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GENERALIZED /-ISOMORPHISMS OF /(-GROUPS

XINMIN LU

ABSTRACT. By using large and small convex ¢-subgroups of an ¢-group in-
troduced in [3] and [4], we extend {-isomorphisms of ¢-groups to quasi-f-
isomorphisms and co-quasi-¢-isomorphisms. Then we will establish some suffi-
cient and necessary conditions under which two ¢-groups are quasi-¢-isomorphic
or co-quasi-£-isomorphic.

1. BACKGROUND

Throughout, G will denote an f-group. Recall from [3] and [4] that an /(-
subgroup L of G is large in G if LN C # 0 for every 0 # C € C(G). A convex
¢-subgroup L of G is large if L is large in G as an ¢-subgroup. We denote by ¢(G)
the set of all large ¢-subgroups of G and by L(G) the set of all large convex /-
subgroups of G. As the dual of large convex /-subgroups, we define small convex
¢-subgroups similarly, and denote by S(G) the set of all small convex ¢-subgroups
of G. Recall also that, for any two ¢-groups G and H, an f-homomorphism
f: G — H is called an ¢-isomorphism if Kerf =0 and Imf = H.

In the present paper, we will extend an f-isomorphism of /-groups to the fol-
lowing two more general cases:

Case 1. If the condition that Kerf = 0 is changed by the condition that
Kerf € S(G), then we call f a quasi-£-isomorphism.

Case II. If the condition that Imf = H is changed by the condition that
Imf € ¢(H), then we call f a co-quasi-C-isomorphism.

The main purpose of this paper is to establish some sufficient and neces-
sary conditions under which two f-groups are quasi-¢-isomorphic or co-quasi-
f-isomorphic.

2. PRELIMINARIES

In this section, let us simply review some of the basic terms and concepts of
¢-groups. The reader is referred to [2] for the general theory of ¢-groups.

A partially ordered group G is a group that is also a partially ordered set such
that for any a,b,¢,d € G, c+a+d < ¢+ b+ d whenever ¢ < b. Here we use
+ to denote the group operation, but the group need not to be commutative. A
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partially ordered group G is an £-group if the underlying order endows G with
a lattice structure. An f-group G is o-group if for any z,y € G, either z < y or
y < x. An f-group G is archimedean if for any z,y € G, the condition nx < y
for all integers n implies x = 0. In view of Holder’s Theorem, any archimedean
o-group is o-isomorphic to a subgroup of the additive group R of reals.

A subgroup A of an f-group G is an £-subgroup if A is also a sublattice of G.
An /-subgroup C' of G is convezif for g € G and ¢ € C, 0 < g < c implies g € C.
For any g € G, we denote by G(g) the convex ¢-subgroup of G generated by g;
G(g) is called a principal convex ¢-subgroup. The set of all convex ¢-subgroups
of G is denoted by C(G), which is a distributive Brouwerian lattice. I € C(G)
is an ¢-ideal if I is a normal convex f-subgroup of G, i.e., I 9<G. The set of all
¢-ideals of G is denoted by I(G). Clearly if I is an ¢-ideal of GG, then the factor
group G/I is an ¢-group by the following coset ordering: I + z > I + y if there
exists z € I such that z > z+y. G\ € C(G) is regular if it is maximal with
respect to not containing some g € GG. In this case, G is a value of g. The set
of all regular subgroups of G is denoted by I'(G). An ¢-group G is normal-valued
if for any G € T'(G), G5 < G*, where G* denotes the cover of G in C(G). In
general, if there exists a minimal convex f-subgroup of G properly containing
C € C(G), this minimal convex f-subgroup is unique and is called the cover of
C. In view of ([2], Theorem 41.1), an ¢-group G is normal-valued if and only if
forany A,Be€ C(G), AVB=A+B=B+ A.

