ON LEVY'S CONVERGENCE THEOREMS OF TWO-PARAMETER MULTIVALUED RANDOM PROCESSES

NGO HOANG LONG AND VU VIET YEN

ABSTRACT. In this paper we prove the Levy's upward and downward theorems for the convergence of two-parameter multivalued random processes in Hausdorff's sense.

1. INTRODUCTION AND PRELIMINARIES

The Levy's convergence theorems of one-parameter multivalued processes were presented in the works of Z. P. Wang and X. H. Xue [6], D. Wenlong and W. Zhenpeng [7]. In this paper we will extend these results to the two-parameter cases.

Let $(\Omega, \Sigma, \mathbb{P})$ be a complete probability space and \mathfrak{X} a real separable Banach space with norm $\|.\|$. Let $P_c(\mathfrak{X})$ denote the family of all nonempty bounded closed convex subsets of \mathfrak{X} . For $A, B, C \in P_c(\mathfrak{X})$, the Hausdorff distance h(A, B), the radius |C| of the set C are defined as in [4, 6]. The concepts and notations such as \mathfrak{X} -valued Bochner integrable random variables space $L^1(\Omega, \mathfrak{X})$, measurable multifunction, Aumann integral, conditional multivalued expectation, etc. are the same as in the above references.

For each $p \ge 1$, let $\mathcal{L}_c^p[\Omega, \mathfrak{X}]$ denote the family of measurable multifunction $F: \Omega \to P_c(\mathfrak{X})$ satisfying $\int_{\Omega} |F(\omega)|^p d\mathbb{P} < \infty$, where two multifunctions F, G are identical if $F(\omega) = G(\omega)$ a.e. Let $F, G \in \mathcal{L}_c^p[\Omega, \mathfrak{X}]$. Since

$$h^p(F(\omega), G(\omega)) \leqslant (|F(\omega)| + |G(\omega)|)^p \leqslant 2^{p-1}(|F(\omega)|^p + |G(\omega)|^p),$$

the function $\omega \mapsto h^p(F(\omega), G(\omega))$ is in $L^p(\mathbb{R})$ and we define

$$\Delta_p(F,G) = \left(\int_{\Omega} h^p(F,G) d\mathbb{P}\right)^{1/p}.$$

For $F, G, H \in \mathcal{L}^p_c[\Omega, \mathfrak{X}]$ we have

$$\begin{split} \Delta_p(F,G) &= \|h(F,G)\|_p \leqslant \|h(F,H) + h(H,G)\|_p \\ &\leqslant \|h(F,H)\|_p + \|h(H,G)\|_p = \Delta_p(F,H) + \Delta_p(H,G), \end{split}$$

Received February 13, 2006.

¹⁹⁹¹ Mathematics Subject Classification. Primary 60G48.

Key words and phrases. Two-parameter multivalued random processes, commuting filtration, maximal inequality.

then $(\mathcal{L}_c^p[\Omega, \mathfrak{X}], \Delta_p)$ is a metric space. A measurable multivalued function F is called *simple* if there exists a finite measurable partition $\{A_1, \ldots, A_n\}$ of Ω and nonempty subsets X_1, \ldots, X_n of \mathfrak{X} such that $F(\omega) = \sum_{i=1}^n I_{A_i}(\omega) X_i$ for all $\omega \in \Omega$. We denote by $\mathbb{L}_c^p[\Omega, \mathfrak{X}]$ the closure of the set of all simple functions in $\mathcal{L}_c^p[\Omega, \mathfrak{X}]$. It should be mention that $\mathbb{L}_c^p[\Omega, \mathfrak{X}] \subsetneq \mathcal{L}_c^p[\Omega, \mathfrak{X}]$ (see Example 3.4 [4]).

We denote by \mathbb{N} (resp., $-\mathbb{N}$) the set of nonnegative (resp., nonpositive) integers. The ordering on $J = \mathbb{N} \times \mathbb{N}$ (resp., $K = (-\mathbb{N}) \times (-\mathbb{N})$) is defined as the natural one. Namely, for $s = (s_1, s_2)$ and $t = (t_1, t_2)$, we put $s \leq t$ whenever $s_1 \leq t_1$ and $s_2 \leq t_2$. We also denote $s \wedge t = (s_1 \wedge t_1, s_2 \wedge t_2)$. For each $n \in \mathbb{N}$ or $n \in -\mathbb{N}$, let $\overline{n} = (n, n)$. $\mathcal{F} = \{\mathcal{F}_t\}$ is a two-parameter filtration of Σ if for each t, \mathcal{F}_t is a sub- σ -field of Σ and whenever $s \leq t, \mathcal{F}_s \subset \mathcal{F}_t$. \mathcal{F} is commuting if for all s, t, \mathcal{F}_s and \mathcal{F}_t are conditionally independent, given $F_{s \wedge t}$.

