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ON ZALCMAN COMPLEX SPACES AND
NOGUCHI-TYPE CONVERGENCE-EXTENSION

THEOREMS FOR HOLOMORPHIC MAPPINGS INTO
WEAKLY ZALCMAN COMPLEX SPACES

NGUYEN VAN TRAO AND PHAM NGUYEN THU TRANG

Abstract. In this article, some Noguchi-type convergence-extension theo-
rems for holomorphic mappings into weakly Zalcman complex subspaces for
a complex space are given. Moreover, the tautness of unbounded domains of
a complex space with non-compact automorphism groups is investigated from
the viewpoint of the theory of Zalcman complex spaces.

1. Introduction

The convergence-extension theorems of Noguchi-type have received much at-
tention in the last few decades, and they are related to many problems in hy-
perbolic complex analysis and pluripotential theory (see the reference in [2], [13],
[14] for the development in related subjects). More precisely, a ”Noguchi-type
convergence-extension theorem” means a theorem on mappings analogous to the
theorem of Noguchi of extending holomorphic mappings [7, Thm.1.6.24], which
would keep the local uniform convergence. In this paper we initiate the study of
these problems from the viewpoint of the theory of Zalcman complex spaces

The notion of Zalcman complex spaces is introduced in [15]. At the same time,
some important classes of Zalcman complex spaces are also given there. We think
that Zalcman complex spaces have nice properties and are an useful subject to
find new Noguchi-type convergence-extension theorems.

Modifying the above-mentioned notion, in this article, we introduce the no-
tion of weakly Zalcman complex subspaces for a complex space and show some
Noguchi-type convergence-extension theorems for holomorphic mappings into
weakly Zalcman complex subspaces for a complex space. More precisely, we
determine when the restricted mapping R : Hol(M,Y ) → Hol(M \A,X) is home-
omorphic in the compact-open topology, where X is a weakly Zalcman complex
subspace for a complex space Y and A is a complex hypersurface of a complex
manifold M . Different from the approachs in [8], [4], [5], we use the weak-disc
convexity of complex spaces. This tool was used in [13], [14].

Received September 22, 2006.
Key words and phrases. Zalcman complex space, weakly Zalcman complex subspace for a

complex space, weakly disc convex complex subspace for a complex space.



84 NGUYEN VAN TRAO AND PHAM NGUYEN THU TRANG

2. On Zalcmanness of complex spaces

First of all, we recall some definitions (see [15])

Definition 2.1. A family F of holomorphic maps from a complex space X to a
complex space Y is said to be normal if F is relatively compact in Hol(X, Y ) in
the compact-open topology.

Definition 2.2. Let X , Y be complex spaces and F⊂ Hol(X, Y ).

(i) A sequence
{
fj

}
⊂ F is compactly divergent if for every compact set

K ⊂ X and for every compact set L ⊂ Y there is a number j0 = j(K,L)
such that fj(K) ∩ L = ∅ for all j > j0.

(ii) The family F is said to be not compactly divergent if F contains no com-
pactly divergent subsequences.

Definition 2.3. Let X be a complex space. Let ∆ be the open unit disc in C.
The complex space X is said to be a Zalcman space if X satisfies the following:
For each non-normal family F ⊂Hol(∆, X) such that F is not compactly

divergent, then there exist sequences {pj} ⊂ ∆ with {pj} → p0 ∈ ∆, {fj} ⊂ F ,
{ρj} ⊂ R with ρj > 0 and {ρj} → 0+ such that

gj(ξ) = fj(pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant holomorphic
mapping g : C → X .

It is conventional that the taut space is Zalcman.

Examples 2.1. 1. By a theorem of [14,Thm 2.8], it follows that every com-
pact complex space is a Zalcman space.

2. Let X be a compact complex space. Let H be a hyperbolic complex
hypersurface of X . Then X \ H is a Zalcman space. In particular, C =
CP1 \ {one point} is a Zalcman space. For more details, see [15].

3. If X1 is a taut space and X2 is a Zalcman space, then X1 × X2 is also
Zalcman. Indeed, {fj = (f1

j , f
2
j )} ⊂ Hol(∆, X1 × X2) such that {fj} is

not normal on ∆ and is not compactly divergent on ∆. Then it is easy to
see that {fk

j } is also not compactly divergent on ∆ (k = 1, 2). Since X1

is taut, {f1
j } is normal on ∆. Thus {f2

j } is not normal on ∆. Without
loss of generality we may assume that {f1

j } → f1 in Hol(∆, X1). Since
X2 is Zalcman, without loss of generality we may assume that there exist
sequences {pj} ⊂ ∆ with {pj} → p0 ∈ ∆, {ρj} ⊂ R with ρj > 0 and
{ρj} → 0+ such that

g2
j (ξ) = f2

j (pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant entire func-
tion g2 : C → X2. Then {g1

j (ξ) = f1
j (pj + ρjξ)}, ξ ∈ C, converges also

uniformly on compact subsets of C to a constant function g1 = f1(p0). The
claim is proved.
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4. If X1 is a compact space and X2 is a Zalcman space, then X1 ×X2 is also
Zalcman. Indeed, assume that {fj = (f1

