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ON SOME GENERALIZED VECTOR EQUILIBRIUM

PROBLEMS WITH SET-VALUED MAPS

LE ANH TUAN AND PHAM HUU SACH

Abstract. In this paper we consider the generalized vector equilibrium prob-
lem (Pα) of finding a point (z0, x0) ∈ E ×K such that x0 ∈ A(z0, x0) and

∀η ∈ A(z0, x0),∃z ∈ B(z0, x0, η), (F (z, x0, η), C(z, x0, η)) ∈ α,
where α is an arbitrary relation on 2Y , and A,B,C and F are set-valued
maps between finite-dimensional spaces. Existence results are obtained under
assumptions different from those of [17]. Some special cases of Problem (Pα)
are discussed in detail.

1. Introduction

Let X,Y and Z be topological vector spaces. Let K ⊂ X and E ⊂ Z be non-
empty subsets. Let B : K −→ 2E , C : K −→ 2Y and F : E ×K ×K −→ 2Y be
set-valued maps with nonempty values. Under suitable assumptions existence re-
sults are obtained in [7] for the following generalized vector equilibrium problem:
find a point x0 ∈ K such that

∀η ∈ K,∃v ∈ B(x0), F (v, x0, η) �⊂ C(x0).(1.1)

These results are extensions of those given in [1] and [10]. A generalized version
of the above problem is studied in [17]. More precisely, the following Problem
(Pα) is considered in [17]:

Problem (Pα) : Find a point (z0, x0) ∈ E ×K such that x0 ∈ A(z0, x0) and
for each η ∈ A(z0, x0),

∃v ∈ B(z0, x0, η), (F (v, x0, η), C(v, x0, η)) ∈ α(1.2)

where α is an arbitrary relation on 2Y (i.e., a subset of 2Y×2Y ); A : E×K −→ 2K ,
B : E ×K ×K −→ 2E , C : E ×K ×K −→ 2Y and F : E ×K ×K −→ 2Y are
set-valued maps with nonempty values.

Obviously, the generalized vector equilibrium problem mentioned above in [7]
is a special case of (Pα) with A(z, x) ≡ K, B(z, x, η) ≡ B(x), C(z, x, η) ≡ C(x)
and α = {(a, b) ∈ 2Y × 2Y : a �⊂ b}.
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Existence results for solutions of (Pα) are given in [17], with the help of a
fixed point theorem of [16]. In this paper, assuming that all spaces are finite-
dimensional, we prove that such results can be obtained under assumptions dif-
ferent from those of [17]. For a detailed comparison, see Remark 3 of Section
3. Our main result is established in Theorem 3.1 of Section 3, with the help of
a theorem of existence of continuous selections of [14] and the known Brouwer
fixed point theorem. Section 4 is devoted to special cases of Problem (Pα) where
B does not depend on z and η, and α is one of the following relations

α1 = {(a, b) ∈ 2Y × 2Y : a �⊂ b},
α2 = {(a, b) ∈ 2Y × 2Y : a ⊂ b},
α3 = {(a, b) ∈ 2Y × 2Y : a ∩ b �= ∅},
α4 = {(a, b) ∈ 2Y × 2Y : a ∩ b = ∅}

(∅ being the empty set).
A comparison of the results of Section 4 and those given in [7] can be found in

Remark 12 of Section 4. The reader who is interested in generalizations of vector
equilibrium problems different from those considered in this paper is referred to
[22, 23] and references therein.

We conclude this introduction by showing a motivation for considering our
general model (Problem (Pα)). Namely, this model provides a unified approach
to several vector equilibrium problems with set-valued maps. More precisely, the
problems which are investigated in [2, 6, 7, 8, 11, 15, 18] can be interpreted as
special cases of our general model with different relations α. We now discuss in
more detail how some different quasivariational inclusion problems which appear
recently in [19] can reduce to Problem (Pα). The first of them is called the upper
quasivariational inclusion problem (shortly, (UQV IP )) which is formulated as
follows: given topological vector spaces Y,Xi (i = 1, 2), a convex cone C ⊂ Y,
nonempty convex sets Di ⊂ Xi (i = 1, 2), set-valued maps S : D1 −→ 2D1 ,
T : D1 −→ 2D2 and F : D1 ×D2 ×D1 −→ 2Y , find a point (ξ01, ξ

0
2) ∈ D1 ×D2

such that ξ01 ∈ S(ξ01), ξ02 ∈ T (ξ01) and, for all η1 ∈ S(ξ01),

F(ξ01 , ξ02 , η1) ⊂ F(ξ01 , ξ02, ξ01) + C.(1.3)

The second problem considered in [19] is called the lower quasivariational inclu-
sion problem (shortly, (LQV IP )) which is to find a point (ξ01 , ξ

0
2) ∈ D1×D2 such

that ξ01 ∈ S(ξ01), ξ02 ∈ T (ξ01) and, for all η1 ∈ S(ξ01), instead of condition (1.3) it
is required that

F(ξ01 , ξ02 , ξ01) ⊂ F(ξ01, ξ02, η1)− C.

We can see that, though (UQV IP ) and (LQV IP ) are different problems, they
can be treated as special cases of our general model. Indeed, let us set K :=
D1 ×D2 ⊂ X := X1 ×X2, E := D1 ⊂ Z := X1, A(z, x) = S(ξ1)× T (ξ1),

F (z, x, η) = F(ξ1, ξ2, η1), C(z, x, η) = F(ξ1, ξ2, z) + C,(1.4)
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B(z, x, η) = {ξ1} where z ∈ E := D1, x = (ξ1, ξ2) ∈ K := D1 × D2 and η =
(η1, η2) ∈ K := D1 × D2. Then it is clear that (UQV IP ) is a special case of
Problem (Pα) with α = α2. Similarly, (LQV IP ) is also a special case of Problem
(Pα) with α = α2 if instead of (1.4) we set

F (z, x, η) = F(ξ1, ξ2, z), C(z, x, η) = F(ξ1, ξ2, η1)− C.
Using the same method we can show that all problems studied in [19] can be
regarded as special cases of Problem (Pα).

