Q-FACTORIAL SUBALGEBRAS OF A POLYNOMIAL RING

MASAYOSHI MIYANISHI

ABSTRACT. We give an algebraic characterization of a log affine pseudo-plane and the quotient surface \mathbb{A}^2/G of \mathbb{A}^2 with a small finite subgroup G of $\operatorname{GL}(2, \mathbb{C})$ in terms of \mathbb{Q} -factorial normal subalgebras of a polynomial ring $\mathbb{C}[x, y]$. Then we consider the cancellation problem for these surfaces.

1. Subalgebras of a polynomial ring

Let X be a normal affine surface defined over the complex field \mathbb{C} and let A be the coordinate ring of X. We then say that X (or A) is Q-factorial if the divisor class group $C\ell(X)$ (or $C\ell(A)$) consists of elements of finite order. Further, X is said to be a log affine pseudo-plane of type d if there exists an \mathbb{A}^1 -fibration $\rho: X \to C$ such that C is isomorphic to the affine line \mathbb{A}^1 , every fiber is irreducible and only one fiber dF_0 is a multiple fiber with multiplicity d > 1. It is known by [7] that the singularity of X is at most cyclic quotient singularity, and that if P is a singular point then P lies on a multiple fiber and there are no other singular points on the fiber. Hence X has at most one singular point. If X is smooth, we simply say that X is an affine pseudo-plane of type d.

On the other hand, let $\varphi : A \hookrightarrow B$ be an injective homomorphism of \mathbb{C} -algebras by which we view A as the subalgebra $\varphi(A)$ of B. We call φ a *pure* embedding if the natural homomorphism $\varphi_M : M \to M \otimes_A B$ is injective for every A-module M. We call A also a *pure* subalgebra of B. For this definition and relevant results, the readers are referred to Hochster-Roberts [5]. Let us begin with the following result. For an integral domain A, we denote by Q(A) the field of fractions.

Lemma 1.1. Let $\varphi : A \to B$ be a pure embedding of \mathbb{C} -algebras. Then the following assertions hold.

- (1) For any ideal I of A, we have $IB \cap A = I$. Hence if B is noetherian, so is A.
- (2) Suppose that B is a noetherian domain. Let X = Spec A, Y = Spec B and $p = {}^{a}\varphi$. Then $p: Y \to X$ is a surjective morphism.

Received November 13, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14R05; Secondary 13B99.

Key words and phrases. Affine plane, polynomial ring, \mathbb{Q} -factorial subalgebra, \mathbb{A}^1 -fibration, log affine pseudo-plane.

The author was supported by Grant-in-Aid for Scientific Research (C) 18540058, The Ministry of Education, Culture, Sports, Science and Technology, Japan.

- (3) Suppose that B is an integral domain and that A and B are birational, i.e., Q(A) = Q(B). Then $\varphi(A) = B$.
- (4) Suppose that B is normal. Then so is A.

Proof. The assertions follow from the definition.

We set $B = \mathbb{C}[x, y]$ a polynomial ring in two variables and specify further the properties of a (pure) subalgebra A of dimension two.

Lemma 1.2. Let $\varphi : A \hookrightarrow B = \mathbb{C}[x, y]$ be a subalgebra with dim A = 2. Let $p : \mathbb{A}^2 \to X = \text{Spec } A$ be the associated morphism. Then we have the following assertions.

- (1) A is a finitely generated, normal domain provided φ is a pure embedding.
- (2) Suppose that p is a quasi-finite morphism. Let X° be the smooth part of X. Then X° has log Kodaira dimension $\overline{\kappa}(X^{\circ}) = -\infty$. Hence either X contains an open set isomorphic to \mathbb{A}^2/G with a small finite subgroup G of $\operatorname{GL}(2,\mathbb{C})$ or X has an \mathbb{A}^1 -fibration $\rho: X \to C$, where C is isomorphic to \mathbb{A}^1 or \mathbb{P}^1 .
- (3) If X is smooth and $p : \mathbb{A}^2 \to X$ is a dominant morphism, the assertion (2) holds with X replacing X° .
- (4) Suppose that p is quasi-finite and X is \mathbb{Q} -factorial. Then either X is isomorphic to \mathbb{A}^2/G or X has an \mathbb{A}^1 -fibration $\rho: X \to C \cong \mathbb{A}^1$ whose fibers are all irreducible.

Proof. The assertion (1) is due to Hashimoto [4].

(2) If p is quasi-finite, the set $p^{-1}(X - X^{\circ})$ is a finite subset of \mathbb{A}^2 . Hence $p^{-1}(X^{\circ})$ has log Kodaira dimension $-\infty$, and so does X° (cf. [9, Lemma 1.14.1 in Chap. 2]). There are two cases to consider (see [9, Theorem 5.1.2 in Chap. 2 and Lemma 1.6.2 in Chap. 3] and [8]).

