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Q-FACTORIAL SUBALGEBRAS OF A POLYNOMIAL RING

MASAYOSHI MIYANISHI

Abstract. We give an algebraic characterization of a log affine pseudo-plane
and the quotient surface A2/G of A2 with a small finite subgroup G of GL(2, C)
in terms of Q-factorial normal subalgebras of a polynomial ring C[x, y]. Then
we consider the cancellation problem for these surfaces.

1. Subalgebras of a polynomial ring

Let X be a normal affine surface defined over the complex field C and let
A be the coordinate ring of X . We then say that X (or A) is Q-factorial if
the divisor class group C` (X) (or C` (A)) consists of elements of finite order.
Further, X is said to be a log affine pseudo-plane of type d if there exists an A1-
fibration ρ : X → C such that C is isomorphic to the affine line A1, every fiber
is irreducible and only one fiber dF0 is a multiple fiber with multiplicity d > 1.
It is known by [7] that the singularity of X is at most cyclic quotient singularity,
and that if P is a singular point then P lies on a multiple fiber and there are no
other singular points on the fiber. Hence X has at most one singular point. If X
is smooth, we simply say that X is an affine pseudo-plane of type d.

On the other hand, let ϕ : A ↪→ B be an injective homomorphism of C-algebras
by which we view A as the subalgebra ϕ(A) of B. We call ϕ a pure embedding if
the natural homomorphism ϕM : M → M ⊗A B is injective for every A-module
M . We call A also a pure subalgebra of B. For this definition and relevant results,
the readers are referred to Hochster-Roberts [5]. Let us begin with the following
result. For an integral domain A, we denote by Q(A) the field of fractions.

Lemma 1.1. Let ϕ : A → B be a pure embedding of C-algebras. Then the
following assertions hold.

(1) For any ideal I of A, we have IB ∩ A = I. Hence if B is noetherian, so is
A.

(2) Suppose that B is a noetherian domain. Let X = Spec A, Y = Spec B and
p = aϕ. Then p : Y → X is a surjective morphism.
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(3) Suppose that B is an integral domain and that A and B are birational, i.e.,
Q(A) = Q(B). Then ϕ(A) = B.

(4) Suppose that B is normal. Then so is A.

Proof. The assertions follow from the definition.

We set B = C[x, y] a polynomial ring in two variables and specify further the
properties of a (pure) subalgebra A of dimension two.

Lemma 1.2. Let ϕ : A ↪→ B = C[x, y] be a subalgebra with dim A = 2. Let
p : A2 → X = Spec A be the associated morphism. Then we have the following
assertions.

(1) A is a finitely generated, normal domain provided ϕ is a pure embedding.
(2) Suppose that p is a quasi-finite morphism. Let X◦ be the smooth part of

X. Then X◦ has log Kodaira dimension κ(X◦) = −∞. Hence either X
contains an open set isomorphic to A2/G with a small finite subgroup G of
GL (2, C) or X has an A1-fibration ρ : X → C, where C is isomorphic to
A1 or P1.

(3) If X is smooth and p : A2 → X is a dominant morphism, the assertion (2)
holds with X replacing X◦.

(4) Suppose that p is quasi-finite and X is Q-factorial. Then either X is iso-
morphic to A2/G or X has an A1-fibration ρ : X → C ∼= A1 whose fibers
are all irreducible.

Proof. The assertion (1) is due to Hashimoto [4].
(2) If p is quasi-finite, the set p−1(X − X◦) is a finite subset of A2. Hence

p−1(X◦) has log Kodaira dimension −∞, and so does X◦ (cf. [9, Lemma 1.14.1
in Chap. 2]). There are two cases to consider (see [9, Theorem 5.1.2 in Chap. 2
and Lemma 1.6.2 in Chap. 3] and [8]).

(i) X◦ contains an open set U which is isomorphic to A2/G − {O}, where O
is the unique singular point, where G is, as above, a small finite subgroup
of GL (2, C). Furthermore, X − U is a disjoint union of contractible curves
which are isomorphic to A1 if X is smooth.

(ii) X◦ has an A1-fibration ρ◦ : X◦ → C◦.

We consider the case (i) first. Since A2/G is normal, the natural immersion
U ↪→ X extends to a morphism A2/G → X which must be an open immersion
by the Zariski Main Theorem. In the case (ii), since X is affine, the A1-fibration
ρ◦ extends to an A1-fibration ρ : X → C, where C contains C◦ as an open set
and is isomorphic to A1 or P1 because X is dominated by A2.