In [12] two variational inclusion problems with constraints are introduced. The
first of them, called Problem (V ), is formulated as follows : given locally convex
topological vector spaces Y,Xi (i = 1, 2), a convex cone C ⊂ Y, nonempty convex
sets Di ⊂ Xi (i = 1, 2), set-valued maps S1, S2 : D1 −→ 2D1 , T : D1×D1 −→ 2D2

and Φ : D1 ×D2 ×D1 −→ 2Y , find a point ξ01 ∈ D1 such that ξ01 ∈ S1(ξ01) and,
for all η1 ∈ S2(ξ01) and η2 ∈ T (η1, ξ01),

Φ(ξ01 , η2, η1) ⊂ Φ(ξ01 , η2, ξ01) + C.

The second problem in [12], called Problem (V ′), is to find a point ξ01 ∈ D1
such that ξ01 ∈ S1(ξ01) and, for all η1 ∈ S2(ξ01) and η2 ∈ T (ξ01, ξ01),

Φ(ξ01 , η2, ξ
0
1) ⊂ Φ(ξ01 , η2, η1)− C.

These problems are also special cases of our general model. Indeed, let us set
K := D1 ×D2 ×D1 ⊂ X := X1 ×X2 ×X1, E := D1 ⊂ Z := X1,

S(ξ1) = {(η′2, η′1) ∈ D2 ×D1 : η′1 ∈ S2(ξ1), η′2 ∈ T (η′1, ξ1)},(1.5)

F (z, x, η) = Φ(ξ1, η
′
2, η

′
1),(1.6)

C(z, x, η) = Φ(z, η′2, ξ1) + C,(1.7)

A(z, x) = S1(ξ1)× S(ξ1),
B(z, x, η) = {ξ1},

where z ∈ E := D1, x = (ξ1, ξ′2, ξ′1) ∈ K := D1 ×D2 ×D1 and η = (η1, η′2, η′1) ∈
K := D1×D2×D1. Then it is clear that Problem (V ) is a special case of Problem
(Pα) with α = α2. Similarly, Problem (V ′) is also a special case of Problem (Pα)
with α = α2 if instead of (1.5)-(1.7) we set

S(ξ1) = {(η′2, η′1) ∈ D2 ×D1 : η′1 ∈ S2(ξ1), η′2 ∈ T (ξ1, ξ1)},
F (z, x, η) = Φ(z, η′2, ξ1)

C(z, x, η) = Φ(ξ1η
′
2, η

′
1)− C.

2. Preliminaries

We first recall some definitions taken from [3]. Let f : X −→ 2Y be a set-valued
map between topological spaces X and Y.We say that f is upper semicontinuous
(usc) at x ∈ X if for each open set N ⊃ f(x) there exists a neighbourhood
U(x) of x such that N ⊃ f(x′) for each x′ ∈ U(x). A set-valued map f is lower
semicontinuous (lsc) at x ∈ X if for each open set N with f(x) ∩ N �= ∅ there
exists a neighbourhood U(x) of x such that f(x′) ∩N �= ∅ for each x′ ∈ U(x). A
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set-valued map f is continuous at x ∈ X if it is both usc and lsc at this point. A
set-valued map f is usc (resp. lsc; continuous) if it is usc (resp. lsc; continuous)
at each point x ∈ X. If the graph of f, denoted by gr f := {(x, y) ∈ X × Y : y ∈
f(x)}, is a closed (resp. open) set of X × Y then we say that f has closed (resp.
open) graph. A map having closed graph is also said to be a closed map.

If X ′ (resp. Y ′) is a subset of a topological space X (resp. Y ) then we use the

symbol f : X ′ −→ 2Y
′
to denote that f is a set-valued map from the topological

space X ′ into the topological space Y ′ where the topology of X ′ (resp. Y ′) is the
topology induced by the given topology of X (resp. Y ). In this case, the notion
of semicontinuity or continuity of f, the notion of closedness or openness of the
graph of f, ... are considered with respect to the just mentioned topologies of X ′

and Y ′. Thus, if we say that f : X ′ −→ 2Y
′
has closed (resp. open) graph then

this means that the set {(x′, y′) ∈ X ′ × Y ′ : y′ ∈ f(x′)} is closed (resp. open) in
X ′ × Y ′.
Let c : W −→ 2Y and f : W −→ 2Y be set-valued maps between some sets W

and Y. Let β be a relation on 2Y , i.e., a subset of the Cartesian product 2Y × 2Y .
For simplicity of notation let us write (f, c)(w) ∈ β instead of (f(w), c(w)) ∈ β,
where w ∈W.
We now recall a generalized convexity notion which will be used later. Let

a ⊂ X be a nonempty convex set and c′ ⊂ Y be a convex cone where X and Y
are vector spaces. A set-valued map f : a −→ 2Y is called natural c′-quasiconvex
on a if for all xi ∈ a, i = 1, 2, and γ ∈ ]0, 1[

f(γx1 + (1− γ)x2) ⊂ co {f(xi), i = 1, 2}− c′,
where “co” denotes the convex hull. This definition and other notions of gener-
alized convexity for the single-valued case can be found in [5, 20].

3. Main result

In this paper we assume that X,Y and Z are finite-dimensional spaces, E ⊂ Z
and K ⊂ X are nonempty sets, and A : E × K −→ 2K , B : W −→ 2E , C :
W −→ 2Y and F : W −→ 2Y are set-valued maps with nonempty values where
W = E ×K ×K is the Cartesian product of topological spaces E,K and K. Let
α be a relation on 2Y , and Lα : E ×K −→ 2K be a set-valued map defined by

Lα(z, x)={η∈K : ∀v∈B(z, x, η), (F,C)(v, x, η) /∈α}, ∀(z, x)∈E ×K,
i.e., for each (z, x) ∈ E × K, Lα(z, x) is the set of η ∈ K for which condition
(1.2) with (z, x) in place of (z0, x0) does not hold.

The following result gives sufficient conditions for the existence of a solution
of Problem (Pα). This is the main result of this paper.

Theorem 3.1. Let E ⊂ Z and K ⊂ X be nonempty compact convex sets, and
let A : E ×K −→ 2K be a lsc set-valued map with nonempty convex values such
that the set

M := {(z, x) ∈ E ×K : x ∈ A(z, x)}
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is closed in E ×K. Assume that there exists a set-valued map L : E ×K −→ 2K

satisfying the following conditions :

(i) Lα ⊂ L, i.e., Lα(z, x) ⊂ L(z, x),∀(z, x) ∈ E ×K.
(ii) L has open graph.
(iii) x /∈ co L(z, x), ∀(z, x) ∈M.
Then there exists a solution of Problem (Pα).

