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ON LIFTING MODULES RELATIVE TO THE CLASS OF

ALL SINGULAR MODULES

DEXU ZHOU

Abstract. Using the class δ of all singular R-modules, we introduce and
characterize δ-lifting modules, δ-supplements and δ-coclosed submodules, and
give some equivalent conditions to characterize an amply δ-supplemented mod-
ule M = ⊕i∈IMi to be δ-lifting. We introduce relatively δ-small projective to
give some sufficient conditions that a finite sum of δ-lifting modules is δ-lifting.
We also show that R is δ-perfect (δ-semiperfect) if and only if every (finitely
generated) projective right R-module is δ-lifting.

1. Introduction

The notion of small submodules (also called superfluous submodules) plays an
important role in the theory of modules and rings. Recently, Zhou [8] generalized
the concept of small submodules to that of δ-small submodules by considering
the class δ of all singular right R-modules in place of the class of all right R-
modules, gave various properties of δ-small submodules that are similar to those
of small submodules, and then used this concept to generalize the notions of
perfect, semiperfect and semiregular rings to those of δ-perfect, δ-semiperfect
and δ-semiregular rings.

Small submodules are also important in the theory of lifting (i.e., D1) modules
(see [5, 6]). In this paper, we use the concept of δ-small to introduce some
generalizations of lifting modules and investigate the main problem in this theory,
that is, when the direct sum of lifting modules is also lifting. It is of interest to
know how far the old theories extend to the new situation.

In Section 2 we introduce some basic concepts of δ-lifting modules, δ-supplement,
δ-coessential submodule and so on, and give some properties of these notions. In
Section 3 we mainly investigate the properties of δ-coclosed submodules. It is
proved that if the class δ is closed under module extensions, then every submod-
ule of an amply δ-supplemented module has a δ-s-closure. In Section 4 we show
that every direct summand of a δ-lifting module is δ-lifting, and give some equiva-
lent conditions for an amply δ-supplemented module M = ⊕i∈IMi to be δ-lifting.
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We introduce relatively δ-small projective to give some sufficient conditions that
a finite sum of δ-lifting modules is δ-lifting. If every R-module (or simple R-
module, resp.) has a projective δ-cover, R is called a δ-perfect (or δ-semiperfect,
resp.) ring [8]. In Section 5 we prove that R is δ-perfect (or δ-semiperfect) if and
only if every (finitely generated) projective right R-module is δ-lifting. We also
give an example to illustrate that a δ-lifting right R-module is not necessarily
lifting.

Throughout this paper, R denotes an associative ring with identity, and mod-
ules are unitary right R-modules. Let δ be the class of all singular R-modules.
According to [4], the class δ is closed under submodules, factor modules and di-
rect sums. Moreover, if R is right nonsingular, then δ is also closed under module
extensions, that is, in an exact sequence 0 → A → B → C → 0, B is singular
whenever A and C are singular. Let K ⊆ N denote that K is a submodule of
N , and let K ⊆⊕ N denote that K is a direct summand of N . For the other
definition and notation in this paper we refer the reader to [1].

2. Basic notions

Let N be a submodule of a module M . N is said to be small (or superfluous)
in M , if M = N+T for a submodule T of M implies M = T . As a generalization
of small submodules, Zhou [8] gave the concept of δ-small submodules. Let M be
a module and N ⊆ M , then N is said to be δ-small [8] in M , if M = N +X with
M/X singular implies M = X. We use N �δ M to indicate that N is a δ-small
submodule of M . Every small submodule and every non-singular semisimple
submodule of M is δ-small in M . The δ-small submodules of a singular module
are small submodules.

We list some properties of δ-small modules from [8] for later use.

Lemma 2.1. Assume that M is an R-module.

(1) Let N,K,L be submodules of M with K ⊆ N .
(a) N �δ M if and only if K �δ M and N/K �δ M/K
(b) N + L �δ M if and only if N �δ M and L �δ M .

(2) If K �δ M and f : M → N is a homomorphism, then f(K) �δ N . In
particular, if K �δ M ⊆ N , then K �δ N .

(3) If Ki ⊆ Mi ⊆ M for i = 1, 2 and M = M1⊕M2, then K1⊕K2 �δ M1⊕M2

if and only if K1 �δ M1 and K2 �δ M2.

In order to characterize δ-lifting modules in Section 4, we first give some related
definitions.

Definition 2.2. Let N and L be submodules of M .

(1) N is called a δ-supplement of L if M = N + L with M/N singular and
N ∩ L �δ N .