(3) If X is smooth, it follows that κ(X) = −∞ (cf. [9, Lemma 1.14.1 in Chap.
2]). Then we can argue in the same way as in the assertion (2) with X◦ replaced
by X .

(4) Suppose that X contains an open set A2/G. If X 6= A2/G, let C be an
irreducible component of X−A2/G. Since X is Q-factorial, there exists an integer
N > 0 such that NC is defined by an element f of A. Then f is invertible on
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A2/G. Since there is a finite morphism π : A2 → A2/G, the element π∗(f) is an
invertible element on A2, which is a constant. This is absurd. So, X ∼= A2/G.
Suppose next that X has an A1-fibration ρ : X → C which we may assume to
be surjective. Then C ∼= A1, for otherwise X would have positive Picard number
and therefore X would not be Q-factorial. If ρ has reducible fibers then X has
again positive Picard number, which contradicts the Q-fatoriality of X .

We can strengthen the assertion (4) in Lemma 1.2 by the following result.

Lemma 1.3. Let X be a normal affine surface with an A1-fibration ρ : X → C,
where C ∼= A1. Suppose that there exists a dominant morphism p : A2 → X
and that X is Q-factorial. Then X is either the affine plane A2 or a log affine
pseudo-plane of type d > 1.

Proof. By the assertion (4) of Lemma 1.2, every fiber of ρ is irreducible. If there
is no multiple fiber, then X is smooth and hence isomorphic to A2. Otherwise,
let d1F1, . . . , dsFs be all multiple fibers of ρ. Since p : A2 → X is dominant, there
exists a general line ` on A2 such that the image of ` by p lies horizontally along
the fibration ρ. If s > 2 this is impossible by [10, Lemma 2.4]. So, s = 1 and we
are done.

Now we can state the following result.

Theorem 1.1. Let X be a Q-factorial affine surface and let A be the coordinate
ring of X. Then the following conditions are equivalent.

(1) X is isomorphic to the affine plane, A2/G with a small finite subgroup G of
GL (2, C) or a log affine pseudo-plane of type d > 1.

(2) There exists a surjective quasi-finite morphism p : A2 → X.
(3) The ring A is a pure subalgebra of a polynomial ring C[x, y] with a surjective

quasi-finite morphism p : A2 → X.
(4) There exists a quasi-finite morphism p : A2 → X.

Proof. (1) =⇒ (2). For the case X ∼= A2, the assertion is obvious. For the case
X ∼= A2/G, the quotient morphism q : A2 → A2/G will do. For the case X is a
log affine pseudo-plane, we refer to [10, Lemma 2.1]. In fact, we can take p to be
a surjective étale morphism.

(2) =⇒ (3). Let C[x, y] be the coordinate ring of A2 and let ϕ : A ↪→ C[x, y] be
the homomorphism associated to p. Then ϕ is a pure embedding by [3, Lemma
2.2].

(3) =⇒ (4). This is obvious.
(4) =⇒ (1). This follows from Lemmas 1.2 and 1.3.

The following is a fundamental question concerning pure subalgebras.

Problem 1.1. Let A be a pure subalgebra of an affine normal domain with Q(B)
algebraic over Q(A). Is the associated morphism Spec B → Spec A a quasi-finite
morphism ?
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Hereafter we consider the affine plane as a log affine pseudo plane of type d = 1.
In view of the problem, we can pose the following.

Conjecture 1.1. Let ϕ : A ↪→ B = C[x, y] be a pure embedding with dimA = 2.
If A is Q-factorial then either X ∼= A2/G or X is a log affine pseudo-plane of
type d.

In the smooth case, we have the following algebraic characterization of an affine
pseudo-plane.

Theorem 1.2. Let X be a Q-factorial, smooth affine surface. Then X is an
affine pseudo-plane of type d if and only if there exists a dominant morphism
p : A2 → X.

Proof. If X is an affine pseudo-plane of type d, it follows from Theorem 1.1 that
there exists a dominant morphism p : A2 → X . Suppose that there exists a
dominant morphism p. By Lemma 1.2, X is isomorphic to A2/G or X has an A1-
fibration ρ : X → C with C ∼= A1 or P1. Since X is smooth, the case X ∼= A2/G
does not take place. Since X is Q-factorial, C is isomorphic to A1 and ρ has only
irreducible fibers. By Lemma 1.3, X is an affine pseudo-plane of type d, where
we understand that X ∼= A2 if d = 1.