- (i) X° contains an open set U which is isomorphic to $\mathbb{A}^2/G \{\overline{O}\}$, where \overline{O} is the unique singular point, where G is, as above, a small finite subgroup of GL $(2, \mathbb{C})$. Furthermore, X U is a disjoint union of contractible curves which are isomorphic to \mathbb{A}^1 if X is smooth.
- (ii) X° has an \mathbb{A}^1 -fibration $\rho^{\circ}: X^{\circ} \to C^{\circ}$.

We consider the case (i) first. Since \mathbb{A}^2/G is normal, the natural immersion $U \hookrightarrow X$ extends to a morphism $\mathbb{A}^2/G \to X$ which must be an open immersion by the Zariski Main Theorem. In the case (ii), since X is affine, the \mathbb{A}^1 -fibration ρ° extends to an \mathbb{A}^1 -fibration $\rho : X \to C$, where C contains C° as an open set and is isomorphic to \mathbb{A}^1 or \mathbb{P}^1 because X is dominated by \mathbb{A}^2 .

(3) If X is smooth, it follows that $\overline{\kappa}(X) = -\infty$ (cf. [9, Lemma 1.14.1 in Chap. 2]). Then we can argue in the same way as in the assertion (2) with X° replaced by X.

(4) Suppose that X contains an open set \mathbb{A}^2/G . If $X \neq \mathbb{A}^2/G$, let C be an irreducible component of $X - \mathbb{A}^2/G$. Since X is Q-factorial, there exists an integer N > 0 such that NC is defined by an element f of A. Then f is invertible on

 \mathbb{A}^2/G . Since there is a finite morphism $\pi : \mathbb{A}^2 \to \mathbb{A}^2/G$, the element $\pi^*(f)$ is an invertible element on \mathbb{A}^2 , which is a constant. This is absurd. So, $X \cong \mathbb{A}^2/G$. Suppose next that X has an \mathbb{A}^1 -fibration $\rho : X \to C$ which we may assume to be surjective. Then $C \cong \mathbb{A}^1$, for otherwise X would have positive Picard number and therefore X would not be Q-factorial. If ρ has reducible fibers then X has again positive Picard number, which contradicts the Q-fatoriality of X. \Box

We can strengthen the assertion (4) in Lemma 1.2 by the following result.

Lemma 1.3. Let X be a normal affine surface with an \mathbb{A}^1 -fibration $\rho: X \to C$, where $C \cong \mathbb{A}^1$. Suppose that there exists a dominant morphism $p: \mathbb{A}^2 \to X$ and that X is \mathbb{Q} -factorial. Then X is either the affine plane \mathbb{A}^2 or a log affine pseudo-plane of type d > 1.

Proof. By the assertion (4) of Lemma 1.2, every fiber of ρ is irreducible. If there is no multiple fiber, then X is smooth and hence isomorphic to \mathbb{A}^2 . Otherwise, let d_1F_1, \ldots, d_sF_s be all multiple fibers of ρ . Since $p : \mathbb{A}^2 \to X$ is dominant, there exists a general line ℓ on \mathbb{A}^2 such that the image of ℓ by p lies horizontally along the fibration ρ . If $s \ge 2$ this is impossible by [10, Lemma 2.4]. So, s = 1 and we are done.

Now we can state the following result.

Theorem 1.1. Let X be a \mathbb{Q} -factorial affine surface and let A be the coordinate ring of X. Then the following conditions are equivalent.

- (1) X is isomorphic to the affine plane, \mathbb{A}^2/G with a small finite subgroup G of $\operatorname{GL}(2,\mathbb{C})$ or a log affine pseudo-plane of type d > 1.
- (2) There exists a surjective quasi-finite morphism $p : \mathbb{A}^2 \to X$.
- (3) The ring A is a pure subalgebra of a polynomial ring $\mathbb{C}[x, y]$ with a surjective quasi-finite morphism $p : \mathbb{A}^2 \to X$.
- (4) There exists a quasi-finite morphism $p : \mathbb{A}^2 \to X$.

Proof. (1) \implies (2). For the case $X \cong \mathbb{A}^2$, the assertion is obvious. For the case $X \cong \mathbb{A}^2/G$, the quotient morphism $q : \mathbb{A}^2 \to \mathbb{A}^2/G$ will do. For the case X is a log affine pseudo-plane, we refer to [10, Lemma 2.1]. In fact, we can take p to be a surjective étale morphism.