j , f
2
j )} ⊂ Hol(∆, X1 × X2) such

that {fj} is not normal on ∆ and is not compactly divergent on ∆. Then
it is easy to see that {f2

j } is also not compactly divergent on ∆. Consider
two cases.
Case 1. {f2

j } is normal on ∆.
Then {f1

j } is not normal on ∆. Without loss of generality, we can as-
sume that {f2

j } → f2 in Hol(∆, X2). Since X1 is compact, without loss
of generality we may assume that there exist sequences {pj} ⊂ ∆ with
{pj} → p0 ∈ ∆, {ρj} ⊂ R with ρj > 0 and {ρj} → 0+ such that

g1
j (ξ) = f1

j (pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant entire func-
tion g1 : C → X1. Then {g2

j (ξ) = f2
j (pj + ρjξ)}, ξ ∈ C, converges also

uniformly on compact subsets of C to a constant function g2 = f2(p0).
Case 2. {f2

j } is not normal on ∆.
Since X2 is Zalcman, without loss of generality we may assume that there

exist sequences {pj} ⊂ ∆ with {pj} → p0 ∈ ∆, {ρj} ⊂ R with ρj > 0 and
{ρj} → 0+ such that

g2
j (ξ) = f2

j (pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant entire func-
tion g2 : C → X2.

Consider the sequence g1
j (ξ) := f1

j (pj + ρjξ), ξ ∈ C.
(a) If {g1

j } is normal, then without loss of generality we may assume that
{gj} → g ∈ Hol(C, X1 ×X2), g 6= constant.
(b) If {g1

j} is not normal, then by the compactness of X1, without loss
of generality we may assume that there exist sequences {p′j} ⊂ C with
{p′j} → p′0 ∈ C, {ρ′j} ⊂ R with ρ′j > 0 and {ρ′j} → 0+ such that

h1
j (ξ) = g1

j (p
′
j + ρ′jξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant entire func-
tion h1 : C → X1. Then {h2

j (ξ) := g2
j (p

′
j + ρ′jξ)}, ξ ∈ C, converges also

uniformly on compact subsets of C to a constant function h2 = g2(p′0).
This proves that X1 ×X2 is Zalcman.

We now prove the first result of this section.

Theorem 2.1. Let M1,M2 be two complex spaces. Let π : M1 → M2 be a
holomorphic covering. Then the complex space M1 is Zalcman if and only if M2

is also Zalcman.

Proof. (⇐) Assume that M2 is a Zalcman space. Let F ⊂ Hol(∆,M1) be such
that F is not normal on ∆ and F is not compactly divergent on ∆.
(i) We show that the familly π ◦ F is also not normal on Ω. Indeed, suppose
on the contrary that this family is normal on ∆. Let {fn} ⊂ F . Without
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loss of generality we may assume that {π ◦ fn} → g ∈ Hol(∆,M2). For each
y ∈M2, choose a taut neighbourhood Uy of y in M2. Then π−1(Uy) is taut. Put
Vy = g−1(Uy) for each y ∈M2. Take a countable covering {Vi}∞i=1 of ∆ such that
Vi b Vy for some y ∈M2.

Consider the sequence {fn |V1}. Without loss of generality we may assume that
fn(V1) ⊂ π−1(Uy1) for each n > 1. Since {π ◦fn |V1} → g |V1, it follows that there
exists a subsequence {f (1)

n } ⊂ {fn} which is convergent in Hol(V1,M1). Consider
the sequence {f (1)

n |V2}. As above, this sequence contains a subsequence {f (2)
n |V2}

being convergent in Hol(V2,M1). Continuing this process we can find sequences
{f (k)

n } such that {f (k)
n } ⊂ {f (k−1)

n } for all k > 2 and {f (k)
n } is convergent in

Hol(Vk,M1). Then the sequence {f (n)
n } is convergent in Hol(∆,M1). Thus the

family F is normal. This is a contradiction.
(ii) We now show that the family π ◦F is not compactly divergent on ∆. Indeed,
suppose on the contrary that there exists a sequence {fn} such that {π ◦ fn} is
compactly divergent. Let K be any compact subset of ∆ and L be any compact
subset of M1. Then there is n0 such that

π ◦ fn(K)∩ π(L) = ∅ for all n > n0.

Hence fn(K)∩ L = ∅ for all n > n0. This implies that the sequence {fn} is also
compactly divergent. This is impossible.
(iii) Since M2 is a Zalcman space, there exist sequences {pj} ⊂ ∆ with {pj} →
p0 ∈ ∆, {fj} ⊂ F , {ρj} ⊂ R with ρj > 0 and {ρj} → 0+ such that

gj(ξ) = π ◦ fj(pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant entire function
g0 : C →M2.

Put θj(ξ) = fj(pj + ρjξ), ξ ∈ C. Then

{π ◦ θj} → g0 in Hol(C,M2).