2. Cancellation problem for affine pseudo-planes

Affine pseudo-planes have geometric structures which are quite close to the
affine plane. Since the affine plane has the cancellation property, it is interesting
to ask whether the affine pseudo-planes have the same property. We begin with
the following result.

Lemma 2.1. Let A be a noetherian normal domain and let A[x1, . . . , xn] be a
polynomial ring over A. Then we have:

(1) The natural injection A ↪→ A[x1, . . . , xn] induces an isomorphism between
the divisor class groups C` (A) and C` (A[x1, . . . , xn]).

(2) A is Q-factorial if and only if so is A[x1, . . . , xn].

Proof. (1) By induction on n, it suffices to verify the assertions in the case n = 1.
Let p be a prime ideal of A of height 1. Then pA[x] is a prime ideal of A[x] of
height 1. Suppose that pA[x] is principal. Then pA[x] = f(x)A[x] for f(x) ∈ A[x].
For a nonzero element a ∈ p, we have a = f(x)g(x) for some g(x) ∈ A[x]. This
implies that f(x) ∈ A. Set f(x) = f . It is now clear that p = fA. So, the
natural homomorphism C` (A) → C` (A[x]) is injective. On the other hand, let
S = A − 0 and K = Q(A). Then S is a multiplicatively closed subset of A[x]
and S−1A[x] = K[x]. Note that C` (S−1A[x]) is generated by prime ideals P of
A[x] of height one such that P ∩ S = ∅. Consider the natural homomorphism
π : C` (A[x]) → C` (K[x]). Since C` (K[x]) = (0), C` (A[x]) = Ker π. Hence,
for any prime ideal P of A[x] of height 1 which represents a non-zero class of
C` (A[x]), we have S ∩ P 6= ∅. Let p = P ∩ A. Then p is a non-zero prime ideal
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of A and pA[x] ⊆ P. Since ht (P) = 1, we have P = pA[x]. This implies that
C` (A) ∼= C` (A[x]).

(2) This is straightforward from the assertion (1).

We need the following result to proceed further.

Lemma 2.2. Let X be a normal affine surface with one singular point O. Sup-
pose that there exists a surjective quasi-finite morphism p : A2 → X and that
there is given an isomorphism θ : X × An ∼→ Y × An for an algebraic variety Y .
Then the following assertions hold.

(1) Y is a normal affine surface with one singular point.
(2) If n = 1, there exists a quasi-finite morphism q : A2 → Y .

Proof. (1) It is clear that Y is a normal affine surface. Hence Y has finitely many
isolated singular points, say Q1, . . . , Qs. Since X has a unique singular point O,
the singular locus of X × An is {O} × An. Since the singular locus of Y × An is
the disjoint union

∐s
i=1{Qi} × An, it follows that Y has a unique singular point

Q and {O}×An is mapped isomorphically onto {Q}×An under the isomorphism
θ.

(2) Consider the given morphism p : A2 → X . Let O be a point of A2 such
that p(O) = O. We consider the point O as the origin of a certain coordinate
system {x1, x2} on A2. Let L be the linear subspace L := {O}×An in the affine
space A2 × An ∼= An+2 which surjects to the space L := {O} × An in X × An

via p̃ := p × 1An . Let W (2, n + 2) be the set of all linear planes in An+2. Let
x1, x2, . . . , xn+2 be coordinates of An+2 and let X0, . . . , Xn+2 be homogeneous
coordinates of Pn+2 when An+2 is embedded into Pn+2 in such a way that xi =
Xi/X0 for 1 6 i 6 n + 2. Let P be a linear plane of An+2. Then P is defined by
n equations 




a11x1 + · · ·+ a1n+2xn+2 + a10 = 0

· · · · · · · · ·

an1x1 + · · ·+ ann+2xn+2 + an0 = 0

,

or equivalently




a10X0 + a11X1 + · · ·+ a1n+2Xn+2 = 0

· · · · · · · · ·

an0X0 + an1X1 + · · ·+ ann+2Xn+2 = 0

.

Since P ⊂ An+2, we have rank A = rank Ã = n, where

A =
(
aij

)
1 6 i 6 n

1 6 j 6 n + 2

and Ã =
(
aij

)
1 6 i 6 n

0 6 j 6 n + 2

.
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Note that P ⊂ Pn+2\An+2 if and only if rankA < rankÃ. Then the set W (2, n+2)
is bijectively coordinated by

(
n+3

n

)
minors

det

∣∣∣∣∣∣∣∣

a1i1 a1i2 · · · a1in

a2i1 a2i2 · · · a2in

· · · · · ·
ani1 ani2 · · · anin

∣∣∣∣∣∣∣∣

where 0 6 i1 6 i2 6 · · · 6 in 6 n + 2. Thus, W (2, n + 2) identified with the
projective space having the above coodinates has dimension

dimW (2, n + 2) =
(

n + 3
n

)
− 1 =

1
6
(n + 1)(n + 2)(n + 3) − 1.