Definition 1.1. A two-parameter process $\{M_t\}$ is a martingale with respect to the filtration \mathcal{F} if for each t, M_t is \mathcal{F}_t -measurable, $\mathbb{E}|M_t| < \infty$ and whenever $s \leq t$, $\mathbb{E}(M_t|\mathcal{F}_s) = M_s$ a.s.

In the sequel, we will frequently use the following well known result (see [1]).

Lemma 1.1. (Cairoli's Maximal inequality) Let $\mathcal{F} = \{\mathcal{F}_t, t \in J\}$ be a commuting filtration and $M = \{M_{i,j} : i, j \in \mathbb{N}\}$ a two-parameter martingale. If p > 1, then for all $m, n \in \mathbb{N}$, we have

$$\mathbb{E}\Big(\max_{(i,j)\leqslant (n,m)}|M_{i,j}|^p\Big)\leqslant \Big(\frac{p}{p-1}\Big)^{2p}\mathbb{E}|M_{n,m}|^p.$$

2. Main results

Theorem 2.1. Suppose that p > 1, $F \in \mathbb{L}^p_c[\Omega, \mathfrak{X}]$ and $\mathcal{F} = \{\mathcal{F}_t, t \in J\}$ is a commuting filtration of Σ . Let $F_t = \mathcal{E}[F|\mathcal{F}_t]$ and $F_\infty = \mathcal{E}[F|\mathcal{F}_\infty]$ where $\mathcal{F}_\infty = \sigma(\bigcup_{n \in \mathbb{N}} \mathcal{F}_n)$. Then F_t converges to F_∞ a.s. in the Hausdorff's sense.

Proof. Without loss of generality, we may assume that F is \mathcal{F}_{∞} -measurable. For any $\epsilon > 0$, pick a simple function $H \in \mathcal{L}_{c}^{p}$ such that H is \mathcal{F}_{∞} -measurable and $\Delta_{p}(F,H) < \epsilon^{2}$. Assume that $H = \sum_{i=1}^{K} H_{i}I_{A_{i}}$, where $\{A_{i} : i = 1, \ldots, K\}$ is a measurable partition of Ω and $H_{k} \in P_{c}(\mathfrak{X})$. Pick $\delta > 0$ such that $\delta < \epsilon^{2p} (2^{p} \max_{1 \leq i \leq K} |H_{i}|^{p})^{-1}$. Choose $n_{1} < n_{2} < \ldots < n_{K}$ such that for each i, there exists $B_{i} \in \mathcal{F}_{\overline{n}_{i}}$ satisfying $\mathbb{P}(A_{i}\Delta B_{i}) < \delta/2K$. Let

$$C_i = B_i \setminus \left(\bigcup_{1 \leq j < i} B_j\right), \ 1 \leq i < K, \quad C_K = \Omega \setminus \bigcup_{1 \leq i < K} C_i,$$

and $G(\omega) = \sum_{i=1}^{K} H_i I_{C_i}$. Then

$$[\Delta_p(G,H)]^p = \mathbb{E}(h^p(G,H)) = \sum_{j,i=1}^K \mathbb{E}(h^p(G,H)I_{C_i \cap A_j})$$

262

$$(2.1)$$
$$= \sum_{i,j=1}^{K} \mathbb{E}(h^{p}(H_{i},H_{j})I_{C_{i}\cap A_{j}})$$
$$\leq \sum_{j,i=1,j\neq i}^{K} \mathbb{E}\left(2^{p-1}(|H_{i}|^{p}+|H_{j}|^{p})I_{C_{i}\cap A_{j}}\right)$$
$$\leq 2^{p} \max_{1\leqslant i\leqslant K} |H_{i}|^{p} \sum_{j=1}^{K} \mathbb{P}\left(C_{j}\cap\bigcup_{i\neq j}A_{i}\right)$$
$$= 2^{p} \max_{1\leqslant i\leqslant K} |H_{i}|^{p} \left[\sum_{j=1}^{K-1} \mathbb{P}(C_{j}\cap A_{j}^{c}) + \mathbb{P}(C_{K}\cap A_{K}^{c})\right]$$