Proof. Let M �= ∅. It is enough to show that there exists a point (z0, x0) ∈ M
such that A(z0, x0) ∩ Lα(z0, x0) = ∅. Indeed, otherwise we get by (i)

∅ �= A(z, x) ∩ L(z, x) ⊂ A(z, x) ∩ L̂(z, x)

for each (z, x) ∈M where L̂(z, x) = co L(z, x). Therefore, the mapH : E×K −→
2K defined by

H(z, x) =

{
A(z, x) ∩ L̂(z, x) if (z, x) ∈M,
A(z, x) if (z, x) ∈ [E ×K] \M

has nonempty convex values. Since by (ii) L has open graph it follows from [24]

that L̂ has open graph. Combining this fact with the lower semicontinuity of A
we obtain from [24] that the map

(z, x) ∈M �−→ A(z, x) ∩ L̂(z, x)

is lsc. From this and from the definition of H we can verify that H is lsc. This
fact can be used to check the lower semicontinuity of the map

(z, x) ∈ E ×K �−→ φ(z, x) := E′(z, x)×H(z, x) ⊂ E ×K

where E ′ : E × K −→ 2E is the constant map defined by E′(z, x) ≡ E. Since
E ×K is a compact convex set it follows from [14, Theorem 3.1′′′] that φ has a
continuous selection, i.e., a continuous single-valued map ϕ : E ×K −→ E ×K
such that ϕ(z, x) ∈ φ(z, x) for each (z, x) ∈ E ×K. Applying the Brouwer fixed
point theorem to ϕ proves that ϕ has a fixed point denoted by (z0, x0) ∈ E ×K.
Obviously, (z0, x0) is also a fixed point of φ. Thus, (z0, x0) ∈ φ(z0, x0), i.e.,
z0 ∈ E and x0 ∈ H(z0, x0) ⊂ A(z0, x0). This yields (z0, x0) ∈ M and hence, by

the definition of H, x0 ∈ A(z0, x0) ∩ L̂(z0, x0) ⊂ co L(z0, x0), a contradiction to
condition (iii).

To complete our proof it remains to show that M �= ∅. Indeed, let us consider
the following set-valued map

(z, x) ∈ E ×K �−→ φ′(z, x) := E′(z, x)×A(z, x) ⊂ E ×K

which, by [14, Theorem 3.1′′′], has a continuous selection ϕ′ : E ×K −→ E ×K.
Applying the Brouwer fixed point theorem to ϕ′ proves that ϕ′ has a fixed point
denoted by (z′0, x

′
0). Since (z

′
0, x

′
0) = ϕ

′(z′0, x
′
0) ∈ φ′(z′0, x′0) = E′(z′0, x′0)×A(z′0, x′0)

we obtain z′0 ∈ E′(z′0, x′0) = E and x′0 ∈ A(z′0, x′0). Thus, (z′0, x′0) ∈M, i.e.,M �= ∅,
as desired.
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Remark 1. Observe that the set M in Theorem 3.1 is closed in E ×K if A has
closed graph.

Remark 2. The compactness and convexity of both the sets E and K in Theo-
rem 3.1 can be relaxed if we make some additional assumptions. We delete the
detailed discussion of this claim, noting that it is based on the approach of Tian
[21] who deals with a similar situation in [21].

Let us consider the set

W1 = {w = (z, x, η) ∈W : (z, x) ∈M, η ∈ A(z, x)}
= {w = (z, x, η) ∈W : x ∈ A(z, x), η ∈ A(z, x)}.

We say that condition (ps) (resp. condition (wps)) holds if there exist a relation
β on 2Y and set-valued maps (with nonempty values) b : W −→ 2E, c : W −→ 2Y

and f :W −→ 2Y such that for all (z, x, η) ∈W1

[∃u∈b(z, x, η),(f, c)(u, x, η)∈β]⇒ [∀v∈B(z, x, η),(F,C)(v, x, η)∈α]
(resp.

[∃u∈b(z, x, η),(f, c)(u, x, η)∈β]⇒ [∃v∈B(z, x, η),(F,C)(v, x, η)∈α]).
Obviously, condition (ps) ⇒ condition (wps), and the converse implication is no
longer true. Observe that the above conditions (ps) and (wps) are taken from
[17]. It is shown [17] that they are generalized versions of pseudomonotonicity
and weak pseudomonotonicity conditions of [7].

From now on we assume that b, c and f are set-valued maps appearing in the
definition of condition (ps) or condition (wps). Let us consider the following

set-valued maps L̂α : E ×K −→ 2K and lβ : E ×K −→ 2K defined by

L̂α(z, x) = {η ∈ K : ∃v ∈ B(z, x, η), (F,C)(v, x, η) /∈ α},
lβ(z, x) = {η ∈ K : ∀u ∈ b(z, x, η), (f, c)(u, x, η) /∈ β}.

Thus, for each (z, x) ∈ E ×K, the set L̂α(z, x) consists of all points η ∈ K such
that condition (F,C)(v, x, η) ∈ α holds not for all v ∈ B(z, x, η). The set lβ(z, x)
consists of all points η ∈ K such that condition (f, c)(u, x, η) ∈ β does not hold
for each u ∈ b(z, x, η).
Before providing existence theorems for Problem (Pα) let us introduce the

following conditions [17]:

(a) x /∈ co Lα(z, x), ∀(z, x) ∈M.

(b) x /∈ co L̂α(z, x), ∀(z, x) ∈M.

(c) Condition (ps) holds and x /∈ co lβ(z, x), ∀(z, x) ∈M.

(d) Condition (wps) holds and x /∈ co lβ(z, x), ∀(z, x) ∈M.
Obviously, (c) ⇒ (b) ⇒ (a) and (c) ⇒ (d) ⇒ (a).

Sufficient conditions for the validity of conditions (a), (b), (c) and (d) are given
in the following lemma whose proof is obvious.
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Lemma 3.1. (see [17]) (a′) If for each (z, x) ∈M , Lα(z, x) is convex and there
exists v ∈ B(z, x, x) such that (F,C)(v, x, x) ∈ α then condition (a) holds.