Repeating the argument in (i), without loss of generality we can assume that
{θj} → θ0 in Hol(C,M1). Since π ◦ θ0 = g0, this implies that θ0 6= constant.
This yields that M1 is Zalcman.
(⇒) Assume that M1 is a Zalcman space. Let {fj} ⊂ Hol(∆,M2) be such that
{fj} is not normal on ∆ and {fj} is not compactly divergent on ∆. Then there
exists a sequence {zj} ⊂ ∆ with {zj} → z0 ∈ ∆ and {fj(zj)} → p ∈M2.

Let yj := fj(zj) and take ỹj ∈ π−1(yj). Then there is a holomorphic map
f̃j : ∆ →M2 satisfying

π ◦ f̃j = fj and f̃j(zj) = ỹj .

(i) We now show that the sequence {f̃j} is not normal on ∆ and is not compactly
divergent on ∆. Indeed, if the sequence {f̃j} is normal on ∆ then {fj = π ◦ f̃j}
is also normal on ∆. This is impossible.
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Suppose that the sequence {f̃j} is compactly divergent on ∆. Let K be any
compact subset of ∆ and L be any compact subset of M2. It is easy to see
that there exists a compact subset L̃ of M1 such that π ◦ L̃ ⊃ L. Since {f̃j} is
compactly divergent on ∆, there is j0 such that

f̃j(K)∩ L̃ = ∅ for all j > j0.

Hence fj(K) ∩ L = ∅ for all j > j0. This implies that {fj} is also compactly
divergent. This is a contradiction.
(ii) Since M1 is a Zalcman space, without loss of generality we may assume that
there exist sequences {pj} ⊂ ∆ with {pj} → p0 ∈ ∆, {ρj} ⊂ R with ρj > 0 and
{ρj} → 0+ such that

g̃j(ξ) = f̃j(pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant entire function
g̃0 : C →M1. Hence

gj(ξ) = π ◦ f̃j(pj + ρjξ), ξ ∈ C,

converges uniformly on compact subsets of C to an entire function g0 := π ◦ g̃0.
Since g̃0 6= constant, g0 6= constant. This implies that M2 is Zalcman.

We prove the second result of this section.

Theorem 2.2. Let X be a complex space. Then X is Zalcman if and only if
S̃iX is Zalcman for all i > 0, where S0X = X, S1X = S(X) is the singular
locus of X, and SiX = S(Si−1X) for all i > 2.

Proof. (⇒) In order to prove this assertion, we need the following lemma

Lemma 2.1 ([14], Prop. 2.15). Let M1, M2 be two complex spaces. Let π :
M1 → M2 be a proper holomorphic mapping such that π−1(y) is hyperbolic for
every y ∈M2. Then the complex space M1 is a Zalcman space if so is M2.

Let X be a Zalcman space. Then SiX is Zalcman for every i > 0. By the
above mentioned lemma, it follows that S̃iX, the normalization of SiX , is also
Zalcman for every i > 0.

(⇐) Now assume that S̃iX is Zalcman for every i > 0.
Let F ⊂Hol(∆, X) be given such that F is not normal and F is not compactly

divergent on ∆.
Then there exists a sequence {fn} in F such that {fn} contains no uniformly

convergent subsequences and contains no compactly divergent subsequences (*).
It is easy to see that we can find i > 0 and a subsequence {fnk

} of {fn} such
that fnk

(∆) ⊂ SiX but fnk
(∆) 6⊂ Si+1X for all k > 1.
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Consider the commutative diagram:

∆ ×SiX S̃iX
f̃nk−−−−−−→ S̃iX

θi

y

yπi

∆
fnk−−−−−−→ SiX,

where θi : ∆×SiX S̃iX → ∆ is a pull-back bundle of the bundle πi : S̃iX → SiX
by the holomorphic map fnk

.
Since πi is finite and proper, so is θi. It is easy to see that θi : ∆×SiXS

iX → ∆
is an analytic covering map. This yields that card θ−1

i (z) = 1 for every z ∈ ∆.
Hence, we deduce that gk = f̃nk

◦ θ−1
i : ∆ → S̃iX is holomorphic for every k > 1.

Put G :={gk}
We now prove the following two assertions

(i) G is not normal.
Indeed, assume on the contrary that G is normal. Then G contains {gkl

} which
converges uniformly to a map G ∈ Hol(∆, S̃iX) in Hol(∆, S̃iX). Hence {fnkl

}
locally uniformly converges to πi ◦G = F in Hol(∆, X). This contradicts to (*).
(ii) G is not compactly divergent.

Indeed, assume on the contrary that there exists a compactly divergent sub-
sequence of {gk}. Without loss of generality we may assume that {gk} itself
is compactly divergent. Let K and L be two compact subsets in ∆ and SiX
respectively. Since π−1

i (L) is compact, there is k0 such that

gk(K) ∩ π−1
i (L) = ∅ for all k > k0.

This implies that fnk
(K)∩L = ∅ for all k > k0, and hence the sequence {fnk

} is
compactly divergent. This is a contradiction.