(2) N is called a δ-supplement submodule of M if N is a δ-supplement of
some submodule of M .
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Definition 2.3. M is called an amply δ-supplemented module, if for all submod-
ules A, B of M with M = A + B there exists a δ-supplement P of A such that
P ⊆ B.

Definition 2.4. M is called a weakly δ-supplemented module, if for each sub-
module A of M with M/A singular there exists a submodule B of M such that
M = A+B and A ∩B �δ M .

Definition 2.5. Assume that M is a right R-module and B ⊆ A ⊆ M .

(1) B is called a δ-coessential submodule of A if A/B �δ M/B with A/B sin-
gular. In this case, A is called a δ-coessential extension of B inM (denoted
by
B ⊆δce A).

(2) A is called a δ-coclosed submodule of M if M/A is singular and A has no
δ-coessential submodule of M (denoted by A ⊆δcc M).

(3) B is called a δ-s-closure of A in M if B is a δ-coessential submodule of
A and B is δ-coclosed of M .

Lemma 2.6. If P is a δ-supplement of A in M then P is minimal with the
property M = A+ P and M/P is singular. If the class δ is closed under module
extensions, the converse holds.

Proof. Let M = A+Q with Q ⊆ P and M/Q singular, so that P = Q+A ∩ P .
Since P is a δ-supplement of A in M , then M = A+ P and A ∩ P �δ P . Note
that M/Q is singular, which implies that P/Q is singular. It follows that P = Q.

Conversely, let P = A ∩ P +D with P/D singular. Then

M = A+ P = A+A ∩ P +D = A+D.

Since 0 → P/D → M/D → M/P → 0 is exact with P/D and M/P singular,
and the class of singular left R-modules is closed under extensions, we have that
M/D is singular. Thus, P = D by minimality of P , so A ∩ P �δ P . �

Lemma 2.7. If M is an amply δ-supplemented module, then M/K is an amply
δ-supplemented module for each K ⊆ M .

Proof. Let M/K = A/K + B/K, thus M = A + B. Since M is amply δ-
supplemented, there exists P ⊆ B such that M/P is singular, A ∩ P �δ P and
M = A + P . Hence, M/K = A/K + (P + K)/K and A/K ∩ (P + K)/K =
(A ∩ P +K)/K. Now, we claim that

(A ∩ P +K)/K �δ (P +K)/K.

Let (A ∩ P + K)/K + L/K = (P +K)/K with (P + K)/L singular, thus A ∩
P + L = P +K. Since A ∩ P �δ P ⊆ P +K, it follows from Lemma 2.1 that
A ∩ P �δ P + K. Note that (P + K)/L is singular, so L = P + K. Thus,
(A ∩ P +K)/K �δ (P +K)/K and M/(P +K) is singular, therefore M/K is
amply δ-supplemented. �

Proposition 2.8. Every direct summand L of an amply δ-supplemented module
M is an amply δ-supplemented submodule.
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Proof. Let A, B be submodules of L such that L = A+B. Since L ⊆⊕ M , there
exists L

′

such that M = L ⊕ L
′

= A + B + L
′

= A + (B + L
′

). Since M is

an amply δ-supplemented module, B+L
′

has a δ-supplement submodule P such
that P ⊆ A ⊆ L, thus P+B+L

′

= M with M/P singular and P ∩(B+L
′

) �δ P .

Since P +B ⊆ L and L ∩ L
′

= 0, it follows that P +B = L with L/P singular.

Since P ∩B ⊆ P ∩ (B + L
′

), it holds P ∩B �δ P by Lemma 2.1. Thus, L is an
amply δ-supplemented submodule. �

3. On δ-coclosed submodules

Lemma 3.1. Let N ⊆ M . Consider the following conditions:

(1) N is δ-coclosed in M ;
(2) M/N is singular such that X �δ M implies X �δ N for each X ⊆ N ;
(3) N is a δ-supplement of M .

Then, (1) ⇒ (2). If M is a weakly δ-supplemented module, then (2) ⇒ (3). If
the class δ is closed under module extensions, then (3) ⇒ (1).

Proof. (1) ⇒ (2) Suppose that N ⊆δcc M , X ⊆ N and X �δ M . Let N = X+Y
with N/Y singular. Since N is δ-coclosed, it suffices to show that N/Y �δ M/Y .
Let M/Y = N/Y +H/Y with Y ⊆ H ⊆ M and M/H singular. Thus,

M = N +H = X + Y +H = X +H.

