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Q-FACTORIAL SUBALGEBRAS OF A POLYNOMIAL RING

MASAYOSHI MIYANISHI

ABSTRACT. We give an algebraic characterization of a log affine pseudo-plane
and the quotient surface A?/G of A? with a small finite subgroup G of GL(2, C)
in terms of Q-factorial normal subalgebras of a polynomial ring C[z,y]. Then
we consider the cancellation problem for these surfaces.

1. SUBALGEBRAS OF A POLYNOMIAL RING

Let X be a normal affine surface defined over the complex field C and let
A be the coordinate ring of X. We then say that X (or A) is Q-factorial if
the divisor class group C/¢ (X) (or Cf¢ (A)) consists of elements of finite order.
Further, X is said to be a log affine pseudo-plane of type d if there exists an Al-
fibration p : X — C such that C is isomorphic to the affine line A', every fiber
is irreducible and only one fiber dFj is a multiple fiber with multiplicity d > 1.
It is known by [7] that the singularity of X is at most cyclic quotient singularity,
and that if P is a singular point then P lies on a multiple fiber and there are no
other singular points on the fiber. Hence X has at most one singular point. If X
is smooth, we simply say that X is an affine pseudo-plane of type d.

On the other hand, let ¢ : A < B be an injective homomorphism of C-algebras
by which we view A as the subalgebra ¢(A) of B. We call ¢ a pure embedding if
the natural homomorphism ¢p; : M — M ® 4 B is injective for every A-module
M. We call A also a pure subalgebra of B. For this definition and relevant results,
the readers are referred to Hochster-Roberts [5]. Let us begin with the following
result. For an integral domain A, we denote by Q(A) the field of fractions.

Lemma 1.1. Let ¢ : A — B be a pure embedding of C-algebras. Then the
following assertions hold.

(1) For any ideal I of A, we have IBN A = 1. Hence if B is noetherian, so is
A.

(2) Suppose that B is a noetherian domain. Let X = Spec A,Y = Spec B and
p="%%. Thenp:Y — X is a surjective morphism.
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(3) Suppose that B is an integral domain and that A and B are birational, i.e.,
Q(A) =Q(B). Then ¢(A) = B.
(4) Suppose that B is normal. Then so is A.

Proof. The assertions follow from the definition. O

We set B = C[z, y] a polynomial ring in two variables and specify further the
properties of a (pure) subalgebra A of dimension two.

Lemma 1.2. Let ¢ : A — B = C|z,y] be a subalgebra with dim A = 2. Let
p: A2 — X = Spec A be the associated morphism. Then we have the following
assertions.

(1) A is a finitely generated, normal domain provided ¢ is a pure embedding.

(2) Suppose that p is a quasi-finite morphism. Let X° be the smooth part of
X. Then X° has log Kodaira dimension ®(X°) = —oo. Hence either X
contains an open set isomorphic to A%/G with a small finite subgroup G of
GL (2,C) or X has an Al-fibration p : X — C, where C is isomorphic to
Al or P!,

(3) If X is smooth and p : A?> — X is a dominant morphism, the assertion (2)
holds with X replacing X°.

(4) Suppose that p is quasi-finite and X is Q-factorial. Then either X is iso-
morphic to A?/G or X has an Al'-fibration p : X — C = A' whose fibers
are all irreducible.

Proof. The assertion (1) is due to Hashimoto [4].
(2) If p is quasi-finite, the set p~!1(X — X°) is a finite subset of A2 Hence
p~1(X°) has log Kodaira dimension —oco, and so does X° (cf. [9, Lemma 1.14.1

in Chap. 2]). There are two cases to consider (see [9, Theorem 5.1.2 in Chap. 2
and Lemma 1.6.2 in Chap. 3] and [§]).

(i) X° contains an open set U which is isomorphic to A?/G — {O}, where O
is the unique singular point, where G is, as above, a small finite subgroup
of GL (2,C). Furthermore, X — U is a disjoint union of contractible curves
which are isomorphic to A if X is smooth.

(i) X° has an Al-fibration p°: X° — C°.