On the other hand, for any point y ∈ Y , let W ′(y) be the subset of W (2, n + 2)
consisting of linear planes P such that dim(P ∩ (θ · p̃)−1({y} × An) > 0. When
n = 1, for the existence of a desired linear plane P in An+2 with an induced
quasi-finite morphism P → Y , we need to prove that

dim
⋃

y∈Y

W ′(y) < dimW (2, n + 2)

which seems to be valid even if n > 1 though we could not prove it. So, assume
that n = 1. Suppose that an irreducible component of (θ · p̃)−1({y} × A1) with
a general point y ∈ Y is contained in two distinct linear planes P, P ′. Then the
component is a linear line ` in A3 = A2 × An with n = 1. Hence one irreducible
component of (θ · p̃)−1({y} × A1) for every y ∈ Y is contained in a linear plane
and parallel to the line `. Hence those linear planes when y moves in Y form a
two-dimensional family. Let F be the set of linear planes P satisfying one of the
following conditions:

(i) P contains an irreducible component of (θ · p̃)−1({y} × A1) with a general
point y ∈ Y but does not share the component with other linear planes;

(ii) P contains an irreducible component of (θ ·p̃)−1({y}×A1) for a special point
y ∈ Y which is a linear line.

Then every irreducible component of F has dimension at most two. Since
dimW (2, 3) = 3, we find a linear plane P which contains no irreducible compo-
nents of (θ · p̃)−1({y}×A1) for all points y ∈ Y . Then the projection pY : A3 → Y
restricts to a quasi-finite morphism (pY ) |P : P → Y .

Given a normal algebraic variety X , we consider the quasi-universal covering
of X when π1(X◦) is a finite group, where X◦ is the smooth part of X . Let X̃◦

be the universal covering of X◦ which is a smooth algebraic variety since π1(X◦)
is finite. Let X̃ be the normalization of X in the function field of X̃◦. We call
X̃ together with the normalization morphism π : X̃ → X the quasi-universal
covering of X . The fundamental group G := π1(X◦) acts on X̃ and X is the
algebraic quotient X̃//G.
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The following result shows that the cancellation holds in the class of log affine
pseudo-planes of type d but does not hold individually upto isomorphisms.

Theorem 2.1. Let X be a log affine pseudo-plane of type d. Suppose we have
an isomorphism X × An ∼= Y × An for an algebraic variety Y . Suppose further
that either X is smooth and n arbitrary or X is singular and n = 1. Then Y is
a log affine pseudo-plane of type d. But X is not necessarily isomorphic to Y .

Proof. It is clear that Y is a normal affine surface and Y is smooth if so is X .
By Lemma 2.1, Y is Q-factorial since

C` (A) ∼= C` (A[x1, . . . , xn]) ∼= C` (B[y1, . . . , yn]) ∼= C` (B),

where A and B are respectively the coordinate rings of X and Y . On the other
hand, by Theorem 1.1, there exists a surjective quasi-finite morphism p : A2 → X .
Hence p×1An : A2×An = An+2 → X×An ∼= Y ×An composed with the projection
onto Y induces a dominant morphism q : An+2 → Y . If Y is smooth, Y is an
affine pseudo-plane of type d by Theorem 1.2. If Y is singular and n = 1, we can
take a linear plane P of A3 such that the restriction q |P : P → Y is quasi-finite
by Lemma 2.2. By Theorem 1.1, either Y is isomorphic to A2/G or Y is a log
affine pseudo-plane of type d. On the other hand, let X◦ and Y ◦ be the smooth
loci of X and Y . Then X◦ × A1 ∼= Y ◦ × A1, and hence π1(X◦) ∼= π1(Y ◦), which
is a cyclic group of order d by the hypothesis. Since π1(X◦) ∼= G, it follows that
A2/G has an A1-fibration (cf. [9, Theorem 2.5.1 of Chap. 3]). Then X is a log
affine pseudo-plane of type d by Lemma 1.3. For the last assertion, we have an
example of affine pseudo-planes X and Y which satisfy X × A1 ∼= Y × A1 but
X 6∼= Y (see [6, Theorem 2.17]).