For $1 \leq j < K - 1$,

(2.2)
$$\mathbb{P}(C_j \cap A_j^c) \leqslant \mathbb{P}(B_j \cap A_j^c) \leqslant \mathbb{P}(B_j \Delta A_j) \leqslant \frac{\delta}{2K}.$$

Since

$$C_K = \Omega \setminus \bigcup_{1 \leq i < K} C_i = \Omega \setminus \bigcup_{1 \leq i < K} B_i$$

we have

$$(C_K \cap A_K^c)^c = C_K^c \cup A_K = (\bigcup_{1 \le i < K} B_i) \cup A_K$$

and

$$\mathbb{P}\left(\left(\bigcup_{1\leqslant i< K} B_i\right) \cup A_K\right) \ge \mathbb{P}\left(\left(\bigcup_{1\leqslant i< K} B_i A_i\right) \cup A_K\right) = \sum_{1\leqslant i< K} \mathbb{P}(A_i B_i) + \mathbb{P}(A_K)$$
$$\ge \mathbb{P}(A_K) + \sum_{1\leqslant i< K} \left(\mathbb{P}(A_i) - \mathbb{P}(A_i \Delta B_i)\right)$$
$$= 1 - \sum_{1\leqslant i< K} \mathbb{P}(A_i \Delta B_i)$$
$$\ge 1 - (K-1)\frac{\delta}{2K}.$$

Therefore

(2.3)
$$\mathbb{P}(C_K \cap A_K^c) \leqslant \frac{(K-1)\delta}{2K}.$$

According to (2.1), (2.2) and (2.3), we have

$$[\Delta_p(G,H)]^p \leq 2^p \max_{1 \leq i \leq K} |H_i|^p \ \frac{2(K-1)\delta}{2K} \leq \epsilon^{2p}.$$

Then, $\Delta_p(G, H) \leq \epsilon^2$ and

(2.4)
$$\Delta_p(G,F) \leq \Delta_p(G,H) + \Delta_p(H,F) \leq 2\epsilon^2.$$

For any $t \ge \overline{n}_k$, by Lemma 2.6 of [3], we have

$$h(F_t, G) = h(\mathcal{E}[F|\mathcal{F}_t], \mathcal{E}[G|\mathcal{F}_t]) \leq \mathbb{E}(h(F, G)|\mathcal{F}_t) = h_t.$$

For any $m > n_k$, using Markov's inequality, Lemma 1.2, Jensen's inequality and (2.4) we have

$$\mathbb{P}\left(\sup_{\overline{n}_{k}\leqslant t\leqslant\overline{m}}h_{t}>\epsilon\right)\leqslant\frac{1}{\epsilon^{p}}\mathbb{E}\left(\sup_{\overline{n}_{k}\leqslant t\leqslant\overline{m}}h_{t}^{p}\right)\leqslant\frac{1}{\epsilon^{p}}\left(\frac{p}{p-1}\right)^{2p}\mathbb{E}(h_{\overline{m}}^{p})$$
$$=\frac{1}{\epsilon^{p}}\left(\frac{p}{p-1}\right)^{2p}\mathbb{E}\left(\mathbb{E}^{p}(h(F,G)|\mathcal{F}_{\overline{m}})\right)$$
$$\leqslant\frac{1}{\epsilon^{p}}\left(\frac{p}{p-1}\right)^{2p}\mathbb{E}\left(\mathbb{E}(h^{p}(F,G)|\mathcal{F}_{\overline{m}})\right)$$
$$=\frac{1}{\epsilon^{p}}\left(\frac{p}{p-1}\right)^{2p}\mathbb{E}h^{p}(F,G)\leqslant(2\epsilon)^{p}\left(\frac{p}{p-1}\right)^{2p}$$

Letting $m \to \infty$, we obtain

$$\mathbb{P}\big(\sup_{t \ge \overline{n}_k} h_t > \epsilon\big) \leqslant (2\epsilon)^p \Big(\frac{p}{p-1}\Big)^{2p}.$$

Finally, we have

$$\mathbb{P}\left(\sup_{t \ge \overline{n}_{k}} h(F_{t}, F) > 2\epsilon\right) \leq \mathbb{P}\left(\sup_{t \ge \overline{n}_{k}} h(F_{t}, G) > \epsilon\right) + \mathbb{P}\left(h(F, G) > \epsilon\right)$$
$$\leq \mathbb{P}\left(\sup_{t \ge \overline{n}_{k}} h_{t} > \epsilon\right) + \frac{\mathbb{E}h^{p}(F, G)}{\epsilon^{p}}$$
$$\leq (2\epsilon)^{p} \left(1 + \left(\frac{p}{p-1}\right)^{2p}\right),$$

and by Lemma 2 of [5], we obtain that $h - \lim F_t = F$ a.s. The theorem is proved.

