic to the affine line \mathbb{A}^1 , every fiber is irreducible and only one fiber dF_0 is a multiple fiber with multiplicity $d > 1$. It is known by [7] that the singularity of *X* is at most cyclic quotient singularity, and that if *P* is a singular point then *P* lies on a multiple fiber and there are no other singular points on the fiber. Hence *X* has at most one singular point. If *X* is smooth, we simply say that *X* is an affine pseudo-plane of type *d*.

On the other hand, let $\varphi : A \hookrightarrow B$ be an injective homomorphism of C-algebras by which we view *A* as the subalgebra $\varphi(A)$ of *B*. We call φ a *pure* embedding if the natural homomorphism $\varphi_M : M \to M \otimes_A B$ is injective for every *A*-module *M*. We call *A* also a *pure* subalgebra of *B*. For this definition and relevant results, the readers are referred to Hochster-Roberts [5]. Let us begin with the following result. For an integral domain *A*, we denote by *Q*(*A*) the field of fractions.

Lemma 1.1. Let $\varphi : A \to B$ be a pure embedding of \mathbb{C} -algebras. Then the *following assertions hold.*

- (1) *For any ideal I* of *A*, we have $IB \cap A = I$ *. Hence if B is noetherian, so is A.*
- (2) *Suppose that B is a noetherian domain. Let* $X = \text{Spec } A, Y = \text{Spec } B$ *and* $p = {}^a\varphi$. Then $p: Y \to X$ *is a surjective morphism.*

Received November 13, 2006.

²⁰⁰⁰ *Mathematics Subject Classification.* Primary 14R05; Secondary 13B99.

Key words and phrases. Affine plane, polynomial ring, \mathbb{Q} -factorial subalgebra, \mathbb{A}^1 -fibration, log affine pseudo-plane.

The author was supported by Grant-in-Aid for Scientific Research (C) 18540058, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

- (3) *Suppose that B is an integral domain and that A and B are birational, i.e.,* $Q(A) = Q(B)$ *. Then* $\varphi(A) = B$ *.*
- (4) *Suppose that B is normal. Then so is A.*

Proof. The assertions follow from the definition.

 \Box

We set $B = \mathbb{C}[x, y]$ a polynomial ring in two variables and specify further the properties of a (pure) subalgebra *A* of dimension two.

Lemma 1.2. Let $\varphi : A \hookrightarrow B = \mathbb{C}[x, y]$ be a subalgebra with dim $A = 2$. Let $p: \mathbb{A}^2 \to X$ = Spec *A be the associated morphism. Then we have the following assertions.*

- (1) *A is a finitely generated, normal domain provided* φ *is a pure embedding.*
- (2) *Suppose that p is a quasi-finite morphism. Let X be the smooth part of X.* Then X° has log Kodaira dimension $\overline{\kappa}(X^{\circ}) = -\infty$ *. Hence either X contains an open set isomorphic to* A^2/G *with* a small finite subgroup G of GL $(2, \mathbb{C})$ *or X* has an \mathbb{A}^1 -fibration $\rho : X \to C$, where *C* is isomorphic to \mathbb{A}^1 or \mathbb{P}^1 .
- (3) If *X* is smooth and $p : \mathbb{A}^2 \to X$ is a dominant morphism, the assertion (2) *holds with* X *replacing* X° *.*
- (4) *Suppose that* p *is quasi-finite and* X *is* \mathbb{Q} -factorial. Then either X *is isomorphic to* \mathbb{A}^2/G *or X has an* \mathbb{A}^1 -*fibration* $\rho : X \to C \cong \mathbb{A}^1$ *whose fibers are all irreducible.*

Proof. The assertion (1) is due to Hashimoto [4].

(2) If *p* is quasi-finite, the set $p^{-1}(X - X^{\circ})$ is a finite subset of \mathbb{A}^2 . Hence $p^{-1}(X^{\circ})$ has log Kodaira dimension $-\infty$, and so does X° (cf. [9, Lemma 1.14.1 in Chap. 2]). There are two cases to consider (see [9, Theorem 5.1.2 in Chap. 2 and Lemma 1.6.2 in Chap. 3] and [8]).

- (i) X° contains an open set *U* which is isomorphic to $\mathbb{A}^2/G {\overline{O}}$, where \overline{O} is the unique singular point, where G is, as above, a small finite subgroup of GL $(2,\mathbb{C})$. Furthermore, $X - U$ is a disjoint union of contractible curves which are isomorphic to \mathbb{A}^1 if X is smooth.
- (ii) X° has an \mathbb{A}^{1} -fibration $\rho^{\circ}: X^{\circ} \to C^{\circ}$.