 $(2) \Longrightarrow (3)$. Let $\mathbb{C}[x, y]$ be the coordinate ring of \mathbb{A}^2 and let $\varphi : A \hookrightarrow \mathbb{C}[x, y]$ be the homomorphism associated to p. Then φ is a pure embedding by [3, Lemma 2.2].

 $(3) \Longrightarrow (4)$. This is obvious.

 $(4) \Longrightarrow (1)$. This follows from Lemmas 1.2 and 1.3.

The following is a fundamental question concerning pure subalgebras.

Problem 1.1. Let A be a pure subalgebra of an affine normal domain with Q(B) algebraic over Q(A). Is the associated morphism Spec $B \to \text{Spec } A$ a quasi-finite morphism ?

MASAYOSHI MIYANISHI

Hereafter we consider the affine plane as a log affine pseudo plane of type d = 1. In view of the problem, we can pose the following.

Conjecture 1.1. Let $\varphi : A \hookrightarrow B = \mathbb{C}[x, y]$ be a pure embedding with dim A = 2. If A is Q-factorial then either $X \cong \mathbb{A}^2/G$ or X is a log affine pseudo-plane of type d.

In the smooth case, we have the following algebraic characterization of an affine pseudo-plane.

Theorem 1.2. Let X be a Q-factorial, smooth affine surface. Then X is an affine pseudo-plane of type d if and only if there exists a dominant morphism $p: \mathbb{A}^2 \to X$.

Proof. If X is an affine pseudo-plane of type d, it follows from Theorem 1.1 that there exists a dominant morphism $p : \mathbb{A}^2 \to X$. Suppose that there exists a dominant morphism p. By Lemma 1.2, X is isomorphic to \mathbb{A}^2/G or X has an \mathbb{A}^1 fibration $\rho : X \to C$ with $C \cong \mathbb{A}^1$ or \mathbb{P}^1 . Since X is smooth, the case $X \cong \mathbb{A}^2/G$ does not take place. Since X is Q-factorial, C is isomorphic to \mathbb{A}^1 and ρ has only irreducible fibers. By Lemma 1.3, X is an affine pseudo-plane of type d, where we understand that $X \cong \mathbb{A}^2$ if d = 1.

2. CANCELLATION PROBLEM FOR AFFINE PSEUDO-PLANES

Affine pseudo-planes have geometric structures which are quite close to the affine plane. Since the affine plane has the cancellation property, it is interesting to ask whether the affine pseudo-planes have the same property. We begin with the following result.

Lemma 2.1. Let A be a noetherian normal domain and let $A[x_1, \ldots, x_n]$ be a polynomial ring over A. Then we have:

- (1) The natural injection $A \hookrightarrow A[x_1, \ldots, x_n]$ induces an isomorphism between the divisor class groups $C\ell(A)$ and $C\ell(A[x_1, \ldots, x_n])$.
- (2) A is \mathbb{Q} -factorial if and only if so is $A[x_1, \ldots, x_n]$.

Proof. (1) By induction on n, it suffices to verify the assertions in the case n = 1. Let \mathfrak{p} be a prime ideal of A of height 1. Then $\mathfrak{p}A[x]$ is a prime ideal of A[x] of height 1. Suppose that $\mathfrak{p}A[x]$ is principal. Then $\mathfrak{p}A[x] = f(x)A[x]$ for $f(x) \in A[x]$. For a nonzero element $a \in \mathfrak{p}$, we have a = f(x)g(x) for some $g(x) \in A[x]$. This implies that $f(x) \in A$. Set f(x) = f. It is now clear that $\mathfrak{p} = fA$. So, the natural homomorphism $\mathbb{C}\ell(A) \to \mathbb{C}\ell(A[x])$ is injective. On the other hand, let S = A - 0 and K = Q(A). Then S is a multiplicatively closed subset of A[x] and $S^{-1}A[x] = K[x]$. Note that $\mathbb{C}\ell(S^{-1}A[x])$ is generated by prime ideals \mathfrak{P} of A[x] of height one such that $\mathfrak{P} \cap S = \emptyset$. Consider the natural homomorphism $\pi : \mathbb{C}\ell(A[x]) \to \mathbb{C}\ell(K[x])$. Since $\mathbb{C}\ell(K[x]) = (0), \mathbb{C}\ell(A[x]) = \text{Ker } \pi$. Hence, for any prime ideal \mathfrak{P} of A[x] of height 1 which represents a non-zero class of $\mathbb{C}\ell(A[x])$, we have $S \cap \mathfrak{P} \neq \emptyset$. Let $\mathfrak{p} = \mathfrak{P} \cap A$. Then \mathfrak{p} is a non-zero prime ideal

of A and $\mathfrak{p}A[x] \subseteq \mathfrak{P}$. Since ht $(\mathfrak{P}) = 1$, we have $\mathfrak{P} = \mathfrak{p}A[x]$. This implies that $C\ell(A) \cong C\ell(A[x])$.