Let G be an f-group. Two positive elements x,y € G are a-equivalent if there
exist positive integers m and n such that z < ny and y < ma. G is an a-
extension of an f-subgroup A if for each g € G, there exists a € A such that
a is a-equivalent to g. In particular, if G is an a-extension of A, then the map
7:C(G) — C(A) : C — C N Ais a lattice isomorphism.

Let G and H be both /-groups. A function f : G — H is an {-homomorphism
if f is both a group and a lattice homomorphism. If, in addition, f is both
surjective and injective, we say that f is an /-isomorphism. For general ¢-groups,
we also have three basic isomorphism theorems ([2], Theorem 8.6).

Let {Gx}aea be a set of £-groups for all \. On xG), place the componentwise
lattice and group operations. The resulting /-group, denoted by [] Gy, is called
AEA
the cardinal product of the set {G )} ea and each G is called a cardinal summand
of [[Gx. Let G = [[ Gy, and let Y Gy = {g € G : gx» = 0 for all but a finite
AEA AEA AEA
number of indices A\}. A direct computation shows that »_ G is an f-ideal of
AEA
[1 G, and is called the cardinal sum of the ¢-groups {Gx}aea.-
AEA
An fl-group G is a subdirect product of f-groups {Gx}xen if there exists an
injective f-homomorphism o : G — [] G such that for each projection p, :
AEA
[1G\ — Gy, py - o is surjective.
AEA
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3. SMALL AND LARGE CONVEX /-SUBGROUPS

In this section, we investigate some properties of small convex ¢-subgroups and
large convex f-subgroups of an ¢-group, which we will need in the later sections.
Let us first recall from [4]:

Definition 3.1. Let G be an ¢-group. S € C(G) is called small in G if SVW = G
for some W € C(G), then W = G.

For an ¢-group G, we denote by S(G) the set of all small convex ¢-subgroups
of G. A direct computation shows that S(G) forms a lattice, and is a sublattice
of C(G), i.e., for any S,T € S(G), SVT,SNT € S(G), where V and N are in
C(@Q).

Example 1. Let R denote the additive group of reals with usual order, and set
R; 2 R for any ¢ > 1. Consider the following three ¢-groups:

= . _
G = @Ri, Gy = @Ri, and G3 = (Rl ) Rg) @ R3.
=1 =1

By a direct computation, we see that
—

n
(1) for any positive integer n, @PR; € S(G). It follows that every convex
i=1
{-subgroup of (G7 is small in G except G.

(2) every convex {-subgroup of G is not small in G except 0.

(3) G3 has three nontrivial small convex ¢-subgroups Ry, Ry and Ry @ Ro, i.e.,
S(G3) = {07 Rlv R27 Rl © RQ}

The following will show that small convex f-subgroups of an ¢-group are closely
related to its maximal convex ¢-subgroups. For convenience, we denote by Max(G)
the set of all maximal convex f-subgroups of an /-group G.

Remark 1. If an /-group GG has no maximal convex /-subgroups, then we always
define | Maz(G) = G.

Lemma 3.1. Let G be an ¢-group.

(1) For any g € G, G(g9) ¢ S(G) if and only if there exists some M € Max(G)
such that g € M.

(2) VS(G) = N Max(G).

Proof. (1) First, for g € G, suppose there exists some M € Max(G) such that
g & M. Then, by the maximality of M, G(g)V M = G. But then M # G. Thus
G(g) & S(G).

Conversely, suppose G(g) € S(G); then, by definition, there exists some A €
C(G) with A # G such that G(g) V A = G. Now, consider the set Q = {A €
C(G): A+#G and G(g9) VA = G}. An easy application of Zorn’s Lemma shows
that 2 has a maximal element, denoted by M. Suppose there exists W € C(G)
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such that M C W C G. By the maximality of M in 2, we have W ¢ (, so that
W = G. Hence M is a maximal convex ¢-subgroup of G.