We consider the case (i) first. Since A?/G is normal, the natural immersion
U — X extends to a morphism A%2/G — X which must be an open immersion
by the Zariski Main Theorem. In the case (ii), since X is affine, the A!-fibration
p° extends to an Al-fibration p : X — C, where C contains C° as an open set
and is isomorphic to A! or P! because X is dominated by AZ.

(3) If X is smooth, it follows that ®(X) = —oo (cf. [9, Lemma 1.14.1 in Chap.
2]). Then we can argue in the same way as in the assertion (2) with X° replaced
by X.

(4) Suppose that X contains an open set A%2/G. If X # A?/G, let C be an
irreducible component of X —A?/G. Since X is Q-factorial, there exists an integer
N > 0 such that NC' is defined by an element f of A. Then f is invertible on
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A?/@G. Since there is a finite morphism 7 : A2 — A?/G, the element 7*(f) is an
invertible element on A2, which is a constant. This is absurd. So, X = A2?/G.
Suppose next that X has an A'-fibration p : X — C which we may assume to
be surjective. Then C = Al for otherwise X would have positive Picard number
and therefore X would not be Q-factorial. If p has reducible fibers then X has
again positive Picard number, which contradicts the Q-fatoriality of X. O

We can strengthen the assertion (4) in Lemma 1.2 by the following result.

Lemma 1.3. Let X be a normal affine surface with an A'-fibration p: X — C,
where C = A'. Suppose that there exists a dominant morphism p : A> — X
and that X is Q-factorial. Then X is either the affine plane A% or a log affine
pseudo-plane of type d > 1.

Proof. By the assertion (4) of Lemma 1.2, every fiber of p is irreducible. If there
is no multiple fiber, then X is smooth and hence isomorphic to A%2. Otherwise,
let diFY, ..., d,F, be all multiple fibers of p. Since p : A?> — X is dominant, there
exists a general line £ on A? such that the image of ¢ by p lies horizontally along
the fibration p. If s > 2 this is impossible by [10, Lemma 2.4]. So, s = 1 and we
are done. O

Now we can state the following result.

Theorem 1.1. Let X be a Q-factorial affine surface and let A be the coordinate
ring of X. Then the following conditions are equivalent.

(1) X is isomorphic to the affine plane, A?/G with a small finite subgroup G of
GL (2,C) or a log affine pseudo-plane of type d > 1.

(2) There exists a surjective quasi-finite morphism p : A2 — X.

(3) The ring A is a pure subalgebra of a polynomial ring Clx, y] with a surjective
quasi-finite morphism p : A2 — X.

(4) There exists a quasi-finite morphism p : A?> — X.

Proof. (1) = (2). For the case X = A2, the assertion is obvious. For the case
X = A?/@, the quotient morphism ¢ : A? — A?/G will do. For the case X is a
log affine pseudo-plane, we refer to [10, Lemma 2.1]. In fact, we can take p to be
a surjective étale morphism.

(2) = (3). Let Clx, y] be the coordinate ring of A% and let ¢ : A < Cl[z, y] be
the homomorphism associated to p. Then ¢ is a pure embedding by [3, Lemma
2.2).

(3) = (4). This is obvious.

(4) = (1). This follows from Lemmas 1.2 and 1.3. O

The following is a fundamental question concerning pure subalgebras.

Problem 1.1. Let A be a pure subalgebra of an affine normal domain with Q(B)
algebraic over Q(A). Is the associated morphism Spec B — Spec A a quasi-finite
morphism ¢
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Hereafter we consider the affine plane as a log affine pseudo plane of type d = 1.
In view of the problem, we can pose the following.

Conjecture 1.1. Let ¢ : A — B = Clxz,y| be a pure embedding with dim A = 2.
If A is Q-factorial then either X = A%/G or X is a log affine pseudo-plane of
type d.

In the smooth case, we have the following algebraic characterization of an affine
pseudo-plane.

Theorem 1.2. Let X be a Q-factorial, smooth affine surface. Then X is an
affine pseudo-plane of type d if and only if there exists a dominant morphism
p:A? - X.