We consider the case (i) first. Since \mathbb{A}^2/G is normal, the natural immersion $U \hookrightarrow X$ extends to a morphism $\mathbb{A}^2/G \to X$ which must be an open immersion by the Zariski Main Theorem. In the case (ii), since X is affine, the \mathbb{A}^1 -fibration ρ [°] extends to an \mathbb{A}^1 -fibration $\rho: X \to C$, where *C* contains C° as an open set and is isomorphic to \mathbb{A}^1 or \mathbb{P}^1 because *X* is dominated by \mathbb{A}^2 .

(3) If *X* is smooth, it follows that $\overline{\kappa}(X) = -\infty$ (cf. [9, Lemma 1.14.1 in Chap. 2]). Then we can argue in the same way as in the assertion (2) with X° replaced by X .

(4) Suppose that *X* contains an open set \mathbb{A}^2/G . If $X \neq \mathbb{A}^2/G$, let *C* be an irreducible component of $X-\mathbb{A}^2/G$. Since *X* is \mathbb{Q} -factorial, there exists an integer $N > 0$ such that *NC* is defined by an element f of A. Then f is invertible on

 A^2/G . Since there is a finite morphism $\pi : A^2 \to A^2/G$, the element $\pi^*(f)$ is an invertible element on \mathbb{A}^2 , which is a constant. This is absurd. So, $X \cong \mathbb{A}^2/G$. Suppose next that *X* has an \mathbb{A}^1 -fibration $\rho: X \to C$ which we may assume to be surjective. Then $C \cong \mathbb{A}^1$, for otherwise *X* would have positive Picard number and therefore *X* would not be Q-factorial. If ρ has reducible fibers then *X* has again positive Picard number, which contradicts the Q-fatoriality of *X*. \Box

We can strengthen the assertion (4) in Lemma 1.2 by the following result.

Lemma 1.3. *Let X be a normal affine surface with an* \mathbb{A}^1 -*fibration* $\rho: X \to C$ *, where* $C \cong \mathbb{A}^1$. Suppose that there exists a dominant morphism $p : \mathbb{A}^2 \to X$ and that *X* is \mathbb{O} -factorial. Then *X* is either the affine plane \mathbb{A}^2 or a log affine *pseudo-plane of type* $d > 1$ *.*

Proof. By the assertion (4) of Lemma 1.2, every fiber of ρ is irreducible. If there is no multiple fiber, then \tilde{X} is smooth and hence isomorphic to \mathbb{A}^2 . Otherwise, let d_1F_1,\ldots,d_sF_s be all multiple fibers of ρ . Since $p:\mathbb{A}^2 \to X$ is dominant, there exists a general line ℓ on \mathbb{A}^2 such that the image of ℓ by p lies horizontally along the fibration ρ . If $s \geq 2$ this is impossible by [10, Lemma 2.4]. So, $s = 1$ and we are done. \Box

Now we can state the following result.

Theorem 1.1. *Let X be a* Q*-factorial affine surface and let A be the coordinate ring of X. Then the following conditions are equivalent.*

- (1) *X* is isomorphic to the affine plane, \mathbb{A}^2/G with a small finite subgroup G of GL $(2, \mathbb{C})$ *or a log affine pseudo-plane of type* $d > 1$ *.*
- (2) There exists a surjective quasi-finite morphism $p : \mathbb{A}^2 \to X$.
- (3) *The ring A is a pure subalgebra of a polynomial ring* $\mathbb{C}[x, y]$ *with a surjective quasi-finite morphism* $p: \mathbb{A}^2 \to X$.
- (4) *There exists a quasi-finite morphism* $p : \mathbb{A}^2 \to X$.

Proof. (1) \implies (2). For the case $X \cong \mathbb{A}^2$, the assertion is obvious. For the case $X \cong \mathbb{A}^2/G$, the quotient morphism $q : \mathbb{A}^2 \to \mathbb{A}^2/G$ will do. For the case X is a log affine pseudo-plane, we refer to [10, Lemma 2.1]. In fact, we can take *p* to be a surjective étale morphism.

 $(2) \Longrightarrow (3)$. Let $\mathbb{C}[x, y]$ be the coordinate ring of \mathbb{A}^2 and let $\varphi : A \hookrightarrow \mathbb{C}[x, y]$ be the homomorphism associated to *p*. Then φ is a pure embedding by [3, Lemma 2.2].

 $(3) \Longrightarrow (4)$. This is obvious.

 $(4) \implies (1)$. This follows from Lemmas 1.2 and 1.3.

 \Box

The following is a fundamental question concerning pure subalgebras.