By (i), (ii) and the Zalcmanness of S̃iX, it follows that there exist sequences
{ph} ⊂ ∆ with {ph} → p0 ∈ ∆, {gkh

} ⊂ G, {ρh} ⊂ R with ρh > 0 and {ρh} → 0+

such that

ϕh(ξ) = gkh
(ph + ρhξ), ξ ∈ C,

converges uniformly on compact subsets of C to a non-constant mapping ϕ : C →
S̃iX .

Then γh(ξ) = fnkh
(ph+ρhξ), ξ ∈ C, converges uniformly on compact subsets

of C to a mapping γ : C → X , where γ = πi ◦ ϕ.
Assume that γ is constant, i.e. γ ≡ a on C. Then ϕ(C) ⊂ π−1

i (a) which is a
finite set. This is impossible. Thus γ is a non constant mapping.

It follows that X is Zalcman.
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We now give a sufficient condition for tautness of (not necessary bounded)
domains in a complex space through the geometrical conditions near boundary
points. First of all, we recall the following definitions.

Definition 2.4. [6], [7]

(i) A complex spaceX is said to be weakly Brody hyperbolic if each holomorphic
mapping f : C → X with f(C) b X is constant.

(ii) A complex space X is said to be Brody hyperbolic if each holomorphic
mapping f : C → X is constant.

By Liouville theorem, it is easy to see that Cn is weakly Brody hyperbolic,
but is not Brody hyperbolic.

Definition 2.5. Let M be a domain in a complex space X . Let X+ = X ∪{∞}
be the 1-point Alexandrov compactification of X . Denote by M the closure of
M in X+. We say that M is unbounded if ∞ ∈M . If M is unbounded and φ is
a function defined on M , we set φ(∞) = c ∈ R if limz→∞ φ(z) = c.

Let M be an unbounded domain in a complex space X .
(i) A function ϕ is called a local peak plurisubharmonic function at p in ∂M ∪

{∞} if there exists a neighbourhood U of p inX+ such that ϕ is plurisubharmonic
on U ∩M continuous up to U ∩M and satisfies

{
ϕ(p) = 0,
ϕ(z) < 0 for all z ∈ (U ∩M) \ {p}.

(ii) A function ψ is called a local antipeak plurisubharmonic function at p
in ∂M ∪ {∞} if there exists a neighbourhood U of p in X+ such that ψ is
plurisubharmonic on U ∩M continuous up to U ∩M and satisfies

{
ψ(p) = −∞,

ψ(z) > −∞ for all z ∈ (U ∩M) \ {p}.

Remark that the existence of an antipeak plurisubharmonic function at a finite
point p can always be ensured by setting ψ(z) = ln |z − p|.

Theorem 2.3. Let M be a domain in a complex space X and ξ0 ∈ ∂M ∪ {∞}.
Assume that there are local peak and antipeak plurisubharmonic functions ϕ and ψ
at ξ0. Moreover, assume that W ∩M is Zalcman for some weakly Brody hyperbolic
neighbourhood W of ξ0 and that there exists a sequence {σp} ⊂ Aut(M) such that
limσp(x0) = ξ0 for some x0 ∈M . Then M is taut.

In order to prove this theorem, we need the following lemma which is the
multi-dimensional version of Gaussier’s lemma (see [3], Lemma 2.1.1) .

Lemma 2.2. Let M be an unbounded domain in a complex space X. Assume
that there are local peak and antipeak plurisubharmonic functions ϕ and ψ at
ξ0 in ∂M ∪ {∞}. Then for every neighbourhood Ũ of ξ0 in X+ there exists a
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neighbourhood Ũ ′ of ξ0 in X+ such that every holomorphic map f : ∆N → M
satisfies

f(0) ∈ Ũ ′ ⇒ f(∆N
1
2
) ⊂ Ũ .

Proof. Since ϕ is a local peak plurisubharmonic function at ξ0, there exist two
neighbourhoods U, V of ξ0 (U ⊂ V ) and two positive constants c, c′ (c > c′) such
that : 




infz∈M∩∂U ϕ(z) = −c′,

supz∈M∩∂V ϕ(z) = −c.

Then the function ϕ̃ defined on M by:




ϕ̃(z) = ϕ(z) if z ∈M ∩ U,
ϕ̃(z) = sup(ϕ(z),−(c+ c′)/2) if z ∈M ∩ (V \U),
ϕ̃(z) = −(c+ c′)/2 if z ∈M\V,

is a global peak plurisubharmonic function at ξ0.
Let f : ∆N → M be a holomorphic mapping. Assume that α is an arbitrary

negative number such that (ϕ̃ ◦ f)(0) > α. Denote by mes(Eα) the measure of
the set

Eα = {θ = (θ1, θ2, · · · , θN) ∈ [0, 2π]N/(ϕ̃ ◦ f)(eiθ1 , eiθ2 , · · · , eiθN ) > 2α}.
Since the function ϕ̃ ◦ f is subharmonic, the mean value inequality implies that

α < (ρ̃ ◦ f)(0) 6
1

(2π)N

∫

[0,2π]N
(ρ̃ ◦ f)(eiθ1 , eiθ2 , · · · , eiθN )dθ1dθ2 · · ·dθN

6
2α

(2π)N
mes([0, 2π]N \Eα) =

2α
(2π)N

((2π)N −mes(Eα)).
(2.1)

Thus mes(Eα) > (2π)N

2 . Take ε small enough such that




infM∩∂U (ϕ+ εψ) = −c1 < 0,

supM∩∂V (ϕ+ εψ) = −c2 < −c1.

