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CONDITIONAL MARTINGALES

DARIUSZ MAJEREK AND WIES$LAW ZIȨBA

Abstract. In this paper we would like to present a concept of conditional
martingales given σ-field F , which is a natural generalization of martingales.
Based on F -independence, we are able to show that there exist conditional
martingales, which are not martingales in pure sense. In the first part of the
paper we will show different types of conditional convergence and relations
between them. This article is intended to give a generalization of the the-
orem about almost sure convergence of martingales and some properties of
conditional martingales.

1. Definitions and examples

Let (Ω,A,P) be a probability space, {Fn}∞n=1 a nondecreasing family of σ-fields
and F ⊂ F1 a σ-field. Then the following definition of conditional supermartin-
gale (martingale) can be introduced:

Definition 1.1. Let {Xn}∞n=1 be an adapted sequence with respect to {Fn}∞n=1.
Then we say that the sequence {Xn}∞n=1 is a conditional supermartingale with
respect to σ-field F if it fulfills the following conditions:

(1) EF |Xn| <∞ a.s.

(2) EFnXn+1 � Xn a.s.

This sequence is a conditional martingale given σ-field F if we have equality in
(2).

Now we introduce a concept of conditional independence [2].

Definition 1.2. We say that A1, A2, . . . , An are F -independent if
∧

1�k�n

∧

1�i1<i2<···<ik�n
EF

k∏

s=1

IAis =

k∏

s=1

EFIAis .

In case F = (∅,Ω) we obtain independence. Note that if F = A, then any
events are F- independent.
A sequence of families G1,G2, . . . ,Gn where Gk ⊂ A is F-independent if any

sequence of events A1, A2, . . . , An where Ai ∈ Gi, i = 1, 2, . . . , n is F-independent.
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Let X : Ω→ R be a random variable. Then AX denotes the σ-field generated
by the random variable X. It is obvious that AX = X−1(B) where B denotes a
Borel σ-field on real. We say that AX is the σ-field generated by X.

The random variables X1,X2, . . . , Xn are F -independent if σ-fields AX1 ,AX2 ,
. . . , AXn are F-independent.

In the next part of this paper we shall need the following lemma.

Lemma 1.1. Let F ,G be σ-fields fulfilling the following condition F ⊂ G and let
σ(X) and G be F-independent, then

EGX = EFX a.s.

Proof. Let us assume that the lemma is not true. Let

D = {ω : EGX 
= EFX}

such that P(D) > 0 and D ∈ G. Let

D1 = [ω ∈ Ω : EFX > EGX],

D2 = [ω ∈ Ω : EFX < EGX].

Then D1, D2 ∈ G, D1 ∪D2 = D and
[∫

D1

EGXdP <

∫

D1

EFXdP

]
∨

[∫

D2

EGXdP >

∫

D2

EFXdP

]
,

so ∫

D1

EFXdP = E[ID1E
FX ] = E[EFID1E

FX ]

= E[ID1X ] =

∫

D1

XdP =

∫

D1

EGXdP,

which contradicts the assumption.

We present two types of conditional convergence in distribution.

Definition 1.3. The random variables X and Y have the same conditional dis-
tribution if

∧

a∈R
EFI[X�a] = E

FI[Y�a] a.s.

Let ζFX be the set of continuity of a distribution function FX .

Definition 1.4 ([5]). A sequence {Xn}∞n=1 of random variables is conditionally
convergent in distribution to some X if

∧

x∈ζFX

EFI[Xn<x]
a.s.−→ EFI[X<x], n→∞.
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We denote this convergence by Xn
DF−→ X, n→∞, and call it the conditional

strong convergence in distribution.

Now we introduce conditional weak convergence in distribution as follows.

Definition 1.5. A sequence {Xn}∞n=1 of random variables is conditionally weak
convergent in distribution to some X if

∧

x∈ζFX

EFI[Xn<x]
P−→ EFI[X<x].