Problem 1.1. Let A be a pure subalgebra of an affine normal domain with $Q(B)$ *algebraic over* $Q(A)$ *. Is the associated morphism* Spec $B \rightarrow$ Spec A *a quasi-finite morphism ?*

116 MASAYOSHI MIYANISHI

Hereafter we consider the affine plane as a log affine pseudo plane of type $d = 1$. In view of the problem, we can pose the following.

Conjecture 1.1. Let $\varphi : A \hookrightarrow B = \mathbb{C}[x, y]$ be a pure embedding with dim $A = 2$. *If A is* Q-factorial then either $X \cong A^2/G$ *or* \overline{X} *is a log affine pseudo-plane of type d.*

In the smooth case, we have the following algebraic characterization of an affine pseudo-plane.

Theorem 1.2. *Let X be a* Q*-factorial, smooth affine surface. Then X is an affine pseudo-plane of type d if and only if there exists a dominant morphism* $p: \mathbb{A}^2 \to X$.

Proof. If X is an affine pseudo-plane of type d, it follows from Theorem 1.1 that there exists a dominant morphism $p : A^2 \to X$. Suppose that there exists a dominant morphism *p*. By Lemma 1.2, *X* is isomorphic to \mathbb{A}^2/G or *X* has an \mathbb{A}^1 fibration $\rho: X \to C$ with $C \cong \mathbb{A}^1$ or \mathbb{P}^1 . Since *X* is smooth, the case $X \cong \mathbb{A}^2/G$ does not take place. Since *X* is \mathbb{Q} -factorial, *C* is isomorphic to \mathbb{A}^1 and *ρ* has only irreducible fibers. By Lemma 1.3, X is an affine pseudo-plane of type d , where we understand that $X \cong \mathbb{A}^2$ if $d = 1$. \Box

2. Cancellation problem for affine pseudo-planes

Affine pseudo-planes have geometric structures which are quite close to the affine plane. Since the affine plane has the cancellation property, it is interesting to ask whether the affine pseudo-planes have the same property. We begin with the following result.

Lemma 2.1. Let A be a noetherian normal domain and let $A[x_1, \ldots, x_n]$ be a *polynomial ring over A. Then we have:*

- (1) *The natural injection* $A \hookrightarrow A[x_1,\ldots,x_n]$ *induces an isomorphism between the divisor class groups* $C\ell(A)$ *and* $C\ell(A[x_1, \ldots, x_n])$ *.*
- (2) *A* is Q-factorial if and only if so is $A[x_1, \ldots, x_n]$.

Proof. (1) By induction on *n*, it suffices to verify the assertions in the case $n = 1$. Let **p** be a prime ideal of *A* of height 1. Then $pA[x]$ is a prime ideal of $A[x]$ of height 1. Suppose that $pA[x]$ is principal. Then $pA[x] = f(x)A[x]$ for $f(x) \in A[x]$. For a nonzero element $a \in \mathfrak{p}$, we have $a = f(x)g(x)$ for some $g(x) \in A[x]$. This implies that $f(x) \in A$. Set $f(x) = f$. It is now clear that $\mathfrak{p} = fA$. So, the natural homomorphism $C\ell(A) \to C\ell(A[x])$ is injective. On the other hand, let $S = A - 0$ and $K = Q(A)$. Then *S* is a multiplicatively closed subset of $A[x]$ and $S^{-1}A[x] = K[x]$. Note that $C\ell(S^{-1}A[x])$ is generated by prime ideals \mathfrak{P} of *A*[*x*] of height one such that $\mathfrak{P} \cap S = \emptyset$. Consider the natural homomorphism π : C ℓ (*A*[*x*]) \rightarrow C ℓ (*K*[*x*]). Since C ℓ (*K*[*x*]) = (0), C ℓ (*A*[*x*]) = Ker π . Hence, for any prime ideal \mathfrak{P} of $A[x]$ of height 1 which represents a non-zero class of $C\ell(A[x])$, we have $S \cap \mathfrak{P} \neq \emptyset$. Let $\mathfrak{p} = \mathfrak{P} \cap A$. Then \mathfrak{p} is a non-zero prime ideal

of *A* and $\mathfrak{p}A[x] \subseteq \mathfrak{P}$. Since ht $(\mathfrak{P}) = 1$, we have $\mathfrak{P} = \mathfrak{p}A[x]$. This implies that $C\ell(A) \cong C\ell(A[x]).$

(2) This is straightforward from the assertion (1).

We need the following result to proceed further.

Lemma 2.2. Let X be a normal affine surface with one singular point \overline{O} . Sup*pose that there exists a surjective quasi-finite morphism* $p : \mathbb{A}^2 \to X$ and that *there is given an isomorphism* θ : $\overrightarrow{X} \times \mathbb{A}^n \xrightarrow{\sim} Y \times \mathbb{A}^n$ for an algebraic variety Y . *Then the following assertions hold.*

- (1) *Y is a normal affine surface with one singular point.*
- (2) If $n = 1$, there exists a quasi-finite morphism $q : \mathbb{A}^2 \to Y$.