The function ρ defined on M by




ρ(z) = (ϕ+ εψ)(z) if z ∈M ∩ U,
ρ(z) = sup((ϕ+ εψ)(z),−(c1 + c2)/2) if z ∈M ∩ (V \U),
ρ(z) = −(c1 + c2)/2 if z ∈M\V,

is a continuous negative plurisubharmonic function onM and satisfies ρ−1(−∞) =
{ξ0}.

Let g : ∆ → M be a holomorphic mapping. Using the Poisson integral, for
any point λ on ∆1/2 we get

(ρ ◦ f)(λ) 6 1
2π

∫ 2π

0

Re(
eiθ + λ

eiθ − λ
)(ρ ◦ f)(eiθ)dθ.(2.2)
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By a computation, we have

min
λ∈∆1/2

Re(
eiθ + λ

eiθ − λ
) =

1
3
.

Thus,

(ρ ◦ f)(λ) 6 1
6π

∫ 2π

0

(ρ ◦ f)(eiθ)dθ for all λ ∈ ∆1/2.

Let f : ∆N →M be a holomorphic mapping. Then, for all λ = (λ1, λ2, · · · , λN)
∈ ∆N

1/2, we get

(ρ ◦ f)(λ1, λ2, · · · , λN) 6
1
6π

∫ 2π

0
(ρ ◦ f)(eiθ1 , λ2, · · · , λN)dθ1

6
1

(6π)N

∫

[0,2π]N
(ρ ◦ f)(eiθ1 , eiθ2 , · · · , eiθN )dθ1dθ2 · · ·dθN .

(2.3)

Since ϕ̃ is a peak function at ξ0 and ρ satisfies ρ(p) = −∞, there exists for each
n > 1 a negative constant αn such that for any z in M , the inequality ϕ̃(z) > 2αn

implies ρ(z) < −n.
Since ρ−1(−∞) = {p}, the family (Un = {z ∈ M : ρ(z) < − 1

2.3N n})∞n=1 is a
neighbourhood basis of ξ0 in M . Let U ′

n be a neighbourhood ξ0 in M defined by
U ′

n = {z ∈M : ϕ̃(z) > αn}.
Let f : ∆N → M be a holomorphic mapping such that f(0) ∈ U ′

n. Then
ϕ̃(f(0)) > αn and hence, by (2.1) we have mes(Eαn) > (2π)N

2 . Using (2.2) and
the fact that ρ is a negative function, for every λ = (λ1, λ2, · · · , λN) ∈ ∆N

1/2, we
have

(ρ ◦ f)(λ1, · · · , λN) 6 1
(6π)N

(∫

Eαn

(ρ ◦ f)(eiθ1 , · · · , eiθN )dθ1 · · ·dθN

+
∫

[0,2π]N\Eαn

(ρ ◦ f)(eiθ1 , · · · , eiθN )dθ1 · · ·dθN
)

6 1
(6π)N

∫

Eαn

(−n)dθ1 · · ·dθN = − 1
(6π)N

n ·mes(Eαn)

< − 1
(6π)N

n · (2π)N

2
= − 1

2 · 3N
· n.

(2.4)

Thus f(∆N
1/2) ⊂ Un. This proves the Lemma.

Proof of Theorem 2.3. (i) By Lemma 2.2, we see that the sequence {fν} converges
uniformly on compact subsets ofM to ξ0, when M is the unit polydisc ∆N in CN .
But one easily generalizes this to an arbitrary domain by some cover argument.

(ii) Let W̃ be a relatively compact neighbourhood of ξ0 in W . By Lemma
2.2, there exists a neighbourhood W ′ of ξ0 in X+ such that every holomorphic
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mapping f : ∆ →M satisfies

f(0) ∈ W ′ ⇒ f(∆ 1
2
) ⊂ W̃ ∩M.

Shrinking W ′ if necessary, we may assume that W ′ b W̃ . Let {fk} be any
sequence in Hol(∆,M) such that {fk(0), k > 0} is relatively compact in M .
Therefore, σ[{fk(0), k > 0}] ⊂ W ′∩M for some σ := σν ∈ Aut(M). Let us denote
σ◦fk by f̃k. Then f̃k(∆ 1

2
) ⊂ W̃∩M for any k > 0. Define a holomorphic mapping

gk : ∆ → W̃ ∩M by putting gk(z) = f̃k( z
2), ∀z ∈ ∆. Since W̃ ∩M b W ∩M ,

the sequence {gk} is not compactly divergent. Assume that {gk} is not normal.
Then, since W ∩M is a Zalcman space, there exist sequences {zj} ⊂ ∆ with
zj → z0, {f̃j} ⊂ {f̃k}, {ρj} ⊂ R+ with ρj → 0 such that

hj(z) = gj(zj + ρjz), z ∈ C

converges uniformly on compact subsets of C to a nonconstant holomorphic map-
ping h : C → W ∩M . Since h(C) b W and by the weak Brody hyperbolicity
of W , the mapping h must be constant. This is a contradiction. Therefore,
there exists a subsequence {gkl