We have proved the upward case of Levy's convergence theorem. For the downward case, we need first the following technical lemma.

Lemma 2.1. Let M be a square integrable random variable, $\mathcal{F} = \{\mathcal{F}_t : t \in K\}$ a commuting filtration. Then $\mathbb{E}(M|\mathcal{F}_t) \to \mathbb{E}(M|\mathcal{F}_{-\infty})$ a.s. where $\mathcal{F}_{-\infty} = \bigcap_{n=-1}^{-\infty} \mathcal{F}_{\overline{n}}$.

Proof. To prove this convergence, we consider the set

$$\mathbb{G} = \{ X \in \mathrm{L}^2(\mathbb{R}) : \mathbb{E}(X|\mathcal{F}_t) = \mathbb{E}(X|\mathcal{F}_{-\infty}) \text{ for some } t \in K \}.$$

Then, we claim that the closed linear spand of \mathbb{G} is all of $L^2(\mathbb{R})$. Suppose that there exists a random variable $Y \in L^2(\mathbb{R})$ such that $Y \perp \mathbb{G}$, it means that $\mathbb{E}XY = 0$ for all $X \in \mathbb{G}$. For each $t \in K$, since $X = Y - \mathbb{E}(Y|\mathcal{F}_t) \in \mathbb{G}$ then we have

$$\mathbb{E}(Y(Y - \mathbb{E}(Y|\mathcal{F}_t)) = 0 \Leftrightarrow \mathbb{E}(Y - \mathbb{E}(Y|\mathcal{F}_t))^2 = 0.$$

It implies that Y is \mathcal{F}_t -measurable. Since this is true for all $t \in K$, Y is $\mathcal{F}_{-\infty}$ -measurable. On the other hand, \mathbb{G} contains all $\mathcal{F}_{-\infty}$ -measurable random variables, so $Y \perp \mathbb{G}$ implies Y = 0.

Next, we show that the set

$$\mathbb{H} = \{ X \in \mathrm{L}^2(\mathbb{R}) : \mathbb{E}(X | \mathcal{F}_t) \to \mathbb{E}(X | \mathcal{F}_{-\infty}) \text{ a.s.} \}$$

264

is a closed linear space of $L^2(\mathbb{R})$. Indeed, for any random variable X in the closed hull of \mathbb{H} and $\epsilon > 0$, there exists $Y \in \mathbb{H}$ such that $||X - Y||_2^2 < \epsilon^3/4$. For each $t \in K$, put $X_t = \mathbb{E}(X|\mathcal{F}_t), Y_t = \mathbb{E}(Y|\mathcal{F}_t)$. Then for any $n \in -\mathbb{N}$, we have

$$\mathbb{P}\Big(\sup_{\overline{n}\leqslant t\leqslant \overline{-1}} |X_t - Y_t| \ge \epsilon\Big) \leqslant \frac{1}{\epsilon^2} \mathbb{E}(\sup_{\overline{n}\leqslant t\leqslant \overline{-1}} |X_t - Y_t|^2)$$
$$\leqslant \frac{4}{\epsilon^2} \mathbb{E}|X_{\overline{-1}} - Y_{\overline{-1}}|^2 \leqslant \frac{4}{\epsilon^2} \|X - Y\|_2^2 \leqslant \epsilon.$$

Letting n tend to $-\infty$, we have

$$\mathbb{P}\big(\sup_t |X_t - Y_t| \ge \epsilon\big) \le \epsilon.$$

On the other hand,

$$\sup_{t} |\mathbb{E}(Y_{t}|\mathcal{F}_{-\infty}) - \mathbb{E}(X|\mathcal{F}_{-\infty})| = |\mathbb{E}(Y|\mathcal{F}_{-\infty}) - \mathbb{E}(X|\mathcal{F}_{-\infty})|$$
$$= |\mathbb{E}(Y - X|\mathcal{F}_{-\infty})| \leq \mathbb{E}(|Y - X||\mathcal{F}_{-\infty}).$$