(2) This is straightforward from the assertion (1).

We need the following result to proceed further.

Lemma 2.2. Let X be a normal affine surface with one singular point \overline{O} . Suppose that there exists a surjective quasi-finite morphism $p : \mathbb{A}^2 \to X$ and that there is given an isomorphism $\theta : X \times \mathbb{A}^n \xrightarrow{\sim} Y \times \mathbb{A}^n$ for an algebraic variety Y. Then the following assertions hold.

- (1) Y is a normal affine surface with one singular point.
- (2) If n = 1, there exists a quasi-finite morphism $q : \mathbb{A}^2 \to Y$.

Proof. (1) It is clear that Y is a normal affine surface. Hence Y has finitely many isolated singular points, say Q_1, \ldots, Q_s . Since X has a unique singular point \overline{O} , the singular locus of $X \times \mathbb{A}^n$ is $\{\overline{O}\} \times \mathbb{A}^n$. Since the singular locus of $Y \times \mathbb{A}^n$ is the disjoint union $\coprod_{i=1}^s \{Q_i\} \times \mathbb{A}^n$, it follows that Y has a unique singular point Q and $\{\overline{O}\} \times \mathbb{A}^n$ is mapped isomorphically onto $\{Q\} \times \mathbb{A}^n$ under the isomorphism θ .

(2) Consider the given morphism $p: \mathbb{A}^2 \to X$. Let O be a point of \mathbb{A}^2 such that $p(O) = \overline{O}$. We consider the point O as the origin of a certain coordinate system $\{x_1, x_2\}$ on \mathbb{A}^2 . Let L be the linear subspace $L := \{O\} \times \mathbb{A}^n$ in the affine space $\mathbb{A}^2 \times \mathbb{A}^n \cong \mathbb{A}^{n+2}$ which surjects to the space $\overline{L} := \{\overline{O}\} \times \mathbb{A}^n$ in $X \times \mathbb{A}^n$ via $\widetilde{p} := p \times 1_{\mathbb{A}^n}$. Let W(2, n+2) be the set of all linear planes in \mathbb{A}^{n+2} . Let $x_1, x_2, \ldots, x_{n+2}$ be coordinates of \mathbb{A}^{n+2} and let X_0, \ldots, X_{n+2} be homogeneous coordinates of \mathbb{P}^{n+2} when \mathbb{A}^{n+2} is embedded into \mathbb{P}^{n+2} in such a way that $x_i = X_i/X_0$ for $1 \leq i \leq n+2$. Let P be a linear plane of \mathbb{A}^{n+2} . Then P is defined by n equations

$$\begin{cases} a_{11}x_1 + \dots + a_{1n+2}x_{n+2} + a_{10} = 0 \\ \dots & \dots & \dots \\ a_{n1}x_1 + \dots + a_{nn+2}x_{n+2} + a_{n0} = 0 \end{cases}$$

or equivalently

$$a_{10}X_0 + a_{11}X_1 + \dots + a_{1n+2}X_{n+2} = 0$$

...
$$a_{n0}X_0 + a_{n1}X_1 + \dots + a_{nn+2}X_{n+2} = 0$$

Since $P \subset \mathbb{A}^{n+2}$, we have rank $A = \operatorname{rank} \widetilde{A} = n$, where

$$A = (a_{ij})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n+2}} \quad \text{and} \quad A = (a_{ij})_{\substack{1 \leq i \leq n \\ 0 \leq j \leq n+2}}.$$

Note that $P \subset \mathbb{P}^{n+2} \setminus \mathbb{A}^{n+2}$ if and only if rank $A < \operatorname{rank} \widetilde{A}$. Then the set W(2, n+2) is bijectively coordinated by $\binom{n+3}{n}$ minors

$$\det \begin{vmatrix} a_{1i_1} & a_{1i_2} & \cdots & a_{1i_n} \\ a_{2i_1} & a_{2i_2} & \cdots & a_{2i_n} \\ & \ddots & \ddots & & \\ a_{ni_1} & a_{ni_2} & \cdots & a_{ni_n} \end{vmatrix}$$

where $0 \leq i_1 \leq i_2 \leq \cdots \leq i_n \leq n+2$. Thus, W(2, n+2) identified with the projective space having the above coordinates has dimension