(2) If G contains no maximal convex ¢-subgroups, then, by the above remark,
( Maz(G) = G. In this case, we easily obtain by (1) that every principal convex
¢-subgroup of G is small in G. Hence \/ S(G) = \/ G(g) = G. So, \V S(G) =

geG

(N Max(G). If G contains maximal convex (-subgroups, then (1) shows that
G must contain small convex f-subgroups. Now, let S be any small convex /-
subgroup and M any maximal convex ¢-subgroup. Then, by definition, SV M #
G. So, by the maximality of M, we get SV M = M, so that S C M. Hence
V S(G) € (Maz(G). For the reverse inclusion, let g € (| Max(G). Suppose
that G(g) € S(G); then, by (1), there must exist some M € Max(G) such that
g & M, which is a contradiction. Therefore \/ S(G) = (| Maz(QG). O

Theorem 3.1. The following conditions are equivalent for an /-group G:
(1) G contains no small convex ¢-subgroups except 0.

(2) For any 0 # g € G, there exists some maximal convex ¢-subgroup M of G
such that g € M.

(3) NMazx(G) = 0.

If G is normal-valued, then any one of the above conditions is equivalent to the
following condition:

(4) G is a subdirect product of archimedean o-groups.

Proof. (1)=(2)=(3) is clear by Lemma 3.1. For (3)=(1), suppose that there
exists 0 # C € C(G) such that C € S(G). Then we may pick 0 # g € C. By
(3), there exists some M € Max(G) such that g ¢ M. So, by the maximality of
M, we see that G(g) ¢ S(G). On the other hand, let G(g) VW = G for some
W € C(G). Then clearly C VW = G. Since C € S(G), we then have W = G, so
that G(g) € S(G), which is a contradiction. Hence G contains no small convex
{-subgroups except 0.

Now, if G is normal-valued, then for any M € Max(G), M < M* = G, and
so by Holder’s Theorem, G/M is an archimedean o-group. Therefore G is a
subdirect product of archimedean o-groups {G/M : M € Max(G)} if and only if
() Max(G) = 0. This completes the proof. O

Theorem 3.2. Let G be an a-extension of an f-subgroup A. Then the map
0:5(G)— S(A): S+— SN A is a lattice isomorphism.

Proof. Since G is an a-extension of an ¢-subgroup A, the map 7: C(G) — C(A) :
C — C N A is a lattice isomorphism. So it suffices to show that S € S(G) if
and only if SN A € S(A), then we have 7|g(g) = 0. It follows that o is a lattice
isomorphism. For convenience, we denote by Vg and V4 the operations in C(G)
and in C'(A), respectively.
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Now, suppose S € S(G) and write T'= S N A. Now, let W € C(A) be such
that TV4 W = A. Then there must exist some U € C(G) such that W = U N A.
Notice that 7 is a lattice isomorphism, we have

AN(SVEU) = 1(SVe U) = 7(S)VaT(U) = (ANS)VA(ANU) = TVA W = A.

It follows that SVgU = G since 7 is a lattice isomorphism and 7(SVaU) = 7(G).
By assumption, S € S(G), so that U = G. Hence W = A. So SN A € S(A). For
the converse, we can similarly obtain the desired result. O

In [1], Byrd proved that if G is an a-extension of an ¢-subgroup A, then G is
normal-valued if and only if A is also normal-valued. Further, by Theorem 3.1
and Theorem 3.2, we have
Corollary 3.1. Let G be an a-extension of an ¢-subgroup A.

(1) G contains no small convex ¢-subgroups if and only if A contains no small
convex {-subgroups.

(2) G is a subdirect product of archimedean o-groups if and only if A is a
subdirect product of archimedean o-groups.

We now give the corresponding results for the case of large convex ¢-subgroups.
Since their proofs are completely dual, we will omit them.
Lemma 3.2. Let G be an f-group.

(1) NL(G) =\ Min(G), where Min(G) denotes the set of all minimal convex
{-subgroups of G.

(2) G contains no large convex (-subgroups except G if and only if G is a
cardinal sum of archimedean o-groups.
Theorem 3.3. Let GG be an a-extension of an /-subgroup A.