Proof. If X is an affine pseudo-plane of type d, it follows from Theorem 1.1 that
there exists a dominant morphism p : A2 — X. Suppose that there exists a
dominant morphism p. By Lemma 1.2, X is isomorphic to A?/G or X has an Al-
fibration p : X — C with C = A! or P!. Since X is smooth, the case X = A?/G
does not take place. Since X is Q-factorial, C' is isomorphic to A and p has only
irreducible fibers. By Lemma 1.3, X is an affine pseudo-plane of type d, where
we understand that X = A2 if d = 1. O

2. CANCELLATION PROBLEM FOR AFFINE PSEUDO-PLANES

Affine pseudo-planes have geometric structures which are quite close to the
affine plane. Since the affine plane has the cancellation property, it is interesting
to ask whether the affine pseudo-planes have the same property. We begin with
the following result.

Lemma 2.1. Let A be a noetherian normal domain and let Alzy,...,x,] be a
polynomial ring over A. Then we have:

(1) The natural injection A — Alzxq, ..., x,| induces an isomorphism between
the divisor class groups Cl (A) and Cl (A[xy, ..., zy)).
(2) A is Q-factorial if and only if so is Alx1,. .., xy)].

Proof. (1) By induction on n, it suffices to verify the assertions in the case n = 1.
Let p be a prime ideal of A of height 1. Then pA[z] is a prime ideal of A[z] of
height 1. Suppose that pA[z] is principal. Then pA[x] = f(x)Az] for f(z) € Alz].
For a nonzero element a € p, we have a = f(z)g(x) for some g(x) € A[x]. This
implies that f(z) € A. Set f(x) = f. It is now clear that p = fA. So, the
natural homomorphism C¢ (A) — C/¢ (A[z]) is injective. On the other hand, let
S=A—-0and K = Q(A). Then S is a multiplicatively closed subset of A[x]
and S™'A[z] = K|z]. Note that C/ (S~'A[x]) is generated by prime ideals 9 of
Alz] of height one such that NS = (. Consider the natural homomorphism
m: Cl (Alz]) — Cl (K]|z]). Since Cl (K[x]) = (0), Cl (Alz]) = Ker w. Hence,
for any prime ideal B of A[z] of height 1 which represents a non-zero class of
Cl (A[z]), we have SNP #£ 0. Let p =P N A. Then p is a non-zero prime ideal
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of A and pA[z] C P. Since ht (P) = 1, we have P = pA[z|. This implies that
Cl (A) = Cl (Ax]).
(2) This is straightforward from the assertion (1). O

We need the following result to proceed further.

Lemma 2.2. Let X be a normal affine surface with one singular point O. Sup-
pose that there exists a surjective quasi-finite morphism p : A> — X and that
there is given an isomorphism 0 : X x A™ 5Y x A" for an algebraic variety Y.
Then the following assertions hold.

(1) Y is a normal affine surface with one singular point.
(2) Ifn =1, there exists a quasi-finite morphism q : A2 — Y.

Proof. (1) It is clear that Y is a normal affine surface. Hence Y has finitely many
isolated singular points, say Q1, ..., Qs. Since X has a unique singular point O,
the singular locus of X x A" is {O} x A™. Since the singular locus of Y x A" is
the disjoint union [[;_,{Q;} x A", it follows that Y has a unique singular point
@ and {O} x A" is mapped isomorphically onto {Q} x A™ under the isomorphism
6.

(2) Consider the given morphism p : A2 — X. Let O be a point of A? such
that p(O) = O. We consider the point O as the origin of a certain coordinate
system {1, 22} on A?. Let L be the linear subspace L := {O} x A" in the affine
space A% x A" = A"*2 which surjects to the space L := {O} x A" in X x A"
via p := p x 1gn. Let W(2,n + 2) be the set of all linear planes in A"*2. Let
T, T2, ..., Tpeo be coordinates of A"T2 and let X, ..., X,+2 be homogeneous
coordinates of P"*? when A"*? is embedded into P"*2 in such a way that x; =
X;/Xo for 1 <i<n+2. Let P be a linear plane of A"*2. Then P is defined by
n equations

a11%1 + -+ a1p2Tny2 +ag = 0
)
Ap1T1 + -+ Gppi2Tpi2 +apo = 0
or equivalently
a10Xo + a1 X1+ -+ aip2Xni2 = 0
anoXo + a1 X1+ -+ appp2Xng2 = 0