} ⊂ {gk} which converges uniformly on compact
subsets of ∆ to some element of Hol(∆,W ∩ M). This implies that the se-
quence {f̃kl

|∆1/2
} ⊂ Hol(∆1/2,M ∩W ) converges uniformly on compact subsets

of ∆1/2 to some element of Hol(∆1/2,W ∩M). The corresponding subsequence
{fkl

|∆1/2
= σ−1 ◦ (f̃kl

|∆1/2
)} converges uniformly on compact subsets of ∆1/2 to

some element of Hol(∆1/2,M). Finally, a diagonal process shows that {fk} ad-
mits a subsequence which converges uniformly on compact subsets of ∆ to some
element of Hol(∆,M).

3. On weak disc-convexity of complex subspaces

Modifying the definition of the weak disc-convexity (see [10]), we now give the
following

Definition 3.1. Let X be a complex subspace of a complex space Y.
X is said to be weakly disc-convex for Y if every sequence {fn} ⊂Hol(∆, Y )

converges in Hol(∆, Y ) whenever the sequence {fn|∆∗} ⊂Hol(∆∗, X) converges
in Hol(∆∗, X). Here, Hol(X, Y ) denotes the space of holomorphic mappings
from a complex space X into a complex space Y equipped with the compact-
open topology and ∆∗ = ∆ \ {0}.

When X = Y we get the weakly disc-convex concept of the complex space X .

Example 3.1. If X is relatively compact and hyperbolically imbedded in Y then
X is weakly disc-convex for Y .

Indeed, this is deduced from Noguchi’s theorem on ∆ (see [6, Thm 4.1, p.56]).

Definition 3.2. Let X be a complex subspace of a complex space Y .
X is said to be A-disc-convex for Y if for every compact subset K ⊂ X, there

exists a compact subset L ⊂ Y which satisfies the following condition:
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For all f ∈ Hol(∆, Y ) ∩ C(∆, Y ), if f(∂∆) ⊂ K then f(∆) ⊂ L.
If X = Y then X is said to be A-disc-convex .

Concerning the A-disc-convexity of complex spaces we refer to [1].

Theorem 3.1. LetX be a complex subspace of a weakly Brody hyperbolic complex
space Y such that X is A-disc-convex for Y . Then X is weakly disc-convex for
Y .

Proof. Assume that {fn} ⊂ Hol(∆, Y ) such that the sequence {fn|∆∗} converges,
uniformly on compact subsets, to a mapping f ∈ Hol(∆∗, X). Let {fnk

} be any
subsequence of the sequence {fn}.

Put K =
⋃

k>1

fnk
(∂∆s), where 0 < s < 1. It is easy to see that K is compact

in X.
By the hypothesis, there exists a compact subset L such that

⋃
k>1

fnk
(∆s) ⊂

L ⊂ Y . Since Y is weakly Brody hyperbolic then the compact subset L contains
no complex line. Hence, by the theorem of Brody-Urata-Zaidenberg (see [8]),
there exists a hyperbolic neighbourhood W of L in Y . This implies that the
family {fnk

|∆s} is equicontinuous.
On the other hand, since {fnk

(λ)} is relatively compact for each λ ∈ ∆s, by the
Ascoli theorem the family {fnk

: k > 1} is relatively compact inHol(∆s, Y ). Thus
there exists a subsequence {fnkl

} of {fnk
} which converges, uniformly on compact

subsets, to the mapping F in Hol(∆, Y ). The equality F |∆∗ = f determines
F uniquely, hence independently of the choices of subsequences {fnk

} of the
sequence {fn}. It follows that the sequence {fn} converges, uniformly on compact
sets, to the mapping F in Hol(∆, Y ). Hence X is weakly disc-convex.

We now give another character of the weak disc-convexity from the view point
of the Zalcmanness of complex spaces. First, we formulate some definitions.

Definition 3.3. Let X be a complex subspace of a complex space Y .

X is said to be weakly Zalcman for Y if for every compact subset K ⊂ X ,
there exists an open neighbourhood U of K in Y which satisfies the two following
condition:

(i) U is Zalcman,
(ii) for each f ∈ Hol(∆, Y )∩ C(∆, Y ), if f(∂∆) ⊂ K then f(∆) ⊂ U .

If X = Y then X is said to be weakly Zalcman.

Example 3.2. Every complex subspace X of a Zalcman complex space Y is
weakly Zalcman for Y .

Definition 3.4. Let X be a complex subspace of a complex space Y . We say
that X has the ∆∗-EP for Y if every holomorphic mapping f from ∆∗ into X
extends to a holomorphic mapping F from ∆ into Y . If X has the ∆∗-EP for
itself then X is said to have the ∆∗-EP (shortly X has ∆∗-EP).
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Example 3.3. (i) By a theorem of Kobayashi [6, Thm 6.3.7, p.284], if X
is relatively compact and hyperbolically imbedded into Y then X has the
∆∗-EP for Y .