(1) The map o : L(G) — L(A) : L — LN A is a lattice isomorphism.

(2) G contains no large convex ¢-subgroups except G if and only if A contains no

large convex £-subgroups except A. Moreover, G is a cardinal sum of archimedean
o-groups if and only if A is a cardinal sum of archimedean o-groups.

As a corollary of Theorem 3.1 and Theorem 3.3, we have
Corollary 3.2. Let G be an ¢-group. If G contains no large convex ¢-subgroups
except G, then it also contains no small convex ¢-subgroups except 0.

4. QUASI-/-ISOMORPHISMS OF ¢-GROUPS

In this section, we extend /-isomorphisms of ¢-groups to quasi-f-isomorphisms
by using small convex /-subgroups. Let us first state the main definition of this
section.

Definition 4.1. Let G and H be two f-groups. G and H are called quasi-¢-
isomorphic if there exists a surjective f-homomorphism f : G — H such that
Kerf € S(G).
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From Definition 4.1, we see that if G and H are f-isomorphic, then they are
clearly quasi-f-isomorphic. But the converse does not hold in general. Consider
the following example.

Example 2. Let Z denote the additive group of integers with usual order. Let
G=Z%Z and let H=0%Z. Consider the following map

f : G — H defined by the rule: f(z,y) = (0,y) for any (z,y) € G.

We easily obtain that G and H are quasi-f-isomorphic since Kerf = ZH0 €
S(G). But clearly G and H are not ¢-isomorphic.

The following will show the relation between ¢-isomorphisms and quasi-f-
isomorphisms. Since its proof is straightforward, we will omit it.

Theorem 4.1. Let G and H be two /-groups. Then the following conditions are
equivalent:

(1) f: G — H is an {-isomorphism.

(2) f is a quasi-f-isomorphism, and for any S € S(G), if f(S) =0, then S = 0.

By a direct computation, we also have
Lemma 4.1. Let G be an ¢-group and let C' € C(G). The following conditions
are equivalent:

(1) C € S(G).

2)If K € I(G) and K C C, then K € S(G) and C/K € S(G/K).

We are now in a position to prove the main result of this section.
Theorem 4.2. Let G and H be two ¢-groups and let f : G — H be a surjective
£-homomorphism. Then the following conditions are equivalent:

(1) f : G — H is a quasi-¢-isomorphism.

(2) For any C € S(H), f~1(C) € S(G).

(3) For an f-ideal I of G, if there exists a surjective £~-homomorphism g : G/I —
H such that f = gm, where 7 : G — G/I is the natural map, then I € S(G).

(4) For any proper convex ¢-subgroup C of G, f(C) # H.

Proof. (1)=(2) Given any C € S(H), a direct computation shows that f~!(C) €
C(G). Notice that Kerf € S(G) and Kerf = f~1(0) € f~1(C). So, in order
to show f~1(C) € S(G), it suffices to show that f~1(C)/Kerf € S(G/Kerf) by
Lemma 4.1. Now, let W € C(G) with W 2O Ker f such that

(f~YC)/Kerf) Vv (W/Kerf)=G/Kerf.

So (f~1(C)vW)/Kerf = G/Kerf, which implies f~1(C) VW = G. In view of
Theorem 7.4 in [2] and the surjectivity of f, we have C'V f(W) = f(G) = H, so
that f(W) = H = f(G). Now, for any g € G, there exists some w € W such that
f(g) = f(w), which implies g — w € Kerf. Notice that Kerf C W, so g € W,
so that W = G. Therefore f~1(C)/Kerf € S(G/Kerf).
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(2)=(3) Since 0 € S(H), by (2), we have Kergr = (gn)~1(0) = f~1(0) €
S(G). Notice that I C Kergm, so that I € S(G).