(b′) If for each (z, x) ∈ M , L̂α(z, x) is convex and, for each v ∈ B(z, x, x),
(F,C)(v, x, x) ∈ α then condition (b) holds.

(c′) If condition (ps) holds and if for each (z, x) ∈ M , lβ(z, x) is convex and
there exists v ∈ b(z, x, x) such that (f, c)(v, x, x) ∈ β then condition (c) holds.

(d′) If condition (wps) holds and if for each (z, x) ∈M , lβ(z, x) is convex and
there exists v ∈ b(z, x, x) such that (f, c)(v, x, x) ∈ β then condition (d) holds.

Making use of Theorem 3.1 we obtain the following corollary.

Corollary 3.1. Let E ⊂ Z and K ⊂ X be nonempty compact convex sets, and
let A : E ×K −→ 2K be a lsc set-valued map with nonempty convex values such
that the set

M := {(z, x) ∈ E ×K : x ∈ A(z, x)}
is closed in E × K. Then under one of the following conditions there exists a
solution of Problem (Pα):

(i) One of the conditions (a), (b), (c) and (d) holds, and Lα has open graph.

(ii) One of the conditions (b) and (c) holds, and L̂α has open graph.
(iii) One of the conditions (c) and (d) holds, and lβ has open graph.

Proof. The proof is derived from Theorem 3.1 where we set L = Lα (resp. L =

L̂α; L = lβ) in case (i) (resp. (ii); (iii)).

Remark 3. Existence results given in Corollary 3.1 were established in [17] un-
der the assumption that A has open lower sections, i.e., A−1(ξ) := {(z, x) ∈
E × K : ξ ∈ A(z, x)} is open in E × K for each ξ ∈ K. This assumption is
stronger than the requirement of the lower semicontinuity of A used in Corollary

3.1. However, in Corollary 3.1 we must assume that the graph of Lα, L̂α or lβ
is open while in [17] this condition is replaced by the weaker condition that Lα,

L̂α or lβ has open lower sections. In addition, unlike our Corollary 3.1 where
all spaces must be finite-dimensional, the results of [17] are valid in arbitrary
topological vector spaces.

The following Example 3.1 will illustrate that Corollary 3.1 can be applied
while the corresponding result of [17] cannot (since A has no open lower sections).
We denote by Rk the k-dimensional Euclidean space. The nonnegative orthant
of Rk is denoted by Rk+.

Example 3.1. Consider Problem (Pα) where α = α2, X = Z = R1 := R, Y =
R2, E = K = [0, 1] ⊂ R, and for each (z, x, η) ∈ E×K×K, A(z, x) = [0, z− zx],
F (z, x, η) = [(z, x2 − η2), (z + η2, x2)] ⊂ R2, C(z, x, η) ≡ F (z, x, x) + R2+, and

B(z, x, η) =

{
[0, z] if x �= η,
{0} if x = η.
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Obviously, A has no open lower sections but A is a lsc set-valued map with
nonempty convex values and the set

M = {(z, x) ∈ E ×K : x ∈ A(z, x)} = {(z, x) ∈ [0, 1]2 : x � z/(z + 1)}
is closed in [0, 1]2 := [0, 1]× [0, 1]. Observe that for each (z, x) ∈ E ×K,

Lα2(z, x)={η∈ [0, 1] :∀v∈B(z, x, η),F (v, x, η) �⊂C(v, x, η)}
={η∈ [0, 1] :∀v∈B(z, x, η),

[(v, x2−η2),(v+η2, x2)] �⊂ [(v, 0), (v + x2, x2)]+R2+}
={η∈ [0, 1] :∀v∈B(z, x, η),[(v, x2−η2),(v+η2, x2)] �⊂(v, 0)+R2+}
={η∈ [0, 1] :x < η}
= ]x, 1].

Thus, Lα2 has convex values and x /∈ Lα2 (z, x), for all (z, x) ∈M. Moreover,
gr Lα2 = {(z, x, η) ∈ [0, 1]3 : η ∈ Lα2 (z, x)}

= {(z, x, η) ∈ [0, 1]3 : x < η}
is open in [0, 1]3 := [0, 1]×[0, 1]×[0, 1]. Therefore, all the assumptions of Corollary
3.1(i) are satisfied and hence, Problem (Pα) in Example 3.1 has a solution.

Remark 4. The existence of open lower sections of set-valued maps is also used
in [12] for Problem (V ) formulated in the introduction. An existence result for
Problem (V ) is given in [12, Theorem 3.3] where it is assumed that S2 has open
lower sections. Obviously, many problems can be seen as special cases of each
of the Problems (V ) and (Pα). However, sometimes existence results for such
problems cannot be obtained from [12, Theorem 3.3] while they can be derived
from Corollary 3.1 of this paper. This remark is illustrated by the following
example.

Example 3.2. Consider a special case of Problem (V ) where X1 = X2 = R,
Y = R2, D1 = D2 = [0, 1] ⊂ R, C = R2+, and for each (ξ, ν, γ) ∈ D1 ×D2 ×D1,
S1(ξ) = S2(ξ) = S(ξ) := [0, 1 − ξ], T (ξ, γ) = {|ξ − γ|}, Φ(ξ, ν, γ) = [(ν, ξ2 −
γ2), (ν+γ2, ξ2)] ⊂ R2. It is easy to verify that the set-valued map S2 has no open
lower sections. This proves that condition (ii) of Theorem 3.3 in [12] is violated
and hence, this theorem cannot be applied. We now show that Corollary 3.1
can be used to derive an existence result for the above problem. Indeed, let
us consider Problem (Pα) where α = α2, K := D1 × D2 ⊂ X := X1 × X2,
E := D1 ⊂ Z := X1, A(z, x) = S(ξ1)× T (S(ξ1), ξ1),

F (z, x, η) = Φ(ξ1, η2, η1), C(z, x, η) = Φ(z, η2, ξ1) + C,
and B(z, x, η) = {ξ1} where z ∈ E := D1, x = (ξ1, ξ2) ∈ K := D1 × D2 and
η = (η1, η2) ∈ K := D1 ×D2.
Arguing as in Example 3.1, we see that all assumptions of Corollary 3.1(i)

are satisfied for this Problem (Pα). Therefore, there exist points z0 ∈ E and
x0 = (ξ