(ii) It is easy to see from the Riemann extension theorem that ifD is a bounded
domain in Cn and Ω is an open neighbourhood of D in Cn then D has the
∆∗-EP for Ω.

For details concerning the ∆∗-EP we refer the readers to [9], [11], [12].
We now prove the following.

Theorem 3.2. Let X be a complex subspace of a Brody hyperbolic complex space
Y . If X is weakly Zalcman for Y and has the ∆∗ − EP for Y then X is weakly
disc-convex for Y .

Proof. Assume that {fn}n>1 ⊂ Hol(∆, Y ) such that the sequence

{fn|∆∗} ⊂ Hol(∆∗, X)

converges, uniformly on compact subsets, to a mapping f ∈ Hol(∆∗, X) . Since
X has the ∆∗ − EP for Y , there exists g ∈ Hol(∆, Y ) such that g = f on ∆∗.

Put x0 := g(0) ∈ X. Take 0 < s < 1 and take a relatively compact neighbour-
hood K̃ of f(∂∆s) in X . Then there exists n0 > 1 such that fn(∂∆s) ⊂ K̃ for
all n > n0. Put K = {x0} ∪ K̃. Then K is a compact subset of X. Since X
is weakly Zalcman for Y , there is an open Zalcman neighbourhood U of K in Y
which satisfies (ii) in Definition 3.3. It follows that

fn(∆s) ⊂ U for all n > n0.

For each n 6 n0, define a holomorphic mapping f̃n : ∆ → U by setting
f̃n(z) = fn(sz) for each z ∈ ∆. Then F = {f̃n}n>n0 ⊂ Hol(∆, U).

It is easy to see that the family F is not compactly divergent.
Assume that the family F is not normal. Then by the Zalcmanness of U , there

exist sequences
{
pj

}
⊂ ∆ with

{
pj

}
→ p0 ∈ ∆,

{
fj

}
⊂ F ,

{
ρj

}
⊂ R with ρj > 0

and
{
ρj

}
→ 0 such that

gj(ξ) = fj(pj + ρjξ), ξ ∈ C

converges uniformly on compact subsets of C to a nonconstant holomorphic map
g : C → U . This is a contradiction, because Y contains no complex lines.

Thus F is normal. Hence {fn} converges uniformly on compact subsets of ∆
to g in Hol(∆, Y ).

4. Noguchi-type convergence-extension theorems for holomorphic
mappings into weakly Zalcman complex spaces

In this section we show some convergence-extension theorems for holomorphic
mappings into weakly Zalcman complex spaces.
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Theorem 4.1. Let X be a complex subspace of a Brody hyperbolic complex space
Y such that X is weakly Zalcman for Y and has the ∆∗ − EP for Y . Let A
be any non-singular analytic hypersurface of a complex manifold M . Let {fj :
M\A→ X}∞j=1 be a sequence of holomorphic mappings which converges uniformly
on compact subsets of M \ A to a holomorphic mapping f : M \ A → X. Then
there are unique holomorphic extensions f j : M → Y and f : M → Y of fj and
f over M , and {f j}∞j=1 converges uniformly on compact subsets of M to f .

Proof. By Theorem 3.2, X is weakly disc-convex for Y .
(i) We now prove that every holomorphic mapping f : M \A→ X extends to

a holomorphic mapping f : M → Y .
By localizing the mapping f , we may assume that M = ∆m = ∆m−1 × ∆ and

A = ∆m−1 × {0}.
For each z′ ∈ ∆m−1, consider the holomorphic mapping fz′ : ∆∗ → X given by

fz′(z) = f(z′, z) for each z ∈ ∆∗. By the hypothesis, there exists a holomorphic
extension f̄z′ : ∆ → Y of fz′ for each z′ ∈ ∆m−1. Define the mapping f :
∆m−1 × ∆ → Y by f(z′, z) = f z′(z) for all (z′, z) ∈ ∆m−1 × ∆. It suffices to
prove that f is continuous at (z′0, 0) ∈ ∆m−1 × ∆.

Indeed, assume that {(z′k, zk)} ∈ ∆m−1 × ∆ such that {(z′k, zk)} → (z′0, 0).

Put σk = f z′k
for each k > 1 and σ0 = f z′0

. Then the sequence {σk|∆∗}
converges uniformly to the mapping {σ0|∆∗} in Hol(∆∗, X). Since X is weakly
disc-convex for Y , the sequence {σk} converges uniformly to the mapping σ0 in
Hol(∆, Y ). Therefore, {σk(zk) = f(z′k, zk)} → σ0(0) = f(z′0, 0) and hence, f is
continuous at (z′0, 0).