(3)=(4) Suppose on the contrary that there exists a proper convex ¢-subgroup
C of G such that f(C) = H. As in the proof of (1)=-(2), we easily obtain that
Kerf+ C = G. Then G/Kerf = f(G) = H. Naturally, we have the following

surjective £~-homomorphism

g:G/Kerf — H defined by the rule g(x + Kerf) = f(x) for any
x+ Kerf € G/Kerf.

Clearly f = gm. So, by (3), we have Kerf € S(G). Since Kerf <G, Kerf+C =
Kerf Vv C, so that Kerf Vv C = G. Notice that Kerf € S(G), so we further get
C = @G, which contradicts the hypothesis.

(4)=(1) By definition, it suffices to show that Kerf € S(G). Let KerfVvW =
G for some W € C(G). Then f(Kerf)V f(W)=f(W)=f(G)=H. By (4), W
is a trivial convex ¢-subgroup of G. Clearly W # 0, so that W = G. Thus Kerf
is small in G. So f: G — H is a quasi-f-isomorphism. O

As a corollary of Theorem 4.2, we can obtain a very nice characterization of
quasi-f-isomorphisms of /-groups, as follows:

Corollary 4.1. Let G and H be two f-groups . Then the following conditions
are equivalent:
(1) f : G — H is a quasi-f-isomorphism.

(2) f : G — H is a surjective f-homomorphism, and for any C € C(H),
C € S(H) if and only if f~1(C) € S(G).

Recall that an ¢-group G is called Hamiltonian if for any C € C(G), C < G.

Theorem 4.3. Let G and H be two Hamiltonian ¢-groups and let f : G — H be
a surjective £-homomorphism. If for any /-group K, the existence of a surjective
f-homomorphism k : G — H® K implies K = 0, then f is a quasi-f-isomorphism.

Proof. By definition, it suffices to show that if Ker fVW = G for some W € C(G),
then W = G. According to the Second Isomorphism Theorem of /-groups, and
noticing that G is Hamiltonian, we have

G/(WnKerf)=(Kerf/(WnKerf))V(W/(WnKerf))
= Kerf/(WnKerf)eW/(WnKerf) = (Kerf+W)/W&(Kerf+W)/Kerf
= (KerfvVW)/W & (KerfVvW)/Kerf=G/W&G/Kerf
2G/Wa f(G)=G/W @ H.
From which we can obtain the following surjective /-homomorphism

G — G/W & H defined by the rule a — (a + W, f(a)).

Clearly this is well defined. So, by assumption, we get G/W = 0, i.e., W = G.
It follows that Kerf is small in G. Therefore f is a quasi-f-isomorphism. U
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5. CO-QUASI-/-ISOMORPHISMS OF /-GROUPS

As the dual case of quasi-f-isomorphisms of ¢-groups, we study in this section
co-quasi-f-isomorphisms of ¢-groups, which is, in fact, another generalization of
{-isomorphisms of /-groups. Let us recall

Definition 5.1. Let G and H be two /-groups. G and H are called co-quasi-
f-isomorphic if there exists an injective £~-homomorphism f : G — H such that
Imfel(H).

From Definition 5.1, we see that if G and H are f-isomorphic, then they
are clearly co-quasi-f-isomorphic. But the converse does not hold in general.
The following will show the relation between f-isomorphisms and co-quasi-¢-
isomorphisms. Since its proof is very direct, we will omit it.

Theorem 5.1. Let G and H be two /-groups. Then the following conditions are
equivalent:

(1) f: G — H is an {-isomorphism.

(2) f is a co-quasi-f-isomorphism, and for any L € L(H), if Imf C L, then
L=H.

For co-quasi-f-isomorphisms of ¢-groups, we have the following corresponding
characterizations, which are almost dual to Theorem 4.2. For convenience, here
we will give its complete explanation.

Theorem 5.2. Let G and H be two f-groups and let f : G — H be an injective
£-homomorphism. Then the following conditions are equivalent:

(1) f : G — H is a co-quasi-¢-isomorphism.