0
1, ξ

0
2) ∈ K = D1 ×D2 such that x0 = (ξ01 , ξ02) ∈ S(ξ01)× T (S(ξ01), ξ01) and,

for each η = (η1, η2) ∈ S(ξ01)×T (S(ξ01), ξ01), we can find a point v ∈ B(z0, x0, η) ≡
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{ξ01} with F (v, x0, η) ⊂ C(v, x0, η). This implies that there exists a point ξ01 ∈ D1
such that ξ01 ∈ S(ξ01) and, for all η1 ∈ S(ξ01) and η2 ∈ T (S(ξ01), ξ01),

Φ(ξ01 , η2, η1) ⊂ Φ(ξ01 , η2, ξ01) + C.
Now, if we take an arbitrary point (η1, η2) with η1 ∈ S2(ξ01) and η2 ∈ T (η1, ξ01),
then we get η1 ∈ S2(ξ01) = S(ξ01) and η2 ∈ T (η1, ξ01) ⊂ T (S(ξ01), ξ

0
1). Hence the

above claim shows that

Φ(ξ01 , η2, η1) ⊂ Φ(ξ01 , η2, ξ01) + C.
Since the last inclusion holds for an arbitrary point (η1, η2) with η1 ∈ S2(ξ01) and
η2 ∈ T (η1, ξ01), and since ξ01 ∈ D1 and ξ01 ∈ S(ξ01) = S1(ξ

0
1) we see that ξ

0
1 is

exactly a solution of Problem (V ) considered in Example 3.2.

Remark 5. Observe that Corollary 3.1 fails to hold if the assumption that the
set M is closed in E ×K is violated.

This remark is illustrated by the following example.

Example 3.3. Let us consider Problem (Pα) where α = α1, X = Y = Z = R,
E = K = [0, 1] ⊂ R, B(z, x, η) ≡ {1}, C(z, x, η) ≡ −int R+ (the negative half-
line), F (z, x, η) = {z(x− η)}, and for each (z, x) ∈ E ×K

A(z, x) =

{
[0, 1− x[ if x ∈ [0, 1[ ,
{0} if x = 1.

Obviously, in this example the set M is not closed in E × K. Now let us set
β = α = α1, f = F, b = B and c = C. Then it is obvious that both conditions
(ps) and (wps) hold trivially. Observe that in our case

Lα1 (z, x) ≡ L̂α1 (z, x) ≡ lβ(z, x) ≡ e(x)
where e(x) = {η ∈ [0, 1] : x < η}. Since e(x) is convex and x /∈ e(x) for each
x ∈ K = [0, 1] it follows that each of conditions (a), (b), (c) and (d) holds. Also,

each of maps Lα1 , L̂α1 and lβ has open graph. Therefore, each of conditions (i),
(ii) and (iii) of Corollary 3.1 is satisfied. However, (Pα) has no solution. Indeed,
if (z0, x0) is a solution of (Pα) then x0 ∈ A(z0, x0) = [0, 1− x0[ and

∀η ∈ A(z0, x0),∃v ∈ B(z0, x0, η) ≡ {1}, v(x0 − η) � 0.
This means that x0 − η � 0 for all η ∈ [0, 1− x0[ , which is impossible.
Corollary 3.2. Let K ⊂ X be a nonempty compact convex set. Let A : K −→
2K be a lsc set-valued map with nonempty convex values such that the set

M ′ = {x ∈ K : x ∈ A(x)}
is closed in K. Let T : K −→ 2X be a set-valued map with nonempty values such
that for each (x, η) ∈ K ×K

ζ(x, η) := inf
p∈T (x)

〈p, x− η〉 ∈ R

and the map

η ∈ K �−→ {x ∈ K : ζ(x, η) � 0}(3.1)
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has the graph closed in K ×K. Then there exists x0 ∈ K such that x0 ∈ A(x0)
and ζ(x0, η) � 0,∀η ∈ A(x0). If in addition T (x0) is compact and convex then
there exists p0 ∈ T (x0) such that 〈p0, x0 − η〉 � 0, ∀η ∈ A(x0).

Proof. Let us set Y = R, Z = X,E = K, A(z, x) ≡ A(x), B(z, x, η) ≡ {z},
F (z, x, η) ≡ {ζ(x, η)}, C(z, x, η) ≡ −R+ (the nonpositive half-line) and α = α2.
Then Problem (Pα) is to find (z0, x0) ∈ E×K = K×K such that x0 ∈ A(x0) and
for each η ∈ A(x0), ζ(x0, η) � 0. Thus to prove the first conclusion of Corollary
3.2 it suffices to show that this Problem (Pα) has a solution. Indeed, first observe
that M = E ×M ′ is closed in E × K since M ′ is closed in K. Also, for each
(z, x) ∈ E ×K the set

Lα(z, x) = {η ∈ K : ζ(x, η) > 0}

is convex since ζ(x, ·) is a concave function. On the other hand, ζ(x, x) = 0.
Therefore, x /∈ Lα(z, x) = co Lα(z, x) for each (z, x) ∈ E ×K. This proves that
condition (a) holds. We now claim that Lα has open graph. Indeed, first observe
that the set

K ×K \ {(x, η) ∈ K ×K : ζ(x, η) � 0}

is open in K ×K. Using this fact and observing that

gr Lα = E ×K ×K \ {(z, x, η) ∈ E ×K ×K : ζ(x, η) � 0}
= E × [K ×K \ {(x, η) ∈ K ×K : ζ(x, η) � 0}],

we see that gr Lα is open in E ×K ×K. Thus, all the requirements in condition
(i) of Corollary 3.1 are satisfied. Hence, the above Problem (Pα) has a solution,
as required. To obtain the second conclusion of Corollary 3.2 it remains to apply
a minimax theorem of [9]. Details can be found in the proof of Theorem 3.1 of
[4].

Remark 6. Results similar to those of Corollary 3.2 are established in Theorems
3.1 and 3.2 of [4]. However, Corollary 3.2 cannot be derived from these results
of [4]. As an example illustrating this remark let us take the following example
which is a modified version of Example 3.1 of [4].

Example 3.4. Let K = [0, 1] ⊂ R, A(x) ≡ {0},

T (x) =

{
{1} if x = 0,

{0} if 0 < x � 1.