By the same argument as in Theorem 2.1, we can prove the following result.

Theorem 2.2. Let X be isomorphic to A2/G with a small finite subgroup G of
GL(2, C). Suppose that X ×A1 ∼= Y ×A1 and that G is not a cyclic group. Then
Y is isomorphic to X.

Proof. By Lemma 2.2 and Theorem 1.1, either Y is isomorphic to A2/G′ for a
small finite subgroup G′ of GL (2, C) or Y is a log affine pseudo-plane of type
d > 1. Since π1(X◦) ∼= π1(Y ◦) ∼= G as in the proof of Theorem 2.1 and since
G is not cyclic by the hypothesis, Y is not a log affine pseudo-plane and Y is
isomorphic to A2/G as we have G ∼= G′. In order to show that Y is isomorphic to
X , we have to show that the linear representation ρG of G on A2 and that ρG′ of
G′ on A2 is the same upto an automorphism of A2. For this purpose, let X◦ and
Y ◦ be respectively the smooth parts of X and Y . Here X \X◦ and Y \Y ◦ consist
of single points OX and OY . Then {OX}×A1 ∼= {OY }×A1 is the singular locus
of X × A1 ∼= Y × A1. In particular, we have

G ∼= π1(X◦ × A1) ∼= π1(Y ◦ × A1) ∼= G′.

Let X̃ and Ỹ be the quasi-universal coverings of X and Y . Then X̃ ∼= Ỹ ∼= A2

and X̃ × A1 ∼= Ỹ × A1 ∼= A3. Since the induced actions of G and G′ on A3 are
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ρG⊕1 and ρG′ ⊕1 with the trivial representation 1 of G and G′ on A1, a theorem
of Krull-Schmidt in the representation theory implies that ρG and ρG′ are the
same upto an automorphism of A2. Thence it follows that X ∼= Y .

The following result gives a criterion in terms of the Makar-Limanov invariant
for a log affine pseudo-plane to be isomorphic to A2/G.

Theorem 2.3. We have the following assertions.

(1) Let X be isomorphic to the quotient surface A2/G, where G is a cyclic group
of order d. Then the Makar-Limanov invariant ML (X) is trivial.

(2) Let X be a singular, affine pseudo-plane of type d > 1. Then X is isomor-
phic to A2/G if and only if X has the trivial Makar-Limanov invariant.

Proof. (1) Suppose that X ∼= A2/G with a cyclic group G of order d > 1. Identify
G with the group of all d-th roots of unity in C. Then the G-action on A2 is
given by ζ(x, y) = (ζx, ζqy) for ζ ∈ G, where q < d and gcd(d, q) = 1. Then the
coordinate ring A of X is given as

A = C[x, y]∩ C(xd, yd, y/xq).

Let u = xd, v = yd and w = xd−qy = u · (y/xq). Then A[u−1] = C[u, u−1, u−1w].
Hence δ = ua ∂

∂w with a � 0 defines a locally nilpotent derivation on A (cf. [9,
p.219]). On the other hand, since gcd(d, q) = 1, we find a positive integer q′ so
that qq′ ≡ 1 (mod d). Let ζ be a primitive d-th root of unity. Then ζ ′ := ζq′ is
also primitive, and the ζ′(x, y) = (ζq′x, ζy). Hence w′ = xyd−q′ = (x/yq′)v ∈ A,
and A[v−1] = C[v, v−1, v−1w′]. So, δ′ = vb ∂

∂w′ with b � 0 is a locally nilpotent
derivation on A which is algebraically independent of δ. Hence ML (X) = C.

(2) It suffices to show the “if ”part. Suppose that ML(X) = C. Let ρ : X → C
be the A1-fibration with which X has a structure of singular affine pseudo-plane
of type d > 1. Then there exists a normal projective surface V and a P1-fibration
ρ : V → C such that the following conditions are satisfied.

(i) X is an open set of V and D := V − X is a divisor with simple normal
crossings. We may assume that the embedding X ↪→ V is minimal, i.e., D
contains no (−1) curves which contract to smooth points without breaking
the property of D being a divisor with simple normal crossings.

(ii) The restriction of ρ onto X is the given A1-fibration ρ.
(iii) The curve C is isomorphic to P1.