This convergence is denoted by Xn
WDF−→ X, n→∞.

It is easy to see that ifXn
DF−→ X thenXn

WDF−→ X.Moreover, if F = {∅,Ω} then
conditional weak convergence in distribution means convergence in distribution
because ∧

x∈ζFX

lim
n→∞

FXn(x) = EI[Xn<x] → EI[X<x] = FX(x).

Theorem 1.1. [6]

Xn
P−→ X ⇐⇒

∧

x∈ζFX

P ([Xn < x]�[X < x])→ 0, n→∞.

Therefore we can claim:

Theorem 1.2. If
∧

x∈ζFX

I[Xn<x]
P−→ I[X<x], n→∞, then Xn

P−→ X.

Proof. It is obvious that

I([Xn<x]�[X<x]) = |I[Xn<x] − I[X<x]|.
By the convergence

∧

x∈ζFX

I[Xn<x]
P−→ I[X<x], n→∞

we have

I([Xn<x]�[X<x])
P−→ 0,

which means that

P ([Xn < x]�[X < x])→ 0, n→∞.
By Theorem 1.1 the assertion is proved.

From the above theorem we can say that if F = A then

Xn
WDF−→ X ⇐⇒ Xn

P−→ X.

Theorem 1.3. If F ⊂ G and Xn
WDG−→ X, n→∞, then Xn

WDF−→ X, n→∞.
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Proof. Let us assume that Xn
WDG−→ X, n→∞. Then

|EFI[Xn<x] − EFI[X<x]| = |EF(I[Xn<x] − I[X<x])| =

|EFEG(I[Xn<x] − I[X<x])|
P−→ 0, n→∞.

This relation points out that there exists a continuous link between weak con-
vergence and convergence in probability. If we consider conditional weak conver-
gence in distribution, then a similar statement holds.

Theorem 1.4 ([5]). If F ⊂ G and Xn
DG−→ X, n→∞, then Xn

DF−→ X, n→∞.

Hence, if F = {∅,Ω} then the following conditions are equivalent:

(i) Xn
DF−→ X,

(ii) Xn
WDF−→ X,

(iii) Xn
D−→ X.

To show the reason of introducing conditional martingales, we present some
examples.

Example 1. Let us consider an experiment relying on tossing coins n-times. We
have at our disposal two coins of types A and B. Let pa and pb are probabilities
of heads for the coin of type A and B respectively.

It is easy to see that a sequence {An}∞n=1, where Ai denote ”head in i-th toss”,
is not independent, but it is conditionally independent with respect to events CB
and C ′B, where CB denotes that ”coin A is selected”. Therefore events {An}∞n=1
are conditionally independent given σ-field F = σ(CB).
Let us assume that

Xn = IAn − EFIAn = IAn − PF(An),
and

Sn = X1 +X2 + · · ·+Xn.
Then obviously

EF |Sn| <∞ , n ∈ N.
Choose Fn = σ(X1,X2, . . . ,Xn) and note that F ⊂ F1 ⊂ F2 ⊂ . . . Then by
conditional independence we have

EFnXn+1 = E
Fn [IAn+1 − EFnIAn+1] = EFIAn+1 − EFnIAn+1 = 0 a.s.

So we have

EFnSn+1 = E
Fn [Sn +Xn+1] = E

FnSn + E
FnXn+1 = Sn a.s.

Hence {Sn}∞n=1 is conditional martingale given σ-field F . It is clear that
E|Sn| <∞ , n ∈ N.
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So {Sn}∞n=1 is also martingale in pure sense.

Example 2. Similarly to the previous example we choose a sequence of events
{An}∞n=1 and σ-field F . Let

Xn = IAn +E
FIA′n = IAn + PF(A

′
n)

and

Sn = X1 ·X2 . . .Xn.