It is easy to see that the graph of the set-valued map (3.1) is closed inK×K.Other
requirements of Corollary 3.2 are also satisfied for Example 3.4. Hence, Corollary
3.2 can be applied to this example. However, Theorem 3.1 of [4] cannot be used
since the requirement that aff A(x) = aff [0, 1] in this theorem is not satisfied.
(Here aff S denotes the affine hull of the set S.) The fact that Theorem 3.2 of [4]
cannot be applied in Example 3.4 can be found in Remark 3.2 of [4].
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Remark 7. In Theorem 3.1 of [13] it is shown that Corollary 3.2 remains true
for the case X being a separable Banach space if the closedness (in K) of M ′ is
replaced by the closedness of the graph of A. The following Example 3.5 shows
that all assumptions of Corollary 3.2 can be satisfied, while the graph of A is not
closed. This means that Corollary 3.2 is not a special case of Theorem 3.1 of [13].

Example 3.5. Let K and T be as in Example 3.4 and let

A(x) =

{
[0, 12 ] if x ∈ [0, 12 ],
[0, 1] if x ∈]12 , 1].

It is obvious that all assumptions of Corollary 3.2 hold while gr A is not closed
in K ×K = [0, 1]× [0, 1]. Observe also that in this example A is not continuous.
Remark 8. Corollary 3.1 requires that the graph of Lα, L̂α or lβ is open. Propo-
sitions 4.1 and 4.2 in [17] give sufficient conditions for the validity of this property.

4. Some special cases

This section is devoted to examples illustrating the result obtained in the
previous section for Problem (Pα) with α = αi, i = 1, 2, 3, 4. We begin by the
following technical lemma.

Lemma 4.1. Let a ⊂ K be a nonempty convex set. Let

Gα(z, x, η)={ξ∈ [x, η] : ∀v∈B(z, ξ, η), (F,C)(v, x, η) /∈α}, (z, x, η)∈W,(4.1)

gβ(z, x, ξ)={η ∈ a : ∀v ∈ b(z, x, ξ), (f, c)(v, x, η) /∈ β}, (z, x, ξ) ∈W.(4.2)

Let the following conditions be satisfied:

(i) For each (z, x, η) ∈ E × a × a with x �= η, if x ∈ Gα(z, x, η) then
ξ ∈ Gα(z, x, η) for some ξ ∈ ]x, η[ .

(ii) For each (z, x, η) ∈ E × a × a with x �= η and for each ξ ∈ ]x, η[ , if
ξ ∈ Gα(z, x, η) then ξ ∈ gβ(z, x, ξ).

(iii) For each (z, x) ∈ E×a there exists v ∈ B(z, x, x) such that (F,C)(v, x, x) ∈
α.

Then for each (z, x) ∈ E × a

(4.3) [∀η ∈ a,∃v ∈ b(z, x, η), (f, c)(v, x, η) ∈ β]
=⇒ [∀η ∈ a,∃v ∈ B(z, x, η), (F,C)(v, x, η) ∈ α].

Proof. We need to prove that if (z, x) ∈ E×a does not satisfy the statement in the
right-hand side of implication (4.3) then it does not satisfy the statement in the
left-hand side of (4.3). Indeed, the negation of the statement in the right-hand
side of (4.3) means that

∃η ∈ a, ∀v ∈ B(z, x, η), (F,C)(v, x, η) /∈ α,
i.e., x ∈ Gα(z, x, η). By (iii) we get x �= η. By (i) there exists ξ ∈ ]x, η[ with
ξ ∈ Gα(z, x, η). By (ii) ξ ∈ gβ(z, x, ξ), i.e.,

∀v ∈ b(z, x, ξ), (f, c)(v, x, ξ) /∈ β.(4.4)



26 LE ANH TUAN AND PHAM HUU SACH

Observe now that ξ ∈ a by the convexity of a. Thus the point ξ ∈ a satisfies
(4.4). This proves that (z, x) does not satisfy the statement in the left-hand side
of (4.3).

Remark 9. Let us consider the following problem:

Problem (pβ): Find (z0, x0) ∈ E ×K such that x0 ∈ A(z0, x0) and
∀η ∈ A(z0, x0),∃v ∈ b(z0, x0, η), (f, c)(v, x0, η) ∈ β.

Then, under conditions of Lemma 4.1 with a = A(z0, x0) every solution of
Problem (pβ) is also a solution of Problem (Pα).

Remark 10. If for all (z, x, η) ∈ E × a× a the set Gα(z, x, η) is open in [x, η]
then condition (i) of Lemma 4.1 holds.

Before providing other sufficient assumptions for condition (i) of Lemma 4.1
to hold, let us introduce some definitions.

Let a ⊂ K be a convex set. We say [7, Def.1(iii)] that F is u-hemicontinuous
on E×a×a with respect to B if for any point (z, x, η) ∈ E×a×a the set-valued
map

λ ∈ [0, 1] �−→ F (B(z, xλ, η), x, η) :=
⋃

v∈B(z,xλ,η)
F (v, x, η),(4.5)

where xλ := x+ λ(η − x), is upper semicontinuous at λ = 0.
Clearly, F is u-hemicontinuous on E × a × a with respect to B if and only if

for any point (z, x, η) ∈ E × a× a and any open set U ⊂ Y with

F (v, x, η) ⊂ U, ∀v ∈ B(z, x, η),(4.6)

there exists δ ∈ ]0, 1[ such that
F (v, x, η) ⊂ U, ∀v ∈ B(z, xλ, η), ∀λ ∈ ]0, δ[ .(4.7)

We say that F is l-hemicontinuous on E × a × a with respect to B if for any
point (z, x, η) ∈ E × a× a and any open set U ⊂ Y with

F (v, x, η) ∩ U �= ∅, ∀v ∈ B(z, x, η),(4.8)

there exists δ ∈ ]0, 1[ such that
F (v, x, η) ∩ U �= ∅, ∀v ∈ B(z, xλ, η), ∀λ ∈ ]0, δ[ ,(4.9)

where xλ := x+ λ(η − x).
Obviously, if B is single-valued then the l-hemicontinuity coincides with the

lower semicontinuity of the set-valued map

λ ∈ [0, 1] �−→ F (B(z, xλ, η), x, η),

at λ = 0.