dim
$$W(2, n+2) = \binom{n+3}{n} - 1 = \frac{1}{6}(n+1)(n+2)(n+3) - 1.$$

On the other hand, for any point $y \in Y$, let W'(y) be the subset of W(2, n+2) consisting of linear planes P such that $\dim(P \cap (\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^n) > 0$. When n = 1, for the existence of a desired linear plane P in \mathbb{A}^{n+2} with an induced quasi-finite morphism $P \to Y$, we need to prove that

$$\dim \bigcup_{y \in Y} W'(y) < \dim W(2, n+2)$$

which seems to be valid even if n > 1 though we could not prove it. So, assume that n = 1. Suppose that an irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ with a general point $y \in Y$ is contained in two distinct linear planes P, P'. Then the component is a linear line ℓ in $\mathbb{A}^3 = \mathbb{A}^2 \times \mathbb{A}^n$ with n = 1. Hence one irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ for every $y \in Y$ is contained in a linear plane and parallel to the line ℓ . Hence those linear planes when y moves in Y form a two-dimensional family. Let \mathcal{F} be the set of linear planes P satisfying one of the following conditions:

- (i) P contains an irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ with a general point $y \in Y$ but does not share the component with other linear planes;
- (ii) P contains an irreducible component of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ for a special point $y \in Y$ which is a linear line.

Then every irreducible component of \mathcal{F} has dimension at most two. Since $\dim W(2,3) = 3$, we find a linear plane P which contains no irreducible components of $(\theta \cdot \tilde{p})^{-1}(\{y\} \times \mathbb{A}^1)$ for all points $y \in Y$. Then the projection $p_Y : \mathbb{A}^3 \to Y$ restricts to a quasi-finite morphism $(p_Y) \mid_{P} : P \to Y$.

Given a normal algebraic variety X, we consider the quasi-universal covering of X when $\pi_1(X^\circ)$ is a finite group, where X° is the smooth part of X. Let \widetilde{X}° be the universal covering of X° which is a smooth algebraic variety since $\pi_1(X^\circ)$ is finite. Let \widetilde{X} be the normalization of X in the function field of \widetilde{X}° . We call \widetilde{X} together with the normalization morphism $\pi : \widetilde{X} \to X$ the quasi-universal covering of X. The fundamental group $G := \pi_1(X^\circ)$ acts on \widetilde{X} and X is the algebraic quotient $\widetilde{X}//G$.

The following result shows that the cancellation holds in the class of log affine pseudo-planes of type d but does not hold individually up to isomorphisms.

Theorem 2.1. Let X be a log affine pseudo-plane of type d. Suppose we have an isomorphism $X \times \mathbb{A}^n \cong Y \times \mathbb{A}^n$ for an algebraic variety Y. Suppose further that either X is smooth and n arbitrary or X is singular and n = 1. Then Y is a log affine pseudo-plane of type d. But X is not necessarily isomorphic to Y.

Proof. It is clear that Y is a normal affine surface and Y is smooth if so is X. By Lemma 2.1, Y is \mathbb{Q} -factorial since

$$C\ell(A) \cong C\ell(A[x_1, \dots, x_n]) \cong C\ell(B[y_1, \dots, y_n]) \cong C\ell(B),$$

where A and B are respectively the coordinate rings of X and Y. On the other hand, by Theorem 1.1, there exists a surjective quasi-finite morphism $p: \mathbb{A}^2 \to X$. Hence $p \times 1_{\mathbb{A}^n} : \mathbb{A}^2 \times \mathbb{A}^n = \mathbb{A}^{n+2} \to X \times \mathbb{A}^n \cong Y \times \mathbb{A}^n$ composed with the projection onto Y induces a dominant morphism $q: \mathbb{A}^{n+2} \to Y$. If Y is smooth, Y is an affine pseudo-plane of type d by Theorem 1.2. If Y is singular and n = 1, we can take a linear plane P of \mathbb{A}^3 such that the restriction $q \mid_P: P \to Y$ is quasi-finite by Lemma 2.2. By Theorem 1.1, either Y is isomorphic to \mathbb{A}^2/G or Y is a log affine pseudo-plane of type d. On the other hand, let X° and Y° be the smooth loci of X and Y. Then $X^\circ \times \mathbb{A}^1 \cong Y^\circ \times \mathbb{A}^1$, and hence $\pi_1(X^\circ) \cong \pi_1(Y^\circ)$, which is a cyclic group of order d by the hypothesis. Since $\pi_1(X^\circ) \cong G$, it follows that \mathbb{A}^2/G has an \mathbb{A}^1 -fibration (cf. [9, Theorem 2.5.1 of Chap. 3]). Then X is a log affine pseudo-plane of type d by Lemma 1.3. For the last assertion, we have an example of affine pseudo-planes X and Y which satisfy $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ but $X \ncong Y$ (see [6, Theorem 2.17]). \square

By the same argument as in Theorem 2.1, we can prove the following result.