Since P C A"*2, we have rank A = rank A= n, where

A = (aij)
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Note that P € P2\ A"2 if and only if rank A < rank A. Then the set W (2, n+2)

is bijectively coordinated by (":3) minors
a1i;  Qlip, - Qli,
det | @2 G20z = 020y
Aniy  Anig  *°° Qng,

where 0 < i3 < iy < -+ < iy < n+ 2. Thus, W(2,n + 2) identified with the
projective space having the above coodinates has dimension

n-+3
n

1
dimW(2,n—|—2):< >—1:6(n—|—1)(n—|—2)(n—|—3)—1.
On the other hand, for any point y € Y, let W’ (y) be the subset of W(2,n + 2)
consisting of linear planes P such that dim(P N (6 -p)~'({y} x A") > 0. When
n = 1, for the existence of a desired linear plane P in A"*? with an induced
quasi-finite morphism P — Y, we need to prove that

dim ] W'(y) < dimW(2,n + 2)
yeyY

which seems to be valid even if n > 1 though we could not prove it. So, assume
that n = 1. Suppose that an irreducible component of (6 - p)~!({y} x Al) with
a general point y € Y is contained in two distinct linear planes P, P’. Then the
component is a linear line £ in A% = A2 x A" with n = 1. Hence one irreducible
component of (6 -p)~'({y} x A!) for every y € Y is contained in a linear plane
and parallel to the line ¢. Hence those linear planes when y moves in Y form a
two-dimensional family. Let F be the set of linear planes P satisfying one of the
following conditions:

(i) P contains an irreducible component of (6 - p)~!({y} x A') with a general
point y € Y but does not share the component with other linear planes;

(ii) P contains an irreducible component of (6-p)~!({y} x A!) for a special point
y € Y which is a linear line.

Then every irreducible component of F has dimension at most two. Since
dim W (2,3) = 3, we find a linear plane P which contains no irreducible compo-
nents of (6-p) 71 ({y} x A!) for all points y € Y. Then the projection py : A®> — Y
restricts to a quasi-finite morphism (py) |p: P — Y. O

Given a normal algebraic variety X, we consider the quasi-universal covering
of X when 71(X°) is a finite group, where X° is the smooth part of X. Let X°
be the universal covering of X° which is a smooth algebraic variety since 71 (X°)
is finite. Let X be the normalization of X in the function field of X°. We call
X together with the normalization morphism 7 : X > X the quasi-universal
covering of X. The fundamental group G := m1(X°) acts on X and X is the
algebraic quotient X //G.
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The following result shows that the cancellation holds in the class of log affine
pseudo-planes of type d but does not hold individually upto isomorphisms.

Theorem 2.1. Let X be a log affine pseudo-plane of type d. Suppose we have
an isomorphism X x A" 2Y x A" for an algebraic variety Y. Suppose further
that either X is smooth and n arbitrary or X is singular and n =1. Then Y is
a log affine pseudo-plane of type d. But X is not necessarily isomorphic to Y.

Proof. 1t is clear that Y is a normal affine surface and Y is smooth if so is X.
By Lemma 2.1, Y is Q-factorial since

Cl(A) = Cl(Alzr,...,zn]) = CL(Bly1,...,yn]) = Cl(B),

where A and B are respectively the coordinate rings of X and Y. On the other
hand, by Theorem 1.1, there exists a surjective quasi-finite morphism p : A? — X.
Hence px1pn : A2XA™ = A"2 — X x A" 2 Y x A” composed with the projection
onto Y induces a dominant morphism ¢ : A"*? — Y. If Y is smooth, Y is an
affine pseudo-plane of type d by Theorem 1.2. If Y is singular and n = 1, we can
take a linear plane P of A? such that the restriction ¢ |p: P — Y is quasi-finite
by Lemma 2.2. By Theorem 1.1, either Y is isomorphic to A2/G or Y is a log
affine pseudo-plane of type d. On the other hand, let X° and Y° be the smooth
loci of X and Y. Then X° x Al 2 Y° x Al and hence 71(X°) = 7 (Y*°), which
is a cyclic group of order d by the hypothesis. Since 71(X°) = G, it follows that
A?/G has an Al-fibration (cf. [9, Theorem 2.5.1 of Chap. 3]). Then X is a log
affine pseudo-plane of type d by Lemma 1.3. For the last assertion, we have an
example of affine pseudo-planes X and Y which satisfy X x Al =2 Y x Al but
X 2Y (see [6, Theorem 2.17]). O

By the same argument as in Theorem 2.1, we can prove the following result.