Since M/H is singular and X �δ M , it follows that M = H. Thus, N/Y �δ

M/Y , hence N = Y for N/Y is singular and N is δ-coclosed. So, X �δ N .
(2) ⇒ (3) Since M is weakly δ-supplemented, there exists a submodule L ⊆ M

such that M = N + L and N ∩ L �δ M . By hypothesis, N ∩ L �δ N . Thus N
is a δ-supplement of L in M .

(3) ⇒ (1) Suppose that N is a δ-supplement of L in M . By Lemma 2.6,
N is minimal with the property that M = N + L with M/N singular. Let
K ⊆ N and N/K �δ M/K with N/K singular. Then, M/K = (N + L)/K =
N/K + (L+K)/K. Note that

M/(L+K) = (N + L)/(L+K)
= (N + L+K)/(L+K)
' N/(N ∩ (L+K))
= N/(N ∩ L+K)

and N/K is singular, thus M/(L+K) is singular. Since N/K �δ M/K, we have
M/K = (L + K)/K, so M = L + K. Since 0 → N/K → M/K → M/N → 0
is exact with N/K and M/N singular, and the class δ is closed under module
extensions, it follows that M/K is singular. By minimality of N it follows that
N = K. Hence, N is δ-coclosed in M . �

Lemma 3.2. Let M be a module, and let M = A + B and M = (A ∩ B) + C.
Then, M = (B ∩ C) +A = (A ∩ C) +B.

Proof. Straightforward. �
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Lemma 3.3. Assume that M = A+B and B ⊆ C with C/B �δ M/B and C/B
singular. Then, (A ∩C)/(A ∩B) �δ M/(A ∩B).

Proof. Suppose that M/(A ∩ B) = (A ∩ C)/(A ∩ B) + X/(A ∩ B) with M/X
singular and (A ∩ B) ⊆ X ⊆ M . Thus M = (A ∩ C) + X. By Lemma 3.2,
M = C + (A∩X). Thus, M/B = (C +A∩X)/B = C/B + (A∩X +B)/B and

M/(A ∩X +B) = (A ∩X +C)/(A ∩X +B)
= (A ∩X +B + C)/(A ∩X +B)
' C/(C ∩ (A ∩X +B))
= C/(C ∩A ∩X +B),

where M/(A ∩X + B) is singular for C/B is singular. Since C/B �δ M/B, it
holds M = B+ (A∩X). Again by Lemma 3.2, M = (A∩B)+X, which implies
M = X. So, (A ∩ C)/(A ∩B) �δ M/(A ∩B). �

Proposition 3.4. (1) Let B ⊆ C be submodules of M . If B is a δ-supplement
submodule of M and C/B is a δ-supplement submodule of M/B, then C
is a δ-supplement submodule of M .

(2) Assume that M is a weakly δ-supplement module and that the class δ
is closed under module extensions. Let B ⊆ C be submodules of M . If
B ⊆δcc M and
C/B ⊆δcc M/B, then C ⊆δcc M .

Proof. (1) Let B be a δ-supplement of B
′

in M , and let C/B be a δ-supplement

of C
′

/B in M/B. Thus M/B = C/B + C
′

/B with C/B ∩ C
′

/B �δ C/B,

and M = B + B
′

with B ∩ B
′

�δ B. By Lemma 2.1, B ∩ B
′

�δ C. Since
B ⊆ M = (C ∩ C

′

) + B
′

and M = C + C
′

, it follows from Lemma 3.2 that

M = C + (B
′

∩ C
′

). Hence

C = C ∩ (B +B
′

) = B + (C ∩B
′

)

and (C ∩ C
′

)/B �δ C/B. Since B is a δ-supplement in M , we have that (C ∩

C
′

)/B is singular. By Lemma 3.3,

(C ∩C
′

∩B
′

)/(B ∩B
′

) �δ C/(B ∩B
′

).

Note that B ∩ B
′

�δ C, thus (C ∩ C
′

∩ B
′

) �δ C by Lemma 2.1. So, C is a

δ-supplement of B
′

∩ C
′

in M .
(2) Since M/B is singular and C/B ⊆ M/B, it follows that C/B is singular.

The conclusion follows from Lemma 3.1 and (1). �

Proposition 3.5. Assume that the class δ is closed under module extensions
and M is an amply δ-supplemented module. Then, every submodule of M has a
δ-s-closure.