Theorem 2.2. Let X be isomorphic to \mathbb{A}^2/G with a small finite subgroup G of $\operatorname{GL}(2,\mathbb{C})$. Suppose that $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ and that G is not a cyclic group. Then Y is isomorphic to X.

Proof. By Lemma 2.2 and Theorem 1.1, either Y is isomorphic to \mathbb{A}^2/G' for a small finite subgroup G' of $\operatorname{GL}(2,\mathbb{C})$ or Y is a log affine pseudo-plane of type d > 1. Since $\pi_1(X^\circ) \cong \pi_1(Y^\circ) \cong G$ as in the proof of Theorem 2.1 and since G is not cyclic by the hypothesis, Y is not a log affine pseudo-plane and Y is isomorphic to \mathbb{A}^2/G as we have $G \cong G'$. In order to show that Y is isomorphic to X, we have to show that the linear representation ρ_G of G on \mathbb{A}^2 and that $\rho_{G'}$ of G' on \mathbb{A}^2 is the same upto an automorphism of \mathbb{A}^2 . For this purpose, let X° and Y° be respectively the smooth parts of X and Y. Here $X \setminus X^\circ$ and $Y \setminus Y^\circ$ consist of single points \overline{O}_X and \overline{O}_Y . Then $\{\overline{O}_X\} \times \mathbb{A}^1 \cong \{\overline{O}_Y\} \times \mathbb{A}^1$ is the singular locus of $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$. In particular, we have

$$G \cong \pi_1(X^{\circ} \times \mathbb{A}^1) \cong \pi_1(Y^{\circ} \times \mathbb{A}^1) \cong G'.$$

Let \widetilde{X} and \widetilde{Y} be the quasi-universal coverings of X and Y. Then $\widetilde{X} \cong \widetilde{Y} \cong \mathbb{A}^2$ and $\widetilde{X} \times \mathbb{A}^1 \cong \widetilde{Y} \times \mathbb{A}^1 \cong \mathbb{A}^3$. Since the induced actions of G and G' on \mathbb{A}^3 are $\rho_G \oplus 1 \text{ and } \rho_{G'} \oplus 1 \text{ with the trivial representation 1 of } G \text{ and } G' \text{ on } \mathbb{A}^1, \text{ a theorem}$ of Krull-Schmidt in the representation theory implies that ρ_G and $\rho_{G'}$ are the same up to an automorphism of \mathbb{A}^2 . Thence it follows that $X \cong Y$.

The following result gives a criterion in terms of the Makar-Limanov invariant for a log affine pseudo-plane to be isomorphic to \mathbb{A}^2/G .

Theorem 2.3. We have the following assertions.

- (1) Let X be isomorphic to the quotient surface \mathbb{A}^2/G , where G is a cyclic group of order d. Then the Makar-Limanov invariant ML (X) is trivial.
- (2) Let X be a singular, affine pseudo-plane of type d > 1. Then X is isomorphic to \mathbb{A}^2/G if and only if X has the trivial Makar-Limanov invariant.

Proof. (1) Suppose that $X \cong \mathbb{A}^2/G$ with a cyclic group G of order d > 1. Identify G with the group of all d-th roots of unity in \mathbb{C} . Then the G-action on \mathbb{A}^2 is given by $\zeta(x, y) = (\zeta x, \zeta^q y)$ for $\zeta \in G$, where q < d and gcd(d, q) = 1. Then the coordinate ring A of X is given as

$$A = \mathbb{C}[x, y] \cap \mathbb{C}(x^d, y^d, y/x^q).$$

Let $u = x^d$, $v = y^d$ and $w = x^{d-q}y = u \cdot (y/x^q)$. Then $A[u^{-1}] = \mathbb{C}[u, u^{-1}, u^{-1}w]$. Hence $\delta = u^a \frac{\partial}{\partial w}$ with $a \gg 0$ defines a locally nilpotent derivation on A (cf. [9, p.219]). On the other hand, since $\gcd(d, q) = 1$, we find a positive integer q' so that $qq' \equiv 1 \pmod{d}$. Let ζ be a primitive d-th root of unity. Then $\zeta' := \zeta^{q'}$ is also primitive, and the $\zeta'(x, y) = (\zeta^{q'}x, \zeta y)$. Hence $w' = xy^{d-q'} = (x/y^{q'})v \in A$, and $A[v^{-1}] = \mathbb{C}[v, v^{-1}, v^{-1}w']$. So, $\delta' = v^b \frac{\partial}{\partial w'}$ with $b \gg 0$ is a locally nilpotent derivation on A which is algebraically independent of δ . Hence ML $(X) = \mathbb{C}$.