(2) For any L € L(G), f(L) € ¢(H).

(3) For an {-subgroup K of H, if there exists an injective /~-homomorphism
g : G — K such that f =ig, where ¢ : K — H is the identically embedding, then
K e ((H).

(4) For any 0 # C € C(H), f~1(C) # 0.

Proof. (1)=(2) Given any L € L(G), let f(L)NC = 0 for some C' € C(H). Then
we have L N f~1(C) = f~1(0) = 0. A direct computation shows that C € C(G)
implies f~1(C) € C(G). Since L € L(G), we then have f~1(C) = 0, so that
C = 0 since f is injective. Hence f(L) € {(H).

(2)=(3) Since G € L(G), by (2), we have ig(G) = f(G) € {(H). Notice that
9(G) C K, so ig(G) C i(K) = K. So, a direct computation will show that
K e ((H).

(3)=(1) Since f : G — H is an injective ¢~-homomorphism, we then have
g : G — f(Q) defined by the rule: g(z) = f(x) for any x € G, is also an injective
¢-homomorphism, and f = ig, where i : f(G) — H is the identically embedding.
By (3), f(G) € £(H). Thus f is a co-quasi-f-isomorphism.
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(1)=(4) Since f : G — H is a co-quasi-f-isomorphism, by definition, f(G) €
¢(H). Then for any 0 # C € C(H), we have f(G) N C # 0. So, we may pick
0 < z € C, then there exists y € G such that x = f(y). Clearly y # 0, and

y € fHAG)NC) = fFHAG)NfHC) =GN fHC) = fH(O).

Hence f~(C) # 0.

(4)=(1) Suppose on the contrary that f(G) ¢ ¢(H); then there must exist
some 0 # C' € C(H) such that f(G)NC = 0. Thus f~}(f(G)NC) = f~1(0) = 0.
On the other hand, we have

fHF@G)NC) =GN fAHO) =GN f7H(C) = fH(O).

It follows that f~!(C) = 0, which contradicts the assumption. Thus f(G) ¢ ¢(H).
So f is a co-quasi-f-isomorphism. O

As a corollary of Theorem 5.2, we can similarly obtain a very direct standard
of co-quasi-f-isomorphisms of /-groups, as follows:

Corollary 5.1. Let G and H be two f-groups. Then the following conditions
are equivalent:

(1) f : G — H is a co-quasi-¢-isomorphism.

(2) f : G — H is an injective f~-homomorphism, and for any L € C(G),
L € L(G) if and only if f(L) € ¢(H).

At the end of this paper, we establish a sufficient condition such that an injec-
tive /~-homomorphism f : G — H is a co-quasi-f-isomorphism, which is completely
dual to Theorem 4.3.

Theorem 5.3. Let G and H be two f-groups and let f : G — H be an injective
£-homomorphism satisfying condition:

for any f-group K, if there exists an injective /-homomorphism k : G K — H,
then K = 0.
Then f is a co-quasi-¢-isomorphism.

Proof. Suppose on the contrary that f(G) is not large in H; then there exists
0 # C € C(H) such that C N f(G) = 0. Now, let ' = {C € C(H) : C # 0
and C' N f(G) = 0}. An easy application of Zorn’s Lemma shows that I" has a
maximal element, denoted by K. We claim that f(G) @ K € ¢(H). Otherwise,
there exists some 0 # A € C(G) such that (f(G)® K) N A =0. From which we
can obtain that (K ®A)N f(G) = 0, which contradicts the fact that K is maximal
in I'. Since f(G) ® K € {(H), this will yield an injective £-homomorphism

7:G® K — H defined by the rule 7(g, k) = f(g) + k for any (g,k) € G @ K.

A direct computation shows that this is well-defined and is indeed an injective /-
homomorphism. So, by assumption, we have K = 0, which contradicts the choice
of K. Thus f(G) is large in H. Therefore f is a co-quasi-f-isomorphism. U
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