Proof. Let A ⊆ M . Since M is amply δ-supplemented, there exists a submodule
B such that B is minimal with the property M = A + B with M/B singular.
Again sinceM is amply δ-supplemented, there exists C ⊆ A such that M = C+B
with M/C singular and C∩B �δ C. Hence, A/C is singular. Now we claim that
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A/C �δ M/C. Let C ⊆ X ⊂ M . If A/C +X/C = M/C with M/X singular,
then

M = C + (X ∩B) +A = A+ (X ∩B).

Note that

M/(X ∩B) = (A+X ∩B)/(X ∩B) ' A/(A ∩X ∩B)

and C ⊆ A, C ⊆ X. Thus, there exists an epimorphism A/(B ∩ C) � A/(A ∩
X ∩B). Consider the exact sequence

0 → (A ∩B)/(B ∩C) → A/(B ∩ C) → A/(A ∩B) → 0,

where

(A ∩B)/(B ∩C) = (A ∩B)/(A ∩B ∩C) ' (A ∩B + C)/C ⊆ M/C

is singular. Since A/(A ∩ B) ' A + B/B ⊆ M/B is singular, we have that
A/(B∩C) is singular. Hence M/(X ∩B) is singular. By minimality of B it holds
X ∩ B = B, and hence M = X, a contradiction. Thus M 6= A + X. Since C
is a δ-supplement, which implies that M/C is singular, and the class of singular
left R-modules is closed under extensions, it follows from Lemma 3.1 that C is
δ-coclosed. So, C is a δ-s-closure of A in M . �

Proposition 3.6. Let K ⊆ L ⊆ M .

(1) If L ⊆δcc M then L/K ⊆δcc M/K.
(2) If K ⊆δcc M then K ⊆δcc L. Conversely, if K ⊆δcc L and L ⊆δcc M then

K ⊆δcc M .

Proof. (1) LetN/K ⊆δce L/K. IfN/K ⊆ L/K and (L/K)/(N/K) �δ (M/K)/(N/K)
with (L/K)/(N/K) singular, that is, L/N �δ M/N with L/N singular. Thus,
N ⊆δce L. Since L ⊆δcc M , we have N = L, hence N/K = L/K. So,
L/K ⊆δcc M/K.

(2) Let X ⊆ K be such that K/X �δ L/X ⊆ M/X with K/X singular. By
Lemma 2.1, K/X �δ M/X. Since K ⊆δcc M , we have K = X. Thus, K ⊆δcc L.

Conversely, let K ⊆δcc L and L ⊆δcc M . If K/X �δ M/X with K/X singular,
it follows from (1) that L/X ⊆δcc M/X. By Lemma 3.1 (1) ⇒ (2), K/X �δ

L/X, i.e., X ⊆δce K, so X = K. �

Lemma 3.7. If A is a direct summand of M and M/A is singular, then A is a
δ-coclosed submodule of M .

Proof. Let A be a direct summand of M such that M/A is singular. There

exists a submodule A
′

such that M = A ⊕ A
′

. Suppose that B ⊆ A ⊆ M and
A/B �δ M/B with A/B singular. Then,

M/B = (A⊕A
′

)/B = A/B + (A
′

+B)/B

where
M/(A

′

+B) = (A⊕A
′

)/(A
′

+B)

= (A+A
′

+B)/(A
′

+B)

' A/A ∩ (A
′

+B)
= A/B
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is singular. Hence M = A
′

⊕ B and B ⊆ A, thus A = B. So A is a δ-coclosed
submodule of M . �

Proposition 3.8. Let L ⊆δcc M and K ⊆⊕ L with L/K singular. Then, K ⊆δcc

M .

Proof. Since K ⊆⊕ L with L/K singular, it follows that K ⊆δcc L by Lemma 3.7.
Since L ⊆δcc M , we have K ⊆δcc M by Proposition 3.6. �

Proposition 3.9. Let M be a weakly δ-supplemented module and let L ⊆⊕ M
with M/L singular. If the class δ is closed under module extensions, then L is a
weakly δ-supplemented submodule.

Proof. Let A ⊆ L ⊆ M with L/A singular. Since the class δ is closed under mod-
ule extensions and M/L is singular, it follows that M/A is singular. Since M is a
weakly
δ-supplemented module, there exists B ⊆ M such that M = A+B and A∩B �δ

M . Since L ⊆⊕ M , there exists L
′

⊆ M such that M = L+ L
′

. Thus,

L = L ∩ (A+B) = A+ (L ∩B)

and A ∩ (L ∩B) = A ∩B. Since L ⊆⊕ M with M/L singular, by Lemma 3.7 we
have L ⊆δcc M . So, A ∩B �δ L by Lemma 3.1. �

4. On δ-lifting modules

According to [5], a module M is called a lifting module (or is said to satisfy
(D1)), if for every submodule N of M there exists a direct summand K of M
such that K ⊆ N and that N/K is small in M/K. As a generalization, we give
the following definition.