Proof. (1) It is clear that *Y* is a normal affine surface. Hence *Y* has finitely many isolated singular points, say Q_1, \ldots, Q_s . Since *X* has a unique singular point *O*, the singular locus of $X \times \mathbb{A}^n$ is $\{\overline{O}\}\times \mathbb{A}^n$. Since the singular locus of $Y \times \mathbb{A}^n$ is the disjoint union $\coprod_{i=1}^{s} {Q_i} \times \mathbb{A}^n$, it follows that *Y* has a unique singular point *Q* and $\{\overline{O}\}\times\mathbb{A}^n$ is mapped isomorphically onto $\{Q\}\times\mathbb{A}^n$ under the isomorphism *θ*.

(2) Consider the given morphism $p : \mathbb{A}^2 \to X$. Let O be a point of \mathbb{A}^2 such that $p(0) = \overline{O}$. We consider the point O as the origin of a certain coordinate system $\{x_1, x_2\}$ on \mathbb{A}^2 . Let *L* be the linear subspace $\check{L} := \{O\} \times \mathbb{A}^n$ in the affine space $\mathbb{A}^2 \times \mathbb{A}^n \cong \mathbb{A}^{n+2}$ which surjects to the space $\overline{L} := \{ \overline{O} \} \times \mathbb{A}^n$ in $X \times \mathbb{A}^n$ via $\tilde{p} := p \times 1_{\mathbb{A}^n}$. Let $W(2, n+2)$ be the set of all linear planes in \mathbb{A}^{n+2} . Let $x_1, x_2, \ldots, x_{n+2}$ be coordinates of \mathbb{A}^{n+2} and let X_0, \ldots, X_{n+2} be homogeneous coordinates of \mathbb{P}^{n+2} when \mathbb{A}^{n+2} is embedded into \mathbb{P}^{n+2} in such a way that $x_i =$ X_i/X_0 for $1 \leq i \leq n+2$. Let *P* be a linear plane of \mathbb{A}^{n+2} . Then *P* is defined by *n* equations

$$
\begin{cases}\na_{11}x_1 + \cdots + a_{1n+2}x_{n+2} + a_{10} = 0 \\
\cdots \cdots \cdots \\
a_{n1}x_1 + \cdots + a_{nn+2}x_{n+2} + a_{n0} = 0\n\end{cases}
$$

,

.

or equivalently

$$
\begin{cases}\na_{10}X_0 + a_{11}X_1 + \dots + a_{1n+2}X_{n+2} = 0 \\
\dots \dots \dots \\
a_{n0}X_0 + a_{n1}X_1 + \dots + a_{nn+2}X_{n+2} = 0\n\end{cases}
$$

Since $P \subset \mathbb{A}^{n+2}$, we have rank $\widetilde{A} = n$, where

$$
A = (a_{ij}) \underset{1 \leqslant i \leqslant n}{\underset{1 \leqslant i \leqslant n, 1}{\sum_{1 \leqslant i \leqslant n}} \text{ and } \widetilde{A} = (a_{ij}) \underset{0 \leqslant j \leqslant n, 1}{\underset{1 \leqslant i \leqslant n, 1}{\sum_{1 \leqslant i \leqslant n}} \text{ .}
$$

 \Box

Note that $P \subset \mathbb{P}^{n+2} \backslash \mathbb{A}^{n+2}$ if and only if rank $A < \text{rank}\widetilde{A}$. Then the set $W(2, n+2)$ is bijectively coordinated by $\binom{n+3}{n}$ minors

$$
\det \begin{vmatrix} a_{1i_1} & a_{1i_2} & \cdots & a_{1i_n} \\ a_{2i_1} & a_{2i_2} & \cdots & a_{2i_n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{ni_1} & a_{ni_2} & \cdots & a_{ni_n} \end{vmatrix}
$$

where $0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq n+2$. Thus, $W(2, n+2)$ identified with the projective space having the above coodinates has dimension

$$
\dim W(2, n+2) = \binom{n+3}{n} - 1 = \frac{1}{6}(n+1)(n+2)(n+3) - 1.
$$

On the other hand, for any point $y \in Y$, let $W'(y)$ be the subset of $W(2, n+2)$ consisting of linear planes *P* such that $\dim(P \cap (\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^n) > 0$. When $n = 1$, for the existence of a desired linear plane *P* in \mathbb{A}^{n+2} with an induced quasi-finite morphism $P \to Y$, we need to prove that

$$
\dim \bigcup_{y \in Y} W'(y) < \dim W(2, n+2)
$$

which seems to be valid even if $n > 1$ though we could not prove it. So, assume that *n* = 1. Suppose that an irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ with a general point $y \in Y$ is contained in two distinct linear planes \hat{P}, \hat{P}' . Then the component is a linear line ℓ in $\mathbb{A}^3 = \mathbb{A}^2 \times \mathbb{A}^n$ with $n = 1$. Hence one irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ for every $y \in Y$ is contained in a linear plane and parallel to the line ℓ . Hence those linear planes when *y* moves in *Y* form a two-dimensional family. Let $\mathcal F$ be the set of linear planes P satisfying one of the following conditions:

- (i) *P* contains an irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ with a general point $y \in Y$ but does not share the component with other linear planes;
- (ii) *P* contains an irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ for a special point $y \in Y$ which is a linear line.

Then every irreducible component of $\mathcal F$ has dimension at most two. Since $\dim W(2,3) = 3$, we find a linear plane *P* which contains no irreducible components of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ for all points *y* ∈ *Y*. Then the projection $p_Y : \mathbb{A}^3 \to Y$ restricts to a quasi-finite morphism $(p_Y) | p: P \to Y$. restricts to a quasi-finite morphism (p_Y) $|_P: P \to Y$.

Given a normal algebraic variety *X*, we consider the *quasi-universal covering* of *X* when $\pi_1(X^{\circ})$ is a finite group, where X° is the smooth part of *X*. Let \widetilde{X}° be the universal covering of X° which is a smooth algebraic variety since $\pi_1(X^\circ)$ is finite. Let \tilde{X} be the normalization of *X* in the function field of \tilde{X}° . We call *X* together with the normalization morphism π : $\overline{X} \rightarrow X$ the quasi-universal covering of *X*. The fundamental group $G := \pi_1(X^{\circ})$ acts on \widetilde{X} and *X* is the algebraic quotient $\widetilde{X}/\!/\!\!\overline{G}$.

The following result shows that the cancellation holds in the class of log affine pseudo-planes of type *d* but does not hold individually upto isomorphisms.

Theorem 2.1. *Let X be a log affine pseudo-plane of type d. Suppose we have an isomorphism* $X \times \mathbb{A}^n \cong Y \times \mathbb{A}^n$ *for an algebraic variety Y. Suppose further that either* X *is smooth and n arbitrary or* X *is singular and* $n = 1$ *. Then* Y *is a log affine pseudo-plane of type d. But X is not necessarily isomorphic to Y .*

Proof. It is clear that *Y* is a normal affine surface and *Y* is smooth if so is *X*. By Lemma 2.1, *Y* is Q-factorial since

$$
\mathrm{C}\ell\ (A) \cong \mathrm{C}\ell\ (A[x_1,\ldots,x_n]) \cong \mathrm{C}\ell\ (B[y_1,\ldots,y_n]) \cong \mathrm{C}\ell\ (B),
$$

where *A* and *B* are respectively the coordinate rings of *X* and *Y* . On the other hand, by Theorem 1.1, there exists a surjective quasi-finite morphism $p : \mathbb{A}^2 \to X$. Hence $p \times 1_{\mathbb{A}^n}$: $\mathbb{A}^2 \times \mathbb{A}^n = \mathbb{A}^{n+2} \to X \times \mathbb{A}^n \cong Y \times \mathbb{A}^n$ composed with the projection onto *Y* induces a dominant morphism $q : \mathbb{A}^{n+2} \to Y$. If *Y* is smooth, *Y* is an affine pseudo-plane of type *d* by Theorem 1.2. If *Y* is singular and $n = 1$, we can take a linear plane *P* of \mathbb{A}^3 such that the restriction *q* | *p*: $P \rightarrow Y$ is quasi-finite by Lemma 2.2. By Theorem 1.1, either *Y* is isomorphic to \mathbb{A}^2/G or *Y* is a log affine pseudo-plane of type *d*. On the other hand, let X° and Y° be the smooth loci of *X* and *Y*. Then $X^\circ \times \mathbb{A}^1 \cong Y^\circ \times \mathbb{A}^1$, and hence $\pi_1(X^\circ) \cong \pi_1(Y^\circ)$, which is a cyclic group of order *d* by the hypothesis. Since $\pi_1(X^{\circ}) \cong G$, it follows that \mathbb{A}^2/G has an \mathbb{A}^1 -fibration (cf. [9, Theorem 2.5.1 of Chap. 3]). Then *X* is a log affine pseudo-plane of type *d* by Lemma 1.3. For the last assertion, we have an example of affine pseudo-planes *X* and *Y* which satisfy $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ but $X \not\cong Y$ (see [6, Theorem 2.17]). \Box

By the same argument as in Theorem 2.1, we can prove the following result.