(2) It suffices to show the "if" part. Suppose that $ML(X) = \mathbb{C}$. Let $\rho : X \to C$ be the \mathbb{A}^1 -fibration with which X has a structure of singular affine pseudo-plane of type d > 1. Then there exists a normal projective surface V and a \mathbb{P}^1 -fibration $\overline{\rho} : V \to \overline{C}$ such that the following conditions are satisfied.

- (i) X is an open set of V and D := V X is a divisor with simple normal crossings. We may assume that the embedding $X \hookrightarrow V$ is minimal, i.e., D contains no (-1) curves which contract to smooth points without breaking the property of D being a divisor with simple normal crossings.
- (ii) The restriction of $\overline{\rho}$ onto X is the given \mathbb{A}^1 -fibration ρ .
- (iii) The curve \overline{C} is isomorphic to \mathbb{P}^1 .

By [2, Theorem 2.9], we can assume that D is a linear chain. Let dF_0 be the unique multiple fiber of ρ and let Φ_0 be the fiber of $\overline{\rho}$ containing dF_0 . Write $\Phi_{0,\text{red}} = \Gamma + \overline{F}_0$, where \overline{F}_0 is the closure of F_0 in V. Let P be the unique singular point of X which lies on F_0 . Let $\sigma : \widetilde{V} \to V$ be the minimal resolution of singularity at P and let $\Delta = \sigma^{-1}(P)$ be the exceptional divisor. The composite $\widetilde{\rho} = \overline{\rho} \cdot \sigma$ is a \mathbb{P}^1 -fibration on \widetilde{V} and $\sigma'(\Gamma + \overline{F}_0) + \Delta$ supports a degenerate fiber $\widetilde{\Phi}_0$ of $\widetilde{\rho}$, where $\sigma'(\cdot)$ signifies the proper transform. Let $\widetilde{F}_0 = \sigma'(\overline{F}_0)$ and $\widetilde{\Gamma} = \sigma'(\Gamma)$. Note that Δ is a linear chain with one end component meeting \widetilde{F}_0 and that $\widetilde{\Gamma}$ is a linear chain. Furthermore, \widetilde{F}_0 is the unique (-1) component of $\widetilde{\Phi}_0$ and its multiplicity is d.

Now we consider the quasi-universal covering of X. Namely, we consider the universal covering X° of $X^{\circ} := X \setminus \{P\}$ which is in fact a finite covering. The quasi-universal covering \widetilde{X} of X is the normalization of X in the function field of $\widetilde{X^{\circ}}$. The surface $\widetilde{X^{\circ}}$ is obtained as the normalization of $X^{\circ} \times_{C} C'$, where $\nu: C' \to C$ is a d-th cyclic covering of C ramifying totally over the point $\rho(F_0)$. This process of producing \widetilde{X} corresponds to the process of taking the fiber product $(\widetilde{V},\widetilde{\rho}) \times_{\overline{C}} (\overline{C'},\overline{\nu})$, where $\overline{\nu}: \overline{C'} \to \overline{C}$ is a d-th cyclic covering ramifying totally over the point $\rho(F_0)$ and the point at infinity $\overline{C} \setminus C$, taking the normalization of the fiber product and finally resolving minimally the singularities of the obtained normal surface. Let W be a smooth projective surface obtained in this manner and let $\mu: W \to V$ be the natural morphism. By a general theory of d-th cyclic coverings of the above type, the component \widetilde{F}_0 does not ramify and the restriction $\mu: \mu'(\widetilde{F}_0) \to \widetilde{F}_0$ induced by the morphism μ ramifies totally over the points $\widetilde{F}_0 \cap \Delta$ and $\widetilde{F}_0 \cap \widetilde{\Gamma}$, where $\mu'(\widetilde{F})_0$ is the induced proper transform of \widetilde{F}_0 . Furthermore, $\mu'(\widetilde{F}_0)$ has multiplicity one in the degenerate fiber $\mu^*(\widetilde{\Phi}_0)$ of the induced \mathbb{P}^1 fibration $\tilde{\rho} \cdot \mu : W \to \overline{C}$. Since the degenerate fiber $\mu^*(\tilde{\Phi}_0)$ can be contracted to a smooth fiber which is the image of the component $\mu'(\widetilde{F}_0)$, it follows that $\mu^{-1}(\Delta)$ contracts to a smooth point on $\mu'(\widetilde{F}_0)$. Hence \widetilde{X} is isomorphic to the affine plane \mathbb{A}^2 . Since $X \cong \widetilde{X}/G$ with $G = \pi_1(X^\circ) \cong \mathbb{Z}/d\mathbb{Z}$, it follows that X is isomorphic to \mathbb{A}^2/G .