(ii) Let {fk} ⊂ Hol(M \A,X) be such that {fk} → f0 in Hol(M \A,X).
We will show that {fk} → f 0 in Hol(M,Y ).
By localizing the mappings, we may assume that M = ∆m = ∆m−1 × ∆ and

A = ∆m−1 × {0}. Let {(z′k, zk)} ⊂ ∆m−1 × ∆ be any sequence converging to
(z′0, z0) ∈ ∆m−1 × ∆. We now prove that the sequence {fk(z′k, zk)} converges to
f0(z′0, z0).

Indeed, for each k > 0 consider the holomorphic mapping ϕk : ∆ → X given
by ϕk(z) = f k(z

′
k, z) for all z ∈ ∆. Then {ϕk|∆∗} → ϕ0|∆∗ in Hol(∆∗, X).

Since X is weakly disc-convex for Y , we have {ϕk} → ϕ0 in Hol(∆, Y ). Hence
{ϕk(zk) = fk(z′k , zk)} → ϕ0(z0) = f0(z′0, z0).

Remark 1. Using the same above argument, we also get the following: Let X
be a complex subspace of a weakly Brody hyperbolic complex space Y such that
X is A-disc-convex for Y . Let A be any non-singular analytic hypersurface of a
complex manifold M . Let {fj : M \ A → X}∞j=1 be a sequence of holomorphic
mappings which converges uniformly on compact subsets of M \A to a holomor-
phic mapping f : M \ A → X . Then there are unique holomorphic extensions
f j : M → Y and f : M → Y of fj and f over M , and {f j}∞j=1 converges
uniformly on compact subsets of M to f .
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Theorem 4.2. Let X be a complex subspace of a Brody hyperbolic complex space
Y such that X is weakly Zalcman for Y and has the ∆∗ − EP for Y . Let M
be a complex manifold of dimension m, and let A be a subset which is nowhere
dense in a non-singular complex submanifold B ⊂M of dimension 6 m− 1. Let
{fj : M \ A → X}∞j=1 be a sequence of holomorphic mappings which converges
uniformly on compact subsets of M \A to a holomorphic mapping f : M \A→ X.
Then there are unique holomorphic extensions f j : M → Y and f : M → Y of fj

and f over M , and {f j}∞j=1 converges uniformly on compact subsets of M to f .

Proof. By Theorem 3.2, X is weakly disc-convex for Y .
(i) We now prove that every holomorphic mapping f : M \A→ X extends to

a holomorphic mapping f : M → Y .
Take an arbitrary point a ∈ A. By localizing the mapping f , we may assume

that M = ∆m = ∆m−1 × ∆, A = A′ × {0}, where A′ is a nowhere dense subset
of ∆m−1, and a = (t0, 0) ∈ A′ × {0}. For every point z ∈ ∆m denote z = (t, u)
with t ∈ ∆m−1 and u ∈ ∆.

Assume that a sequence {aj = (tj , uj)} ⊂ (∆m−1 \ A′) × ∆ converges to
a. Consider the holomorphic mappings fj : ∆ → X, u 7→ fj(u) = f(tj , u) for
each j > 1, and ft0 : ∆∗ → X, u 7→ ft0(u) = f(t0, u). It is easy to see that
{fj |∆∗} → ft0 in Hol(∆∗, X). Since X is weakly disc-convex for Y , the sequence
{fj} converges uniformly to the holomorphic mapping g ∈ Hol(∆, Y ), where
g|∆∗ = ft0 . Put g(0) = p ∈ X. Then {fj(uj)} → g(0), i.e., {f(aj)} → p. Thus,
the sequence {f(aj)} converges to p for any sequence {aj} ⊂ (∆m−1 \ A′) × ∆
converging to a (*). Choose a relatively compact neighbourhood Vp of p in Y

such that V p is contained in a holomorphic local coordinate neighbourhood of
p in Y . By (*) there exists an open neighbourhood T0 × U0 of a = (t0, 0) in
∆m−1 × ∆ such that f((T0 \A′) × U0) ⊂ Vp.

For every point u ∈ U0 \ {0}, consider the holomorphic mapping fu : ∆m−1 →
X, t 7→ fu(t) = f(t, u).

Since fu(T0 \ A′) ⊂ Vp, it follows that fu(T0 \A′) = fu(T0) ⊂ V p. Thus
f(T0 × (U0 \ {0})) ⊂ V p. By the Riemann extension theorem, the mapping f
extends holomorphically to T0 × U0.

(ii) Repeating the argument in Theorem 3.1, we can show that if a sequence
{fk} ⊂ Hol(M \A,X) converges, locally uniformly, to a mapping f0 in Hol(M \
A,X), then the sequence {fk} converges, locally uniformly, to f 0 in Hol(M,Y ).

Corollary 4.1. Let X be a weakly Zalcman complex space such that X has the
∆∗ − EP . Let M be a complex manifold of dimension m, and let A be a subset
which is nowhere dense in a complex subspace B ⊂M of dimension 6 m−1. Let
{fj : M \ A → X}∞j=1 be a sequence of holomorphic mappings which converges
uniformly on compact subsets of M \A to a holomorphic mapping f : M \A→ X.
Then there are unique holomorphic extensions f j : M → Y and f : M → Y of fj

and f over M , and {f j}∞j=1 converges uniformly on compact subsets of M to f .
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