Theorem 2.2. Let X be isomorphic to \mathbb{A}^2/G with a small finite subgroup G of $GL(2,\mathbb{C})$ *. Suppose that* $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ *and that G is not a cyclic group. Then Y is isomorphic to X.*

Proof. By Lemma 2.2 and Theorem 1.1, either *Y* is isomorphic to \mathbb{A}^2/G' for a small finite subgroup G' of $GL(2,\mathbb{C})$ or Y is a log affine pseudo-plane of type $d > 1$. Since $\pi_1(X^{\circ}) \cong \pi_1(Y^{\circ}) \cong G$ as in the proof of Theorem 2.1 and since *G* is not cyclic by the hypothesis, *Y* is not a log affine pseudo-plane and *Y* is isomorphic to \mathbb{A}^2/G as we have $G \cong G'$. In order to show that *Y* is isomorphic to *X*, we have to show that the linear representation ρ_G of *G* on \mathbb{A}^2 and that $\rho_{G'}$ of G' on \mathbb{A}^2 is the same upto an automorphism of \mathbb{A}^2 . For this purpose, let X° and *Y*[°] be respectively the smooth parts of *X* and *Y*. Here $X \setminus X$ [°] and $Y \setminus Y$ [°] consist of single points \overline{O}_X and \overline{O}_Y . Then ${\overline{O}_X} \times \mathbb{A}^1 \cong {\overline{O}_Y} \times \mathbb{A}^1$ is the singular locus of $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$. In particular, we have

$$
G \cong \pi_1(X^{\circ} \times \mathbb{A}^1) \cong \pi_1(Y^{\circ} \times \mathbb{A}^1) \cong G'.
$$

Let \widetilde{X} and \widetilde{Y} be the quasi-universal coverings of *X* and *Y*. Then $\widetilde{X} \cong \widetilde{Y} \cong \mathbb{A}^2$ and $\widetilde{X} \times \mathbb{A}^1 \cong \widetilde{Y} \times \mathbb{A}^1 \cong \mathbb{A}^3$. Since the induced actions of *G* and *G'* on \mathbb{A}^3 are $\rho_G \oplus 1$ and $\rho_{G'} \oplus 1$ with the trivial representation 1 of *G* and *G*['] on \mathbb{A}^1 , a theorem of Krull-Schmidt in the representation theory implies that ρ_G and $\rho_{G'}$ are the same upto an automorphism of \mathbb{A}^2 . Thence it follows that *X* \cong *Y*. \Box

The following result gives a criterion in terms of the Makar-Limanov invariant for a log affine pseudo-plane to be isomorphic to \mathbb{A}^2/G .

Theorem 2.3. *We have the following assertions.*

- (1) Let *X* be isomorphic to the quotient surface \mathbb{A}^2/G *, where G* is a cyclic group *of order d. Then the Makar-Limanov invariant* ML (*X*) *is trivial.*
- (2) Let *X* be a singular, affine pseudo-plane of type $d > 1$. Then *X* is isomor*phic to* A^2/G *if and only if X has the trivial Makar-Limanov invariant.*

Proof. (1) Suppose that $X \cong \mathbb{A}^2/G$ with a cyclic group G of order $d > 1$. Identify *G* with the group of all *d*-th roots of unity in \mathbb{C} . Then the *G*-action on \mathbb{A}^2 is given by $\zeta(x, y) = (\zeta x, \zeta^q y)$ for $\zeta \in G$, where $q < d$ and $gcd(d, q) = 1$. Then the coordinate ring *A* of *X* is given as

$$
A = \mathbb{C}[x, y] \cap \mathbb{C}(x^d, y^d, y/x^q).
$$

Let $u = x^d, v = y^d$ and $w = x^{d-q}y = u \cdot (y/x^q)$. Then $A[u^{-1}] = \mathbb{C}[u, u^{-1}, u^{-1}w]$. Hence $\delta = u^a \frac{\partial}{\partial w}$ with $a \gg 0$ defines a locally nilpotent derivation on *A* (cf. [9, p.219]). On the other hand, since $gcd(d, q) = 1$, we find a positive integer q' so that $qq' \equiv 1 \pmod{d}$. Let ζ be a primitive *d*-th root of unity. Then $\zeta' := \zeta^{q'}$ is also primitive, and the ^{*ζ'*}(*x, y*) = ($\zeta^{q'}x, \zeta y$). Hence $w' = xy^{d-q'} = (x/y^{q'})v \in A$, and $A[v^{-1}] = \mathbb{C}[v, v^{-1}, v^{-1}w']$. So, $\delta' = v^b \frac{\partial}{\partial w'}$ with $b \gg 0$ is a locally nilpotent derivation on *A* which is algebraically independent of δ . Hence ML $(X) = \mathbb{C}$.