We shall now prove Theorem 2.2 in the case where G is a finite cyclic group.

Theorem 2.4. Let X be isomorphic to \mathbb{A}^2/G with a small finite subgroup G of $\operatorname{GL}(2,\mathbb{C})$. Suppose that $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ and that G is a cyclic group. Then $X \cong Y$.

Proof. As in the proof of Theorem 2.2, either Y is isomorphic to \mathbb{A}^2/G' or Y is a singular affine pseudo-plane of type d > 1. With the same notations there, we have $\widetilde{X} \times \mathbb{A}^1 \cong \widetilde{Y} \times \mathbb{A}^1$, where $\widetilde{X} \cong \mathbb{A}^2$. By the cancellation theorem for \mathbb{A}^2 , we have $\widetilde{Y} \cong \mathbb{A}^2$. Since $\pi_1(Y^\circ) \cong \pi_1(Y^\circ \times \mathbb{A}^1) \cong \pi_1(X^\circ \times \mathbb{A}^1) \cong G$, it follows that G' is isomorphic to G and that the group G acts on $\widetilde{Y} \cong \mathbb{A}^2$ as the same linear representation ρ_G up to an automorphism of \mathbb{A}^2 . Since $Y \cong \widetilde{Y}//G$, we have $Y \cong X$.

Remark 1. In Theorem 2.1, when X is a log affine pseudo-plane, the condition $X \times \mathbb{A}^1 \cong Y \times \mathbb{A}^1$ does not necessarily imply $X \cong Y$. One of the reasons for this phenomenon is the following. With the above notations, we have $\widetilde{X} \times \mathbb{A}^1 \cong \widetilde{Y} \times \mathbb{A}^1$, while \widetilde{X} is isomorphic to either \mathbb{A}^2 or a Danielewski surface. In the latter case, \widetilde{X} is not necessarily isomorphic to \widetilde{Y} .

Remark 2. In [1, Theorems 4.2 and 4.3], given a finite morphism $\varphi : X \to Y$ of smooth affine surfaces, it is proved that Y has the trivial Makar-Limanov invariant provided so does X if φ satisfies one of the following conditions.

- (1) φ is étale.
- (2) φ is a Galois (possibly ramified) covering.
- (3) X has the Picard number $\rho(X) = 0$.

It is most plausible that the same result holds when we replace X and Y by normal affine surfaces with quotient singularities, which we call *log affine surfaces* and an étale covering by a finite covering such that $X^{\circ} = \varphi^{-1}(Y^{\circ})$ and $\varphi \mid_{X^{\circ}} X^{\circ} \to Y^{\circ}$ is étale.

References

- [1] R.V. Gurjar, K. Masuda, M. Miyanishi and P. Russell, *Affine lines on affine surfaces and the Makar-Limanov invariant*, to appear in Canad. J. Math.
- R.V. Gurjar and M. Miyanishi, Automorphisms of affine surfaces with A¹-fibrations, Michigan Math. J. 53 (2005), 33–55.
- [3] R.V. Gurjar and M. Miyanishi, Pure subalgebras of polynomial rings, preprint.
- M. Hashimoto, A pure subalgebra of a finitely generated algebra is finitely generated, Proc. Amer. Math. Soc. 133 (2005), 2233–2235.
- [5] M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math. 13 (1974), 115-175.
- K. Masuda and M. Miyanishi, Affine pseudo-planes and cancellation problem, Trans. Amer. Math. Soc. 357, No. 12 (2005), 4867–4883.
- [7] M. Miyanishi, Singularities of normal affine surfaces containing cylinderlike open sets, J. Algebra 68 (1981), 268-275.
- [8] M. Miyanishi, Normal affine subalgebras of a polynomial ring, Algebraic and Topological Theories to the memory of Dr. Takehiko MIYATA, Kinokuniya, 1985, 37-51.
- [9] M. Miyanishi, Open algebraic surfaces, Centre de Recherches Mathématiques, Vol 12, Université de Montréal, Amer. Math. Soc., 2001.
- [10] M. Miyanishi, Affine pseudo-coverings of algebraic surfaces, J. Algebra 294 (2005), 156– 176.

School of Science and Technology Kwansei Gakuin University 2-1 Gakuen, Sanda, Hyogo 669–1337, Japan

E-mail address: miyanisi@ksc.kwansei.ac.jp