Definition 4.1. A module M is called a δ-lifting module (or is said to satisfy
δ-(D1)), if for every submodule N of M there exists a direct summand K of M
such that K ⊆ N and that N/K �δ M/K.

Clearly, every lifting module is δ-lifting. We shall give an example to illustrate
that a δ-lifting right R-module is not necessarily lifting in Section 5.

Proposition 4.2. Every direct summand of a δ-lifting module M is δ-lifting.

Proof. Let L be a direct summand of M and let H ⊆ L ⊆ M . SinceM is δ-lifting,
there exists K ⊆⊕ M such that K ⊆ H and H/K �δ M/K, hence K ⊆⊕ L.
Let H/K +X/K = L/K with L/X singular. Then H + X = L. Suppose that

M = L⊕ L
′

, thus H + L+ L
′

= M . Hence H/K + (X + L
′

)/K = M/K. Since

M/(X + L
′

) = (X + L+ L
′

)/(X + L
′

)

' L/L ∩ (X + L
′

)

= L/(X + L ∩ L
′

)
= L/X

is singular it follows that (X + L
′

)/K = M/K, i.e., X + L
′

= M , hence X = L
for X ⊆ L. Thus, X/K = L/X, so H/K �δ L/K. �



644 DEXU ZHOU

Lemma 4.3. Let M be an amply δ-supplemented module such that every δ-
supplement of M is a direct summand, then M is a δ-lifting module.

Proof. Let A ⊆ M . Since M is an amply δ-supplemented, there exists a δ-
supplement B of A, and B has a δ-supplement M1 such that M1 ⊆ A with
M/M1 singular and M1 ⊆⊕ M . Thus, M = M1 ⊕M2 for some submodule M2 of
M . Hence, A = M1⊕A∩M2. Note that M = M1+B and A = M1+A∩B. Let
π denote the projection M1 ⊕M2 � M2. Thus, A∩M2 = πA = π(A∩B). Since
B is a δ-supplement of A we have (A∩B) �δ M , and hence (A∩M2) �δ M by
Lemma 2.1, so A ∩M2 �δ M2, i.e., A/M1 �δ M/M1. Since M/M1 is singular,
so is A/M1, thus M is δ-lifting. �

In the following, if M = ⊕i∈IM , we use M−i to denote ⊕j∈I\iMj .

Theorem 4.4. Assume that the class δ is closed under module extensions. Let
M = ⊕i∈IMi and |I| ≥ 2. If M is an amply δ-supplemented module, then the
following statements are equivalent:

(1) M is δ-lifting.

(2) For every δ-coclosed submodule K of M , if either M = K +Mi or M =
K +M−i for some i ∈ I, then K ⊆⊕ M .

(3) For every δ-coclosed submodule K of M , if either (K +Mi)/K �δ M/K
or
(K + M−i)/K �δ M/K or M = K + Mi = K + M−i for some i ∈ I,
then K ⊆⊕ M .

Proof. (1) ⇒ (2) For each K ⊆δcc M , since M is δ-lifting, there exists H ⊆⊕ M
such that H ⊆ K with K/H singular and K/H �δ M/H. Thus, K = H for
K ⊆δcc M , so K ⊆⊕ M .

(2) ⇒ (1) Let K ⊆δcc M . By Lemma 2.7, M/K is an amply δ-supplemented
module. By Proposition 3.5, (K + Mi)/K has δ-s-closure in M/K, i.e., there
exists a δ-coclosed submodule N/K in M/K such that N/K ⊆ (K + Mi)/K
and (K +Mi)/N �δ M/N with (K +Mi)/N singular. Thus, N is a δ-coclosed
submodule of M by Proposition 3.4. Note that M = (K +Mi) +M−i and

M/N = ((K +Mi) +M−i)/N = (K +Mi)/N + (M−i +N)/N.

Since M/K is singular, we have that M/(M−i + N) is singular. Thus, M =

N + M−i for (K + Mi)/N �δ M/N . By (2), M = N ⊕ N
′

for some N
′

⊆ M .

Hence, K = N∩(K+N
′

) andM = N+(K+N
′

), soM/K = N/K⊕(K+N
′

)/K.