Obviously EF |Sn| < ∞ for all n ∈ N. Similarly to the previous example we
choose a sequence of σ-fields Fn.
Then by conditional independence, we have

EFn [Sn+1] = EFn [Sn ·Xn+1] = Sn[EFnIAn + EFIA′n ]
= SnE

F [IAn + E
FIA′n] = Sn.

Therefore, this sequence is conditional martingale and martingale, like in the
previous example, because

E|Sn| <∞, n ∈ N.

Example 3. Let us consider an experiment relying on tossing coins n-times.
We have at our disposal countably many coins of types {Bn}∞n=1. Let pih be
probabilities of heads for the coin of type Bi. Moreover, pi is the probability of
choosing coin of type Bi. Let us assume that pi =

1
2i
and pih =

1
3i
, i = 1, 2, . . . .

It is easy to see [2] that the sequence {An}∞n=1, where Ai denote ”head in i-
th toss”, is not independent, but it is conditionally independent with respect to
events {Bn}∞n=1. Putting F = σ(B1, B2, . . . ), we have

PF(Ai1 , . . . , Aik) =
∞∑

n=1

IBnP(Ai1, . . . , Aik |Bn)

=

∞∑

n=1

(
IBn

ik∏

i=i1

P(Ai|Bn)
)

=

∞∑

n=1

ik∏

i=i1

P(Ai|Bn)IBn =
ik∏

i=i1

∞∑

n=1

IBnP(Ai|Bn)

=

ik∏

i=i1

PF(Ai).

Hence {An}∞n=1 is F-independent but is not independent.
Let us assume that

Xn = IAn − EFIAn = IAn − PF(An),

Y (ω) =

∞∑

n=1

2nIBn
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and

Sn = X1 +X2 + · · ·+Xn.

It is clear that EF |Sn| < ∞ a.s. for all n ∈ N, Y is F-measurable
and EF |Y | <∞ a.s., but

E|Y | = EY =

∞∑

n=1

E(Y |Bn)P(Bn) =
∞∑

n=1

2nE(|IBn ||Bn)P(Bn)

=
∞∑

n=1

2nP(Bn) =∞.

If we choose Fn similarly as in Example 1, then

EFn [Sn+1 + Y ] = E
Fn[Sn +Xn+1 + Y ] = Sn + Y a.s.

As EF |Sn+Y | <∞ a.s. for all n ∈ N, the sequence {Sn + Y }∞n=1 fulfills conditions
(1.1),(??) in Definition 1.1 and it is conditional martingale.

On the other hand, E|Sn + Y | � ESn + EY = ∞, hence {Sn + Y }∞n=1 is not
martingale in pure sense.

Example 4. Let {Xn}∞n=1 be a sequence of F-independent random variables
with the same conditional distribution such that EFX = η < ∞ a.s. Then the
sequence {Sn − nη;Fn}∞n=1 is conditional martingale because

EF |Sn − nη| � EF |Sn|+ EF |nη| � 2nη <∞ a.s.

and

EFn [Sn+1 − (n+ 1)η] = Sn + E
FnXn+1 − EFn[(n+ 1)η] =

Sn + E
FXn+1 − (n+ 1)η = Sn − nη.

2. Almost sure convergence of conditional martingales

We are going to prove a generalization of Doob’s theorem. But first let us give
the following theorem.

Theorem 2.1. Let {Xn}∞n=1 be a conditional supermartingale given F and let
τ1 � τ2 are bounded stopping times, then (Xτn ,Fτn)2n=1 is conditional super-
martingale given F .

To prove this theorem we use a similar method as in the classical case.

Theorem 2.2 (On almost sure convergence of conditional supermartingale). Let
{Xn}∞n=1 be a conditional supermartingale given σ-field F and let supn E

F |Xn| <
∞ a.s., then the sequence {Xn}∞n=1 is convergent to some random variable X
such that EFX <∞ a.s.