Lemma 4.2. Assume that a ⊂ X is a nonempty convex set and C : a −→ 2Y is
a set-valued map with nonempty values. Then condition (i) of Lemma 4.1 holds
under one of the following conditions:
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(i) α = α1, F is u-hemicontinuous on E × a× a with respect to B, and for all
(z, x, η) ∈W , C(z, x, η) ≡ int C(x) �= ∅.

(ii) α = α2, F is l-hemicontinuous on E × a× a with respect to B, and for all
(z, x, η) ∈W , C(z, x, η) ≡ C(x) and C(x) is closed.

(iii) α = α3, F is u-hemicontinuous on E × a× a with respect to B, and for all
(z, x, η) ∈W , C(z, x, η) ≡ C(x) and C(x) is closed.

(iv) α = α4, F is l-hemicontinuous on E × a× a with respect to B, and for all
(z, x, η) ∈W , C(z, x, η) ≡ int C(x) �= ∅.

Proof. Let us prove Lemma 4.2 in cases (i) and (ii). The cases (iii) and (iv) can
be considered similarly.

Observe that in case (i)

Gα(z, x, η) = {ξ ∈ [x, η] : ∀v ∈ B(z, ξ, η), F (v, x, η) ⊂ int C(x)},
and x ∈ Gα(z, x, η) means that (4.6) holds with U = int C(x). Hence from (4.7)
we can find λ ∈ ]0, 1[ such that

∀v ∈ B(z, xλ, η), F (v, x, η) ⊂ U = int C(x).
Setting ξ = xλ we see that ξ ∈ Gα(z, x, η), i.e., condition (i) of Lemma 4.1 holds.

In case (ii) we have

Gα(z, x, η) = {ξ ∈ [x, η] : ∀v ∈ B(z, ξ, η), F (v, x, η) �⊂ C(x)}
= {ξ ∈ [x, η] : ∀v ∈ B(z, ξ, η), F (v, x, η) ∩ U �= ∅}(4.10)

where U := Y \ C(x) is an open set. Hence, from (4.10) x ∈ Gα(z, x, η) means
that (4.8) holds. From (4.9) we can find λ ∈ ]0, 1[ such that

∀v ∈ B(z, xλ, η), F (v, x, η) ∩ U �= ∅.
Setting ξ = xλ we conclude that ξ ∈ Gα(z, x, η), as was to be shown.

We will assume that B(z, x, η) and C(z, x, η) do not depend on (z, η). So,
for the sake of simplicity let us write B(x) and C(x) instead of B(z, x, η) and
C(z, x, η) :

B(z, x, η) ≡ B(x),(4.11)

C(z, x, η) ≡ C(x).(4.12)

Under the above assumptions Problem (Pα) with α = αi is to find a point
(z0, x0) ∈ E ×K such that x0 ∈ A(z0, x0) and

∀η ∈ A(z0, x0), ∃v ∈ B(x0), (F (v, x0, η),C(x0)) ∈ αi.
We will refer to this problem as Problem (P i). Basing on Corollary 3.1, Remark
9 and Lemma 4.2 we can derive existence results in Problem (P i) for i = 1, 2, 3, 4.
Since these results are established by the same approach we can restrict ourselves
to the case i = 1. Other cases can be considered similarly.

Let us reformulate Problem (P 1):
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Problem (P 1): Find a point (z0, x0) ∈ E ×K such that x0 ∈ A(z0, x0) and
∀η ∈ A(z0, x0),∃v ∈ B(x0), F (v, x0, η) �⊂ C(x0).

Together with Problem (P 1) we will consider the following problem:

Problem (P̂ 1): Find a point (z0, x0) ∈ E ×K such that x0 ∈ A(z0, x0) and
∀η ∈ A(z0, x0),∃u ∈ B(η), F (u, x0, η) �⊂ C(x0).

We will assume that C(x) is of the form
C(x) = σ(x) + int C′(x)(4.13)

where for each x ∈ K σ(x) ⊂ Y is a nonempty convex set and C′(x) ⊂ Y is a
convex cone with ∅ �= int C′(x) (the interior of C′(x)).

Proposition 4.1. Let C be of the form (4.13). Let (z0, x0) be a solution of

Problem (P̂ 1) and let a := A(z0, x0). Then (z0, x0) is also a solution of Problem
(P 1) if

(i) F is u-hemicontinuous on E × a× a with respect to B defined by (4.11).
(ii) For each (z, x)∈E × a, F (z, x, ·) is natural [−C′(x)]-quasiconvex on a.
(iii) For each (z, x) ∈ E × a,

F (z, x, x) ⊂ σ(x) + C′(x).(4.14)

(iv) For each (z, x) ∈ E × a there exists v ∈ B(x) such that
F (v, x, x) �⊂ σ(x) + int C′(x).

Proof. Let us set

β = α1, f(z, x, η) ≡ F (z, x, η), c(z, x, η) ≡ C(x), b(z, x, η) ≡ B(η).(4.15)

Then Problem (P̂ 1) is exactly Problem (pβ) mentioned in Remark 9. Also, as we
remarked above, Problem (P 1) is exactly Problem (Pα) where

α = α1, B(z, x, η) ≡ B(x), C(z, x, η) ≡ C(x).(4.16)

So, to prove Proposition 4.1 it suffices to show that assumptions (i), (ii) and (iii)
of Lemma 4.1 are satisfied for α = β = α1 and a = A(z0, x0) (see Remark 9). Let
us begin by assumption (i). We have

Gα1 (z, x, η) = {ξ ∈ [x, η] : ∀v ∈ B(z, ξ, η) ≡ B(ξ), F (v, x, η) ⊂ C(x)}.
Observe that C(x) = int [σ(x) + C′(x)]. Therefore, making use of the first claim
of Lemma 4.2 with σ(x) + C′(x) instead of C(x) we infer that assumption (i) of
Lemma 4.1 holds. Now let us verify assumption (ii) of this lemma. Indeed, first
observe from (4.15) that

gβ(z, x, ξ) = gα1 (z, x, ξ)

= {η ∈ a : ∀v ∈ b(z, x, ξ) ≡ B(ξ), F (v, x, η) ⊂ C(x)}

=
⋂

v∈B(ξ)
{η ∈ a : F (v, x, η) ⊂ C(x)}.