By Lemma 3.7, (K+N
′

)/K is δ-coclosed submodule ofM/K, and henceK+N
′

is

a δ-coclosed submodule ofM by Proposition 3.4. Note thatM = (K+Mi)+N
′

=

(K + N
′

) + Mi. By (2), K + N
′

is a direct summand of M . Suppose that

M = (K +N
′

)⊕K
′

for some K
′

⊆ M . Thus, N
′

= (K +N
′

) ∩ (N
′

+K
′

) and

K ∩ (N
′

+K
′

) = N ∩ (K +N
′

) ∩ (N
′

+K
′

) = 0,

so M = K ⊕ (N
′

+K
′

). By Lemma 3.1 and Lemma 4.3, M is δ-lifting.
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(2) ⇒ (3) Note that (K +Mi)/K + (K +M−i)/K = M/K with M/(K +Mi)
and M/(K +M−i) singular.

(3) ⇒ (2) Let K be a δ-coclosed submodule in M such that M = K+Mi. (The
case M = K +M−i is similar). Since M/K is an amply δ-supplemented module,
(K+M−i)/K has a δ-s-closure in M/K, i.e., there exists a δ-coclosed submodule
N/K in M/K such that (K + M−i)/N �δ M/N . It is clear that N + M−i =
K +M−i and (N +M−i)/N �δ M/N . Thus, N is a δ-coclosed submodule in M

by Proposition3.4. By (3), M = N ⊕ N
′

for some N
′

⊆ M . It is obvious that

M = K+N
′

+N and K = (K+N
′

)∩N , hence M/K = N/K⊕(K+N
′

)/K, that

is, (K +N
′

)/K is a direct summand in M/K, and so (K +N
′

)/K is δ-coclosed

in M/K. By Proposition 3.4, (K +N
′

) ⊆δcc M . By (3), K +N
′

= K ⊕N
′

is a
direct summand in M , thus K is a direct summand in M . �

Lemma 4.5. Let M = M1 ⊕M2. If N ⊆ M such that (N +M1)/M1 �δ M/M1

and M = N +M2, then (N +M1)/N �δ M/N .

Proof. Let N ⊆ M be such that (N + M1)/M1 �δ M/M1 and M = N + M2.
Consider the homomorphism

φ : M/M1 ' M2
f

−→ M2/(M2 ∩N) ' (M2 +N)/N = M/N.

Then, φ maps (N + M1)/M1 to (N + M1)/N , so (N + M1)/N �δ M/N by
Lemma 2.1(2). �

Definition 4.6. Let M1 and M2 be modules. M1 is called δ-small M2-projective
if every homomorphism f : M1 → M2/A, where A ⊆ M2 with M2/A singular and
Imf �δ M2/A, can be lifted to a homomorphism ϕ : M1 → M2. M1 and M2 are
relatively δ-small projective, ifMi is δ-small Mj-projective for every i 6= j ∈ {1, 2}.
It is clear that M1 is δ-small M2-projective if M1 is M2-projective.

Lemma 4.7. Let M = M1 ⊕M2. The following statements are equivalent.

(1) M1 is δ-small M2-projective.
(2) For every submodule N ⊆ M with M/N singular and (N + M1)/N �δ

M/N there exists N
′

⊆ N such that M = N
′

⊕M2.

Proof. (1) ⇒ (2) Let N ⊆ M with M/N singular be such that (N +M1)/N �δ

M/N . Thus,

M/N = (M1 +M2)/N = (N +M1)/N + (N +M2)/N.

Since M/N is singular, we have that M/(N +M2) is singular, so M = N +M2.
Consider the homomorphism

g : M1 → M/N,m1 7→ m1 +N

and the epimorphism

f : M2 → M/N = (N +M2)/N,m2 7→ m2 +N.

It follows that Img = (N +M1)/N �δ M/N . Since M1 is δ-small M2-projective,
there exists a homomorphism ϕ : M1 → M2 such that fϕ = g. Define

N
′

= {a− ϕ(a) | a ∈ M1},
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so that N
′

⊆ N and M = N
′

⊕M2.
(2) ⇒ (1) Suppose that A ⊆ M2 with M2/A singular, that f : M1 → M2/A

with Imf �δ M2/A, and let π : M2 → M2/A denote the canonical epimorphism.
Define

N = {a+ b ∈ M1 ⊕M2 | f(a) = −π(b), a ∈ M1, b ∈ M2}.

Clearly, A ⊆ N and M = N +M2. Let Imf = X/A with X ⊆ M2. Consider

h : M2/A → M/N,m2 7→ m2 +N.