(2) It suffices to show the "if" part. Suppose that $ML(X) = \mathbb{C}$. Let $\rho : X \to C$ be the \mathbb{A}^1 -fibration with which X has a structure of singular affine pseudo-plane of type $d > 1$. Then there exists a normal projective surface V and a \mathbb{P}^1 -fibration $\overline{\rho}: V \to \overline{C}$ such that the following conditions are satisfied.

- (i) *X* is an open set of *V* and $D := V X$ is a divisor with simple normal crossings. We may assume that the embedding $X \hookrightarrow V$ is minimal, i.e., *D* contains no (-1) curves which contract to smooth points without breaking the property of *D* being a divisor with simple normal crossings.
- (ii) The restriction of $\overline{\rho}$ onto *X* is the given \mathbb{A}^1 -fibration ρ .
- (iii) The curve \overline{C} is isomorphic to \mathbb{P}^1 .

By [2, Theorem 2.9], we can assume that *D* is a linear chain. Let dF_0 be the unique multiple fiber of ρ and let Φ_0 be the fiber of $\overline{\rho}$ containing dF_0 . Write $\Phi_{0,\text{red}} = \Gamma + \overline{F}_0$, where \overline{F}_0 is the closure of F_0 in *V*. Let *P* be the unique singular point of *X* which lies on F_0 . Let $\sigma : \tilde{V} \to V$ be the minimal resolution of singularity at *P* and let $\Delta = \sigma^{-1}(P)$ be the exceptional divisor. The composite $\widetilde{\rho} = \overline{\rho} \cdot \sigma$ is a \mathbb{P}^1 -fibration on \widetilde{V} and $\sigma'(\Gamma + \overline{F}_0) + \Delta$ supports a degenerate fiber $\widetilde{\Phi}_0$ of $\widetilde{\rho}$, where $\sigma'(\cdot)$ signifies the proper transform. Let $\widetilde{F}_0 = \sigma'(\overline{F}_0)$ and $\widetilde{\Gamma} = \sigma'(\Gamma)$. Note that Δ is a linear chain with one end component meeting \tilde{F}_0 and that $\tilde{\Gamma}$

is a linear chain. Furthermore, \widetilde{F}_0 is the unique (−1) component of $\widetilde{\Phi}_0$ and its multiplicity is *d*.

Now we consider the quasi-universal covering of *X*. Namely, we consider the universal covering \widetilde{X}° of $X^{\circ} := X \setminus \{P\}$ which is in fact a finite covering. The quasi-universal covering \widetilde{X} of *X* is the normalization of *X* in the function field of \widetilde{X}° . The surface \widetilde{X}° is obtained as the normalization of $X^\circ \times_C C'$, where $\nu: C' \to C$ is a *d*-th cyclic covering of *C* ramifying totally over the point $\rho(F_0)$. This process of producing \widetilde{X} corresponds to the process of taking the fiber product $(\widetilde{V}, \widetilde{\rho}) \times_{\overline{C}} (\overline{C'}, \overline{\nu})$, where $\overline{\nu} : \overline{C'} \to \overline{C}$ is a *d*-th cyclic covering ramifying totally over the point $\rho(F_0)$ and the point at infinity $\overline{C} \setminus C$, taking the normalization of the fiber product and finally resolving minimally the singularities of the obtained normal surface. Let *W* be a smooth projective surface obtained in this manner and let $\mu : W \to V$ be the natural morphism. By a general theory of *d*-th cyclic coverings of the above type, the component F_0 does not ramify and the restriction $\mu:\mu'(\widetilde{F}_0)\to \widetilde{F}_0$ induced by the morphism μ ramifies totally over the points $\widetilde{F}_0\cap \Delta$ and $\widetilde{F}_0 \cap \widetilde{\Gamma}$, where $\mu'(\widetilde{F})_0$ is the induced proper transform of \widetilde{F}_0 . Furthermore, $\mu'(\widetilde{F}_0)$ has multiplicity one in the degenerate fiber $\mu^*(\widetilde{\Phi}_0)$ of the induced \mathbb{P}^1 fibration $\tilde{\rho} \cdot \mu : W \to \overline{C}$. Since the degenerate fiber $\mu^*(\tilde{\Phi}_0)$ can be contracted to a smooth fiber which is the image of the component $\mu'(\widetilde{F}_0)$, it follows that $\mu^{-1}(\Delta)$ contracts to a smooth point on $\mu'(\widetilde{F}_0)$. Hence \widetilde{X} is isomorphic to the affine plane A². Since *X* \cong \widetilde{X}/G with *G* = $\pi_1(X^{\circ}) \cong \mathbb{Z}/d\mathbb{Z}$, it follows that *X* is isomorphic to \mathbb{A}^2/G . □

We shall now prove Theorem 2.2 in the case where *G* is a finite cyclic group.