(4.17)
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So, to verify assumption (ii) of Lemma 4.1 we assume that ξ ∈ ]x, η[ and ξ ∈
Gα1 (z, x, η), i.e., ∀v ∈ B(ξ)

F (v, x, η) ⊂ σ(x) + int C′(x).(4.18)

By (4.14), (4.18) and the natural quasiconvexity of F (v, x, ·) we get for each
v ∈ B(ξ)

F (v, x, ξ) ⊂ co [F (v, x, η), F (v, x, x)] + C′(x)
⊂ σ(x) + int C′(x) + C′(x)
⊂ C(x).

This proves that ξ ∈ gβ(z, x, ξ) = gα1 (z, x, ξ) (see (4.17)). Thus condition (ii)
of Lemma 4.1 holds, as desired. To complete our proof it suffices to note that
condition (iv) of Proposition 4.1 is exactly condition (iii) of Lemma 4.1 with
α = α1.

From now on we assume that E ⊂ Z and K ⊂ X are nonempty compact
convex sets, A : E × K −→ 2K is a lsc set-valued map with nonempty convex
values such that the set M (see Theorem 3.1) is closed in E ×K.
We say that the triplet (F,C,B) satisfies the α-pseudomonotonicity assumption

if for each (z, x, η) ∈W1 (see Section 3)

[∃u ∈ B(x),α(F (u, x, η),C(x))] =⇒ [∀v ∈ B(η),α(F (v, x, η),C(x))].

Theorem 4.1. Let C be of the form (4.13). Assume that

(i) For each (z, x) ∈ E ×K, F is u-hemicontinuous on E × A(z, x) × A(z, x)
with respect to B defined by (4.11).

(ii) For each (z, x)∈E ×K,F (z, x, ·) is natural [−C′(x)]-quasiconvex on K.
(iii) For each (z, x) ∈ E ×K,

F (z, x, x) ⊂ σ(x) + C′(x).
(iv) For each (z, x) ∈ E ×K there exists v ∈ B(x) such that

F (v, x, x) �⊂ σ(x) + int C′(x).(4.19)

(v) The triplet (F,C,B) satisfies the α1-pseudomonotonicity assumption.
(vi) The set-valued map F is usc and compact-valued, the set-valued map B is

lsc and the set-valued map C has open graph.

Then there exists a solution of Problem (P 1).

Proof. By Proposition 4.1 it suffices to prove that Problem (P̂ 1) has a solution.

Since (P̂ 1) can be interpreted as Problem (Pα) with

α = α1, B(z, x, η) ≡ B(η), C(z, x, η) ≡ C(x),(4.20)

we can use Corollary 3.1 to prove the existence of a solution of (P̂ 1). Indeed,
since α = α1 we have

L̂α1 (z, x) = {η ∈ K : ∃v ∈ B(η), F (v, x, η) ⊂ C(x)}.
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Making use of (vi) we can show that L̂α1 has open graph (see e.g. [17, Proposition
4.2]). By Corollary 3.1(ii) it remains to verify condition (c) of Section 3. By
Lemma 3.1 we need to verify condition (c′). Indeed, let us set

β = α1, f(z, x, η) ≡ F (z, x, η), b(z, x, η) ≡ B(x), c(z, x, η) ≡ C(x).(4.21)

Then (v) proves that condition (ps) holds. In addition, since

lβ(z, x) = lα1 (z, x)

= {η ∈ K : ∀v ∈ B(x), F (v, x, η) ⊂ C(x) := σ(x) + int C′(x)}

=
⋂

v∈B(x)
{η ∈ K : F (v, x, η) ⊂ σ(x) + int C′(x)},

(4.22)

and since

{η ∈ K : F (v, x, η) ⊂ σ(x) + int C′(x)}
is convex (see (ii)) it follows that lβ(z, x) is convex. This together with (iv) proves
the validity of (c′).

Remark 11. If for each (z, x) ∈ E × K σ(x) ≡ {0}, C′(x) �= Y and 0 ∈
F (z, x, x) then condition (iv) of Theorem 4.1 holds. Indeed, take an arbitrary
point v ∈ B(x). If (4.9) does not hold then

F (v, x, x) ⊂ σ(x) + int C′(x) = int C′(x).
Since by assumption 0 ∈ F (v, x, x) it follows that 0 ∈ int C′(x), a contradiction
to condition C′(x) �= Y. The conditions mentioned in Remark 11 are used in [7].

Observe that Theorem 4.1 gives the existence of a solution of Problem (P 1)
under a generalized monotonicity assumption. The following theorem does not
require such an assumption.

Theorem 4.2. Let C be of the form (4.13). Assume that

(i) For each (z, x)∈E ×K,F (z, x, ·) is natural [−C′(x)]-quasiconvex on K.
(ii) For each (z, x)∈E ×K there exists v ∈ B(x) such that

F (v, x, x) �⊂ σ(x) + int C′(x).
(iii) The set-valued maps F and B are usc and compact-valued, and the set-

valued map C has open graph.
Then there exists a solution of Problem (P 1).

Proof. This is an immediate consequence of Corollary 3.1. Indeed, let us interpret
Problem (P 1) as Problem (Pα) with α, B and C being as in (4.16). Then, since
α = α1 we have

Lα1 (z, x) = {η ∈ K : ∀v ∈ B(z, x, η) ≡ B(x),
F (v, x, η) ⊂ C(x) := σ(x) + int C′(x)}.

Making use of (iii) we can prove that Lα1 has open graph (see e.g. [17, Propo-
sition 4.1]). In addition, as in the proof of Theorem 4.1 we can derive from
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conditions (i) and (ii) (i.e., conditions (ii) and (iv) of Theorem 4.1) that condi-
tion (a′) (and hence, condition (a)) holds. To complete our proof it remains to
apply Corollary 3.1(i).

Remark 12. The reader who is interested in existence theorems for Problem
(P 1) in topological vector spaces is referred to [7, Theorems 3 and 5]. It is worth
noticing that existence theorems of [7] are established only for the case when
σ(x) ≡ {0} and A(z, x) ≡ K. Finally, observe that Problem (P i) with i �= 1 is
not considered in [7] while, as we remarked above, existence results for the case
i �= 1 can be obtained from Corollary 3.1 and Lemma 4.2. It is worth noticing
that, when dealing with Problem (P i), i �= 1, we must use generalized convexity
notions different from the natural quasiconvexity.
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