Theorem 2.2. Let X be isomorphic to A%/G with a small finite subgroup G of
GL(2,C). Suppose that X x A’ =Y x Al and that G is not a cyclic group. Then
Y is isomorphic to X.

Proof. By Lemma 2.2 and Theorem 1.1, either Y is isomorphic to A?/G’ for a
small finite subgroup G’ of GL (2,C) or Y is a log affine pseudo-plane of type
d > 1. Since m1(X°) = m(Y°) = G as in the proof of Theorem 2.1 and since
G is not cyclic by the hypothesis, Y is not a log affine pseudo-plane and Y is
isomorphic to A%2/G as we have G = G’. In order to show that Y is isomorphic to
X, we have to show that the linear representation pg of G on A? and that pe of
G’ on A? is the same upto an automorphism of A2. For this purpose, let X° and
Y° be respectively the smooth parts of X and Y. Here X\ X° and Y\ Y° consist
of single points Ox and Oy. Then {Ox} x Al = {Oy} x Al is the singular locus
of X x A'2Y x Al. In particular, we have

Gem(Xex A 2m(Y°x A)=q'.

Let )z and Y be the quasi-universal coverings of X and Y. Then XY ~A?
and X x Al 2 Y x A! 2 A3. Since the induced actions of G and G’ on A® are
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pc®1 and per ® 1 with the trivial representation 1 of G and G’ on A!, a theorem
of Krull-Schmidt in the representation theory implies that pg and pgr are the
same upto an automorphism of A%. Thence it follows that X =Y. O

The following result gives a criterion in terms of the Makar-Limanov invariant
for a log affine pseudo-plane to be isomorphic to A%/G.

Theorem 2.3. We have the following assertions.

(1) Let X be isomorphic to the quotient surface A?/G, where G is a cyclic group
of order d. Then the Makar-Limanov invariant ML (X) is trivial.

(2) Let X be a singular, affine pseudo-plane of type d > 1. Then X is isomor-
phic to A?/G if and only if X has the trivial Makar-Limanov invariant.

Proof. (1) Suppose that X = A? /G with a cyclic group G of order d > 1. Identify
G with the group of all d-th roots of unity in C. Then the G-action on A? is
given by ¢(z,y) = (Cx, (%) for ¢ € G, where ¢ < d and ged(d, ¢) = 1. Then the
coordinate ring A of X is given as

A =Clz,y]N (C(:Eda ydv y/z7).

Let u = 2% v=y% and w = 2979y = u - (y/29). Then Alu~'] = Clu,u™, v w].
Hence 6 = u® 8% with a > 0 defines a locally nilpotent derivation on A (cf. [9,
p.219]). On the other hand, since ged(d, q) = 1, we find a positive integer ¢’ so
that ¢¢’ = 1 (mod d). Let ¢ be a primitive d-th root of unity. Then ¢’ := ¢? is
also primitive, and the ¢'(z,y) = (7, Cy) Hence w = zy?? = (z/y? v € A,
and Afv~!] = Clv,v™!, v~ w] So, §' = v? aw, with b > 0 is a locally nilpotent
derivation on A which is algebralcally independent of §. Hence ML (X) = C.

(2) It suffices to show the “if ”part. Suppose that ML(X)=C. Let p: X — C
be the Al-fibration with which X has a structure of singular affine pseudo-plane
of type d > 1. Then there exists a normal projective surface V and a P!-fibration
p:V — C such that the following conditions are satisfied.

(i) X is an open set of V and D := V — X is a divisor with simple normal
crossings. We may assume that the embedding X < V' is minimal, i.e., D
contains no (—1) curves which contract to smooth points without breaking
the property of D being a divisor with simple normal crossings.

