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ON A SUFFICIENT CONDITION
FOR THE CENTRAL LIMIT THEOREM

PHAM XUAN BINH

1. INTRODUCTION

In this paper we shall introduce a sufficient condition for the Central Limit
Theorem (C.L.T) in the case where investigated sequences of random variables
(r.v'.s) have finite mathematical expectation (Theorem 1). In the classical case
with finite second moments we get our sufficient condition by the familiar Linde-
berg’s condition. We shall introduce an example where our sufficient condition
is satisfied but the Lindeberg’s condition is not. We also show that our sufficient
condition can be used when second moments are not finite.

2. MAIN RESULTS

Theorem 1. Let X,,,n =1,2,... be a sequence of independent r.v’.s with distri-
bution functions F,,n=1,2,... and EX, =0,n=1,2,...; and B,,n=1,2,...
be a positive sequence of numbers which increases to infinity. Suppose that
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We need the following familiar lemma.

Lemma. LetY,,T,,U,,n=1,2,... be sequences of r.v’.s such that Y,, =T, +
Up,n=1,2,... Suppose that

(x) T, converges to 0 in probability (T,, — 0 in pr.),
(%) U, converges in distribution to F' (U, — F in dist.);
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then Y, — F in dist.

Proof of Theorem 1. Put

t X3 B, X},
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" Bn B,

We have
Y, =T,+U,,n=1,2,...

We shall prove that T, — 0 in pr. and U,, — ® in dist.

By (it) we have lim,,_,o F|T,| = 0; hence T,, — 0 in pr. To prove that U,, — ®
in dist. we shall use the general C.L.T in the case of finite second moments. By
Theorem 3[3] (pages 101, 102, 103) it suffices to prove that for every £ > 0
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where Gnk(U) = P(unk < U), ank = Eunkv and
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(B) lim Z/ w2 dGop(u + ang) = 1.
lu|<e

It is easy to see that (A) and (B) are equivalent to the following conditions,
respectively: For every € > 0

A lim / u2dGoy(u + ang) = 0,
(&) > (u+ i)

n 400 )
(B”) 7}13;02;/00 u*dGni(u + ang) = 1.

Now we prove (A"). For every e > 0 (we only need to consider 0 < e < 1), put
0= W One can easily check that
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It follows from (i7) that hﬁm Z ay. =0, hence hm 0 max {|ank|} = 0. Thus for
k=1

sufficiently large n we have |ank| < e,k =1,... ,n.

We have for sufficiently large n
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Hence, by (ii) we get (A').
Next, we prove (B’). We have
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For every 7 > 0 we also have
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From (2.1), (2.2) and (2.3) we get (B’) by letting first n — oo and then 7 — 0.
Theorem 1 is completely proved. Il

Notes.

1. It is not hard to see that the conditions (i) and (i7) in Theorem 1 are
equivalent to the following conditions, respectively: For every € > 0 :

n

2
(1) lim Z / — L _iF(z) =

n—00 z|<eBy, B2 + z2

) |z?
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2. In the classical case we assume that B2 = >}, Var(Xk) Then from Lin-
deberg’s condition we get the conditions (') and (ii') because for every
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3. When using Chebyshev inequality to prove T,, — 0 in pr. and U, — 0 in
pr. (Up, T, as in the proof of Theorem 1) we obtain the next result for the
Large Number Law.

Proposition 2. Let X,,,n = 1,2,... be a sequence of independent r.v’.s with
distribution functions F,,n =1,2,..., and EX, =0,n=1,2,...; and B,,n =
1,2,... be a positive sequence of numbers which increases to infinity. Assume
that
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Then %% — 0 in pr.

3. EXAMPLES

3.1. We introduce an example where the conditions (¢) and (¢7) in Theorem 1
are satisfied but Lindeberg’s condition is not.

Let

+k?  with probability # each;
X, = ¢ £k  with probability % each;

0 with probability 1 — § — &=

It is known that Lindeberg’s condition is not satisfied (see [1], pages 194, 195).
We now show that the conditions (i) and (i¢) in Theorem 1 are satisfied.
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For every ¢ > 0, we have
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Hence (i4) is satisfied for B2 = cn?.

On the other hand we have
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From (3.1), (3.2) and (3.3) we have
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Thus for B2 = "—8 the conditions (i) and (i7) in Theorem 1 are satisfied.

3.2.  We can use the conditions (7) and (4#¢) in Theorem 1 when second moments
are not finite.

Let Xz, k = 1,2,... be a sequence of independent r.v'.s with the following
densities
k2
il = T =R
0 if x| < k.

. . 3
Then %% — @ in dist. for B2 = ”},}ﬂ
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We first note that
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Hence we have
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