Then h(X/A) = (X + N)/N . Since X/A = Imf �δ M2/A, it follows from
Lemma 2.1 that (X + N)/N �δ M/N . Note that (N +M1)/N ⊆ (X + N)/N ,
thus

(N +M1)/N �δ M/N

by Lemma 2.1. Since

M/N = (N +M2)/N ' M2/(N ∩M2),

A ⊆ N ∩M2 and M2/A is singular, it follows that M/N is singular. Hence there

exists N
′

⊆ N such that M = N
′

⊕M2. Consider the canonical projection α :
N

′

⊕M2 → M2. Then, the homomorphism f can be lifted to the homomorphism
α |M1

: M1 → M2. So, M1 is δ-small M2-projective. �

Proposition 4.8. Let M = M1 ⊕M2 be an amply δ-supplemented module. The
following statements are equivalent.

(1) If M = N+M2 such that M/N is singular and (N+M1)/M1 �δ M/M1,

then there exists N
′

⊆ N such that M = N
′

⊕M2.
(2) If M = N +M2 such that M/N is singular and (N +M1)/N �δ M/N ,

then there exists N
′

⊆ N such that M = N
′

⊕M2.
(3) M1 is δ-small M2-projective.

Proof. (1) ⇒ (2) Suppose that M = N +M2 with M/N singular and

(N +M1)/N �δ M/N.

Since M is an amply δ-supplemented module, M/M1 is an amply δ-supplemented
module by Lemma 2.7. Thus there exists M1 ⊆ X ⊆ M such that

M/M1 = X/M1 + (N +M1)/M1 and (X ∩ (N +M1))/M1 �δ X/M1,

hence

M = N +X = N + (X ∩ (M1 +M2)) = (N +M1) + (X ∩M2).

Note that M/N = (N +M1)/N + (X ∩M2 +N)/N , where

M/(X ∩M2 +N) = (X ∩M2 +N +X)/(X ∩M2 +N)
' X/(X ∩ (X ∩M2 +N))
= X/(X ∩M2 +X ∩N),

and there is an epimorphism X/(M1 ∩ M2 + X ∩ N) → X/(X ∩ M2 + X ∩ N)
where

X/(M1 ∩M2 +X ∩N) = X/X ∩N = (X +N)/N = M/N
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singular, so M/(X ∩ M2 + N) is singular, thus M/N = (X ∩ M2 + N)/N , so
M = X ∩M2 +N . By Lemma 3.2, M = M2 + (X ∩N). Since (N ∩X) +M1 =
X ∩ (N +M1), it follows that

((N ∩X) +M1)/M1 �δ X/M1.

By Lemma 2.1, ((N ∩X) +M1)/M1 �δ M/M1. Thus there exists N
′

⊆ M such

that N
′

⊆ N ∩X and M = N
′

⊕M2.
(2) ⇒ (1) By Lemma 4.5.
(2) ⇔ (3) By Lemma 4.7. �

Lemma 4.9. Assume that M = M1 ⊕M2 is such that M2 is a δ-lifting module
and M1 is δ-small M2-projective. If N ⊆δcc M and (N +M1)/N �δ M/N , then
N is a direct summand.

Proof. Suppose that N ⊆δcc M and that (N +M1)/N �δ M/N . By Lemma 4.7,

there exists N
′

⊆ N such that M = N
′

⊕ M2. Clearly, M/N
′

' M2 is δ-

lifting. Since N ⊆δcc M , we have N/N
′

⊆δcc M/N
′

by Lemma 3.6. Note that

N/N
′

+ (M2 + N
′

)/N
′

= M/N
′

. It follows from Theorem 4.4(1) ⇒ (2) that

N/N
′

⊆⊕ M/N
′

. Thus, N ⊆⊕ M . �

The following lemma is known from [7, 41.14].

Lemma 4.10. Let M = M1 ⊕M2. The following statements are equivalent.

(1) M1 is M2-projective.

(2) For every N ⊆ M with M = N + M2 there exists N
′

⊆ N such that

M = N
′

⊕M2.

Theorem 4.11. Assume that the class δ is closed under module extensions, that
M = M1 ⊕ M2 is an amply δ-supplemented module, and that M1 and M2 are
δ-lifting. If one of the following conditions holds, then M is δ-lifting.

(1) M1 is δ-small M2-projective and every N ⊆δcc M with M = N +M1 is a
direct summand.

(2) M1 and M2 are relatively δ-small projective, and every N ⊆δcc M with
M = N +M1 = N +M2 is a direct summand.