In the proof of this theorem we use a well-known fact concerning sequences:
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Lemma 2.1. The sequence {xn}∞n=1 is convergent (possibly to infinity limit),
iff U ba < ∞ for all pairs of rational numbers a, b, where U ba is the number of
upcrossing of (a, b) by the sequence {xn}∞n=1 defined by

U ba =

{
sup{k � 1 : τ2k−1 <∞}, τ1 <∞;
0, τ1 =∞,

where
τ0 = inf{n : xn < a}

τ1 = inf{n : n > τ0, xn > b}
. . .

τ2k = inf{n : n > τ2k−1, xn < a}
τ2k+1 = inf{n : n > τ2k, xn > b}.

To prove Theorem 2.2 we need also the following lemma.

Lemma 2.2. Let {Xn}∞n=1 be a conditional supermartingale given σ-field F , then
for a < b we have

EFU ba[m] �
1

b− aE
F(Xm − a)− a.s.

where U ba[m] denotes the number of upcrossing of (a, b) by the sequence X1, X2,
. . . , Xm and it is random variable.

The proof of this lemma is similar to the classical case.

Now, let us go back to the proof of Theorem 2.2.

Proof. Note that U ba[m]↗ U ba while m→∞. By Lemma 2.2 we obtain

EFU ba[m] � 1

b− aE
F (Xm − a)−

� 1

b− aE
F
(
|Xm|−Xm

2
+
|a|− a
2

)

� 1

b− a(supn
EF |Xn|+ a+) <∞ a.s.

Then for each a < b
EFU ba <∞ a.s.,

which means that U ba is finite almost sure for all a, b. Thus, by Lemma 2.1 the
sequence {Xn}∞n=1 is almost sure convergent.
It is sufficient to prove that the limit is finite. By the conditional version of

Fatou lemma [3] we have

EF (lim inf
n→∞

|Xn|) � lim inf
n→∞

EF |Xn| <∞ a.s.

Therefore, limn→∞Xn is almost sure finite and it has almost sure finite condi-
tional expectation given σ-field F , which completes the proof.
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3. Properties of conditional martingales

Theorem 3.1. (a) If a sequence {Xn}∞n=1 is a conditional martingale, and a
function φ : R → R is convex and such that φ(Xn) ∈ L1F , n ∈ N, then the
sequence {φ(Xn)}∞n=1 is a conditional submartingale.
(b) If a sequence {Xn}∞n=1 is conditional submartingale, a function φ : R→ R is
convex, nondecreasing and φ(Xn) ∈ L1F , n ∈ N, then the sequence {φ(Xn)}∞n=1
is still a conditional submartingale.

Proof. Let φ : R → R be a function fulfilling assumptions of Theorem 3.1(a).
Additionally, let us assume that the sequence {Xn}∞n=1 is conditional martingale.
Then, by the Jensen’s inequality,

EFn[φ(Xn+1] � φ[EFnXn+1] = φ(Xn)(3.1)

holds, which completes the proof of a).

Similarly, as before, we assume that the function φ : R→ R fulfills the assump-
tion of Theorem 3.1(b). Additionally, it is assumed that the sequence {Xn}∞n=1
is a conditional submartingale. Then we change equality by inequality in (3.1),
which completes the proof of b).

Theorem 3.2 (Maximal inequalities). Let {Xn}∞n=1 and {Yn}∞n=1 be a condi-
tional submartingale and a conditional supermartingale respectively. Fix λ > 0
as F-measurable random variable, then we get the following inequalities

λPF

{
max
k�n

Xk � λ

}
� EF [X+

n I[maxk�nXk�λ]] � E
FX+

n ,(3.2)

λPF

{
min
k�n

Xk � −λ
}
� EF [XnI[mink�nXk>−λ]]− E

FX0(3.3)

� EFX+
n − EFX0,

λPF

{
max
k�n

Yk � λ

}
� EFY0 − EF [YnI[maxk�n Yk<λ]](3.4)

� EFY0 − EFY −n ,

λPF

{
min
k�n

Yk � −λ
}
� −EF [YnI[mink�n Yk�−λ]] � E

FY −n .(3.5)

Proof. We define stopping times σ = inf{k � n : Yk � −λ}, where σ = n if
mink�n Yk > −λ and τ = inf{k � n : Yk � λ}, where τ = n if maxk�n Yk < λ.