(ii) The restriction of 7 onto X is the given A!-fibration p.

(iii) The curve C is isomorphic to P!

By [2, Theorem 2.9], we can assume that D is a linear chain. Let dFy be the
unique multiple fiber of p and let ®¢ be the fiber of p containing dFp. Write
®greda = I' + Fo, where Fy is the closure of Fy in V. Let P be the unique
singular point of X which lies on FO. Let 0 : V — V be the minimal resolution of
singularity at P and let A = 0~!(P) be the exceptional divisor. The composite
p = p-ois a P-fibration on V and o "(T+Fo)+A supports a degenerate fiber D
of p, where o’(+) signifies the proper transform. Let Fy=o '(Fg) and =0 (F)

Note that A is a linear chain with one end component meeting Fo and that I"
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is a linear chain. Furthermore, Fy is the unique (—=1) component of ® and its
multiplicity is d.

Now we consider the quasi-universal covering of X. Namely, we consider the
universal covering X° of X° := X \ {P} which is in fact a finite covering. The
quasi-universal covering X of X is the normalization of X in the function field
of X°. The surface X° is obtained as the normalization of X° xc C', where
v:C" — Cis ad-th cyclic covering of C' ramifying totally over the point p(Fo).
This process of producing X corresponds to the process of taking the fiber product
( ,P) Xz (C",7), where 7 : C" — C is a d-th cyclic covering ramifying totally
over the point p(Fy) and the point at infinity C'\ C, taking the normalization of
the fiber product and finally resolving minimally the singularities of the obtained
normal surface. Let W be a smooth projective surface obtained in this manner
and let p: W — V be the natural morphism. By a general theory of d-th cyclic
coverings of the above type, the component Fo does not ramify and the restriction
W (FO) — Fo induced by the morphism y ramifies totally over the points Fo NA
and Fo N F where (F )o is the induced proper transform of FO Furthermore,
74 (ﬁo) has multiplicity one in the degenerate fiber pu (<I>0) of the induced P!-
fibration p-p : W — C. Since the degenerate fiber ,u*(%o) can be contracted to a
smooth fiber which is the image of the component /' (Fp), it follows that =1 (A)
contracts to a smooth point on (130). Hence X is isomorphic to the affine plane
A2, Since X = X /G with G = 7,(X°) & Z/dZ, it follows that X is isomorphic
to A?/G. O

We shall now prove Theorem 2.2 in the case where G is a finite cyclic group.

Theorem 2.4. Let X be isomorphic to A?/G with a small finite subgroup G of
GL (2,C). Suppose that X x A' =Y x Al and that G is a cyclic group. Then
XYy,

Proof. As in the proof of Theorem 2.2, either Y is isomorphic to A%2/G’ or Y is
a singular affine pseudo-plane of type d > 1. With the same notations there, we
have X x Al 2V x A', where X A2 By the cancellation theorem for A2,
we have Y 2 A2 Since 71 (Y°) = 1y (Y° x Al) 2 7 (X° x Al) = G, it follows
that G’ is isomorphic to G and that the group G acts on Y = A? as the same

linear representation pg upto an automorphism of A2. Since Y = Y //G, we have
Y~ X. O

Remark 1. In Theorem 2.1, when X is a log affine pseudo-plane, the condition
X x A 2Y x A! does not necessarily imply X =Y. One of the reasons for this
phenomenon is the following. With the above notations, we have XxA' @Y x Al
while X is isomorphic to either A? or a Danielewski surface. In the latter case,
X is not necessarily isomorphic to Y.
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Remark 2. In [1, Theorems 4.2 and 4.3], given a finite morphism ¢ : X — Y
of smooth affine surfaces, it is proved that Y has the trivial Makar-Limanov
invariant provided so does X if ¢ satisfies one of the following conditions.

(1) ¢ is étale.
(2) ¢ is a Galois (possibly ramified) covering.
(3) X has the Picard number p(X) = 0.

It is most plausible that the same result holds when we replace X and Y by normal
affine surfaces with quotient singularities, which we call log affine surfaces and an
étale covering by a finite covering such that X° = ¢~1(Y°) and ¢ |xo: X° — Y°
is étale.
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