(3) M2 is M1-projective, and M1 is δ-small M2-projective.
(4) M1 is semisimple and δ-small M2-projective.

Proof. (1) and (2) follow from Theorem 4.4 and Lemma 4.9.
(3) Let N ⊆δcc M be such that M = N +M1. By Lemma 4.10, there exists

N
′

⊆ N such that M = N
′

⊕M2. Note that

N/N
′

+ (M2 +N
′

)/N
′

= M/N
′

and that M/N is singular. Since M/N
′

is δ-lifting and N/N
′

⊆δcc M/N
′

, it

follows that N/N
′

⊆⊕ M/N
′

by Theorem 4.4. So, N ⊆⊕ M . Now, (3) follows
from (1).

(4) follows from (3). �
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5. Projective δ-covers

Recall that a pair (P, p) is called a projective δ-cover [8] of a module M if P
is projective and p is an epimorphism of P onto M with ker(p) �δ P . In this
section, we mainly use δ-lifting modules to characterize rings R such that every
R-module (or every simple R-module, resp.) has a projective δ-cover.

A ring R is called δ-perfect (or δ-semiperfect) [8], if every R-module (or every
simple R-module, resp.) has a projective δ-cover. It is proved in [8, Theorem 3.6]
that R is δ-semiperfect if and only if every finitely generated right module has a
projective δ-cover. Thus, every right perfect ring is clearly δ-perfect. Semiperfect
rings and δ-perfect rings are δ-semiperfect. Zhou [8] gives some examples to illus-
trate that a δ-perfect ring is not necessarily semiperfect, and that a δ-semiperfect
ring is not necessarily semiperfect.

According to [2], a ring R is right perfect (or semiperfect) if and only if every
(or every finitely generated) projective right R-module is lifting. We generalize
this as follows.

Theorem 5.1. A ring R is δ-perfect (or δ-semiperfect) if and only if every (or
every finitely generated, resp.) projective right R-module is δ-lifting.

Proof. Let R be δ-perfect (or δ-semiperfect) and let P be a (finitely generated)
projective R-module. For a submodule A of P , consider the canonical epimor-
phism ϕ : P → P/A. Since R is δ-perfect, P/A has a projective δ-cover, hence
there exists a decomposition P = P1 ⊕ P2 such that P2 ⊆ A and P1 ∩ A �δ P
by [8, Lemma 2.4]. If A/P2 +L/P2 = P/P2 with P/L singular, then A+L = P .
Since

A = A ∩ (P1 + P2) = P2 +A ∩ P1,

it follows that P2+A∩P1+L = P . Thus, A∩P1+L = P with P/L singular. Since
P1 ∩ A �δ P , we have that P = L. Hence P/P2 = L/P2. So A/P2 �δ P/P2,
therefore P is δ-lifting.

Conversely, since every (finitely generated) module M is an epimorphic image
of a (finitely generated) free module, we can consider an epimorphism f : P → M ,
where P is (finitely generated) projective. Since P is δ-lifting, there exists a
decomposition P = P ∗ ⊕ P ∗∗ such that ker f/P ∗ �δ P/P ∗. Thus, we get an
epimorphism (f |P ∗∗) : P ∗∗ → M with ker(f |P ∗∗) = ker f ∩ P ∗∗ and

ker f/P ∗ = ker f ∩ (P ∗ + P ∗∗)/P ∗

= Kerf ∩ P ∗∗ + P ∗/P ∗

' ker f ∩ P ∗∗.

Note that ker f/P ∗ �δ P/P
∗. It follows that ker(f |P ∗∗) �δ P

∗∗. Hence

ker(f |P ∗∗) �δ P.

Therefore, (f |P ∗∗) is a projective δ-cover. �

Example 5.2. (1) Let F be a field, let I =

(

F F
0 F

)

, and let

R = {(x1, · · · , xn, x, x, · · · ) | n ∈ N, xi ∈ M2(F ), x ∈ I}.



ON LIFTING MODULES RELATIVE TO THE CLASS OF ALL SINGULAR MODULES 649

With component wise operations, R is a ring. According to [8, Example 4.3],
R is δ-perfect but not right perfect. Thus, every projective right R-module is
δ-lifting, but not necessarily lifting.

(2) Let Q =
∞
∏

i=1

Fi, where Fi = Z2 for all i. Let R be the subring of Q

generated by
∞
⊕

i=1

Fi and 1Q. According to [8, Example 4.1], R is δ-semiperfect

but not semiperfect. Thus, every finitely generated projective right R-module is
δ-lifting, but not necessarily lifting.
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