To prove the inequality (3.4) we use Theorem 2.1.

EFY0 � EFYτ = EF
[
YτI[maxk�n Yk�λ]

]
+ EF

[
YτI[maxk�n Yk<λ]

]

� λPF

{
max
k�n

Yk � λ

}
+ EF

[
YnI[maxk�n Yk<λ]

]

which completes the proof of (3.4) because the last part of it is a consequence of
−Y −n � Yn.
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The proof of (3.5) is also based on Theorem 2.1.

EFYn � EFYσ = EF
[
YσI[mink�n Yk�−λ]

]
+ EF

[
YσI[mink�n Yk>−λ]

]

� −λPF
{
min
k�n

Yk � −λ
}
+ EF

[
YnI[mink�n Yk>−λ]

]
,

where the last part of (3.5) is obvious.

To prove (3.2), (3.3) it should be noted that Xn = −Yn is a conditional sub-
martingale and by (3.4), (3.5) we obtain

λPF

{
max
k�n

Xk � λ

}
= λPF

{
min
k�n

Yk � −λ
}
� −EF

[
YnI[mink�n Yk�−λ]

]

= EF
[
XnI[maxk�nXk�λ]

]
� EF

[
XnI[maxk�nX+

k �λ]
]

� EFX+
n ,

which competes the proof of (3.2).

Similarly we proceed in the proof of inequality (3.3)

λPF

{
min
k�n

Xk � −λ
}

= λPF

{
max
k�n

Yk � λ

}
� EFY0 − EF [YnI[maxk�n Yk<λ]]

= −EFX0 + EF [XnI[mink�nXk>−λ]] � E
FX+

n − EFX0.

A natural consequence of the above theorem is the following corollary.

Corollary 3.3. Let {Xn}∞n=1 and {Yn}∞n=1 be a conditional submartingale and
a supermartingale respectively. Moreover, let λ > 0 be an F-measurable random
variable, then

λPF

{
max
k�n

|Xk| � λ

}
� 3max

k�n
EF |Xn|,(3.6)

λPF

{
max
k�n

|Yk| � λ

}
� 3max

k�n
EF |Yn|.(3.7)

Proof. The proof of (3.7) is based on (3.4) and (3.2). Note that Y −n = (−Yn)+ is
a conditional submartingale. Thus,

PF

{
max
k�n

|Yk| � λ

}
� PF

{
max
k�n

Y +k � λ

}
+ PF

{
max
k�n

Y −k � λ

}

= PF

{
max
k�n

Yk � λ

}
+ PF

{
max
k�n

Y −k � λ

}

� EFY0 + 2E
FY −n � 3EF |Yn|.

If we assume that Xn = −Yn and use (3.7), then (3.6) holds.

In the next example we want to present applications of maximal inequalities
in conditional version.
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Example 5. Let {Xn}∞n=1 and φ fulfill the assumptions of Theorem 3.1(a). Then
the sequence {φ(Xn)}∞n=1 is a conditional submartingale, so it fulfills the assump-
tions of Theorem 3.2. In the particular case, when φ(t) = |t|, by (3.2) it is evident
that

λPF

{
max
k�n

|Xk| � λ

}
� EF |Xn|.

If φ(t) = t2 and Xk = U1+ · · ·+Uk, k = 1, 2, . . . , n, where Ui are F-independent
random variables such that EFUi = 0 and σ2FUi < ∞, then the conditional
version of Kolmogorov’s inequality [3]

PF

{
max
k�n

|Xk| � λ

}
� 1

λ2

n∑

k=1

EFU2k

holds.
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