Theorem 2.4. Let *X* be isomorphic to A^2/G with a small finite subgroup G of GL (2, C)*.* Suppose that $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ and that G is a cyclic group. Then $X \cong Y$.

Proof. As in the proof of Theorem 2.2, either *Y* is isomorphic to \mathbb{A}^2/G' or *Y* is a singular affine pseudo-plane of type *d >* 1. With the same notations there, we have $\widetilde{X} \times \mathbb{A}^1 \cong \widetilde{Y} \times \mathbb{A}^1$, where $\widetilde{X} \cong \mathbb{A}^2$. By the cancellation theorem for \mathbb{A}^2 , we have $\widetilde{Y} \cong \mathbb{A}^2$. Since $\pi_1(Y^{\circ}) \cong \pi_1(Y^{\circ} \times \mathbb{A}^1) \cong \pi_1(X^{\circ} \times \mathbb{A}^1) \cong G$, it follows that *G*^{\prime} is isomorphic to *G* and that the group *G* acts on $\widetilde{Y} \cong \mathbb{A}^2$ as the same linear representation ρ_G upto an automorphism of \mathbb{A}^2 . Since $Y \cong \widetilde{Y}/\mathscr{G}$, we have $Y \cong X$. \Box

Remark 1. In Theorem 2.1, when *X* is a log affine pseudo-plane, the condition $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ does not necessarily imply $X \cong Y$. One of the reasons for this phenomenon is the following. With the above notations, we have $\widetilde{X}\times\mathbb{A}^1\cong \widetilde{Y}\times\mathbb{A}^1$, while \tilde{X} is isomorphic to either \mathbb{A}^2 or a Danielewski surface. In the latter case, \tilde{X} is not necessarily isomorphic to \tilde{Y} .

Remark 2. In [1, Theorems 4.2 and 4.3], given a finite morphism $\varphi : X \to Y$ of smooth affine surfaces, it is proved that *Y* has the trivial Makar-Limanov invariant provided so does *X* if φ satisfies one of the following conditions.

- (1) φ is étale.
- (2) φ is a Galois (possibly ramified) covering.
- (3) *X* has the Picard number $\rho(X) = 0$.

It is most plausible that the same result holds when we replace *X* and *Y* by normal affine surfaces with quotient singularities, which we call *log affine surfaces* and an ϕ etale covering by a finite covering such that $X^\circ = \varphi^{-1}(Y^\circ)$ and $\varphi |_{X^\circ}: X^\circ \to Y^\circ$ is étale.

REFERENCES

- [1] R.V. Gurjar, K. Masuda, M. Miyanishi and P. Russell, *Affine lines on affine surfaces and the Makar-Limanov invariant*, to appear in Canad. J. Math.
- [2] R.V. Gurjar and M. Miyanishi, *Automorphisms of affine surfaces with* A¹*-fibrations*, Michigan Math. J. **53** (2005), 33–55.
- [3] R.V. Gurjar and M. Miyanishi, *Pure subalgebras of polynomial rings*, preprint.
- [4] M. Hashimoto, *A pure subalgebra of a finitely generated algebra is finitely generated*, Proc. Amer. Math. Soc. **133** (2005), 2233–2235.
- [5] M. Hochster and J. L. Roberts, *Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay*, Advances in Math. **13** (1974), 115-175.
- [6] K. Masuda and M. Miyanishi, *Affine pseudo-planes and cancellation problem*, Trans. Amer. Math. Soc. **357**, No. 12 (2005), 4867–4883.
- [7] M. Miyanishi, *Singularities of normal affine surfaces containing cylinderlike open sets*, J. Algebra **68** (1981), 268-275.
- [8] M. Miyanishi, *Normal affine subalgebras of a polynomial ring*, Algebraic and Topological Theories - to the memory of Dr. Takehiko MIYATA, Kinokuniya, 1985, 37-51.
- [9] M. Miyanishi, *Open algebraic surfaces*, Centre de Recherches Math´ematiques, Vol **12**, Université de Montréal, Amer. Math. Soc., 2001.
- [10] M. Miyanishi, *Affine pseudo-coverings of algebraic surfaces*, J. Algebra **294** (2005), 156– 176.

SCHOOL OF SCIENCE AND TECHNOLOGY Kwansei Gakuin University 2-1 Gakuen, Sanda, Hyogo 669–1337, Japan

E-mail address: miyanisi@ksc.kwansei.ac.jp