By [2, Theorem 2.9], we can assume that D is a linear chain. Let dF0 be the
unique multiple fiber of ρ and let Φ0 be the fiber of ρ containing dF0. Write
Φ0,red = Γ + F 0, where F 0 is the closure of F0 in V . Let P be the unique
singular point of X which lies on F0. Let σ : Ṽ → V be the minimal resolution of
singularity at P and let ∆ = σ−1(P ) be the exceptional divisor. The composite
ρ̃ = ρ ·σ is a P1-fibration on Ṽ and σ′(Γ+F 0)+∆ supports a degenerate fiber Φ̃0

of ρ̃, where σ′(·) signifies the proper transform. Let F̃0 = σ′(F 0) and Γ̃ = σ′(Γ).
Note that ∆ is a linear chain with one end component meeting F̃0 and that Γ̃
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is a linear chain. Furthermore, F̃0 is the unique (−1) component of Φ̃0 and its
multiplicity is d.

Now we consider the quasi-universal covering of X . Namely, we consider the
universal covering X̃◦ of X◦ := X \ {P} which is in fact a finite covering. The
quasi-universal covering X̃ of X is the normalization of X in the function field
of X̃◦. The surface X̃◦ is obtained as the normalization of X◦ ×C C ′, where
ν : C ′ → C is a d-th cyclic covering of C ramifying totally over the point ρ(F0).
This process of producing X̃ corresponds to the process of taking the fiber product
(Ṽ , ρ̃) ×C (C ′, ν), where ν : C ′ → C is a d-th cyclic covering ramifying totally
over the point ρ(F0) and the point at infinity C \C, taking the normalization of
the fiber product and finally resolving minimally the singularities of the obtained
normal surface. Let W be a smooth projective surface obtained in this manner
and let µ : W → Ṽ be the natural morphism. By a general theory of d-th cyclic
coverings of the above type, the component F̃0 does not ramify and the restriction
µ : µ′(F̃0) → F̃0 induced by the morphism µ ramifies totally over the points F̃0∩∆
and F̃0 ∩ Γ̃, where µ′(F̃ )0 is the induced proper transform of F̃0. Furthermore,
µ′(F̃0) has multiplicity one in the degenerate fiber µ∗(Φ̃0) of the induced P1-
fibration ρ̃ ·µ : W → C . Since the degenerate fiber µ∗(Φ̃0) can be contracted to a
smooth fiber which is the image of the component µ′(F̃0), it follows that µ−1(∆)
contracts to a smooth point on µ′(F̃0). Hence X̃ is isomorphic to the affine plane
A2. Since X ∼= X̃/G with G = π1(X◦) ∼= Z/dZ, it follows that X is isomorphic
to A2/G.

We shall now prove Theorem 2.2 in the case where G is a finite cyclic group.

Theorem 2.4. Let X be isomorphic to A2/G with a small finite subgroup G of
GL (2, C). Suppose that X × A1 ∼= Y × A1 and that G is a cyclic group. Then
X ∼= Y .

Proof. As in the proof of Theorem 2.2, either Y is isomorphic to A2/G′ or Y is
a singular affine pseudo-plane of type d > 1. With the same notations there, we
have X̃ × A1 ∼= Ỹ × A1, where X̃ ∼= A2. By the cancellation theorem for A2,
we have Ỹ ∼= A2. Since π1(Y ◦) ∼= π1(Y ◦ × A1) ∼= π1(X◦ × A1) ∼= G, it follows
that G′ is isomorphic to G and that the group G acts on Ỹ ∼= A2 as the same
linear representation ρG upto an automorphism of A2. Since Y ∼= Ỹ //G, we have
Y ∼= X .

Remark 1. In Theorem 2.1, when X is a log affine pseudo-plane, the condition
X ×A1 ∼= Y ×A1 does not necessarily imply X ∼= Y . One of the reasons for this
phenomenon is the following. With the above notations, we have X̃×A1 ∼= Ỹ ×A1,
while X̃ is isomorphic to either A2 or a Danielewski surface. In the latter case,
X̃ is not necessarily isomorphic to Ỹ .
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Remark 2. In [1, Theorems 4.2 and 4.3], given a finite morphism ϕ : X → Y
of smooth affine surfaces, it is proved that Y has the trivial Makar-Limanov
invariant provided so does X if ϕ satisfies one of the following conditions.

(1) ϕ is étale.
(2) ϕ is a Galois (possibly ramified) covering.
(3) X has the Picard number ρ(X) = 0.

It is most plausible that the same result holds when we replace X and Y by normal
affine surfaces with quotient singularities, which we call log affine surfaces and an
étale covering by a finite covering such that X◦ = ϕ−1(Y ◦) and ϕ |X◦: X◦ → Y ◦

is étale.
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