Thus

$$\begin{split} \mathbb{P} \Big(\sup_{t} |\mathbb{E}(Y_{t}|\mathcal{F}_{-\infty}) - \mathbb{E}(X|\mathcal{F}_{-\infty})| \ge \epsilon \Big) &\leq \mathbb{P} \Big(\mathbb{E}(|Y - X||\mathcal{F}_{-\infty}) \ge \epsilon \Big) \\ &\leq \frac{1}{\epsilon^{2}} \|Y - X\|_{2}^{2} \leq \epsilon. \end{split}$$

Since $Y_t \to \mathbb{E}(Y|\mathcal{F}_{-\infty}) = \mathbb{E}(Y_t|\mathcal{F}_{-\infty})$ a.s., there exists $t_0 \in K$ such that

$$\mathbb{P}\big(\sup_{t\leqslant t_0}|Y_t-\mathbb{E}(Y_t|\mathcal{F}_{-\infty})|\geqslant\epsilon\big)\leqslant\epsilon.$$

Hence

$$\mathbb{P}\Big(\sup_{t\leqslant t_0}|X_t - \mathbb{E}(X|\mathcal{F}_{-\infty})| \ge 3\epsilon\Big) \leqslant 3\epsilon,$$

which implies that $X_t \to \mathbb{E}(X | \mathcal{F}_{-\infty})$ a.s., so $X \in \mathbb{H}$ and \mathbb{H} is closed. Moreover, $\mathbb{G} \subset \mathbb{H}$ then $L^2(\mathbb{R}) = \overline{\mathbb{G}} \subset \mathbb{H} \subset L^2(\mathbb{R})$, it implies that $\mathbb{H} = L^2(\mathbb{R})$. The proof is complete.

Theorem 2.2. Suppose that \mathcal{F} is a commuting filtration, $F \in \mathbb{L}^p_c$, $F_t = \mathcal{E}[F|\mathcal{F}_t]$, $t \in K$. Then $F_t \xrightarrow{h} F_{-\infty}$ a.s., where $F_{-\infty} = \mathcal{E}[F|\mathcal{F}_{-\infty}]$.

Proof. Without loss of generality we may assume that F is $\mathcal{F}_{(-1,-1)}$ -measureable. First, we suppose that F is a simple function in \mathcal{L}_c^p , i.e. $F = \sum_{i=1}^k H_i I_{A_i}$, where (A_i) is a measurable partition of Ω and $H_k \in P_c(\mathfrak{X})$. For any $F_1, F_2, G_1, G_2 \in$ $P_c(\mathfrak{X})$ it is known that

$$h(F_1 + F_2, G_1 + G_2) \leq h(F_1, G_1) + h(F_2, G_2).$$

Thus, by Lemma 2.2 we have

$$\begin{split} h(F_t, F_{-\infty}) &= h(\sum_{i=1}^k H_i \mathbb{E}(I_{A_i} | \mathcal{F}_t), \sum_{i=1}^k H_i \mathbb{E}(I_{A_i} | \mathcal{F}_{-\infty})) \\ &\leqslant \sum_{i=1}^k h(H_i \mathbb{E}(I_{A_i} | \mathcal{F}_t), H_i \mathbb{E}(I_{A_i} | \mathcal{F}_{-\infty})) \\ &\leqslant (\max_{1 \leqslant i \leqslant K} |H_i|) \sum_{i=1}^k |\mathbb{E}(I_{A_i} | \mathcal{F}_t) - \mathbb{E}(I_{A_i} | \mathcal{F}_{-\infty})| \longrightarrow 0 \text{ a.s.} \end{split}$$

Now, we suppose that $F \in \mathbb{L}_c^p$. For any $\epsilon > 0$, there exists a simple function $H \in \mathcal{L}_c^p$ such that H is $\mathcal{F}_{(-1,-1)}$ -measurable and $\Delta_p(F,H) \leq \left(\frac{p-1}{p}\right)^2 \epsilon^{(p+1)/p}$. Suppose that $H = \sum_{i=1}^k H_i I_{A_i}$, where (A_i) is a $\mathcal{F}_{(-1,-1)}$ -measurable partition of Ω and $H_i \in P_c(\mathfrak{X})$. For each $t \in K$, denote $H_t = \mathcal{E}[H|\mathcal{F}_t]$ and $H_{-\infty} = \mathcal{E}[H|\mathcal{F}_{-\infty}]$. Since $h(H_t, H_{-\infty}) \to 0$ a.s, there exists $t_0 \in K$ such that

$$\mathbb{P}\big(\sup_{t\leqslant t_0}(h(H_t,H_{-\infty}))\geqslant\epsilon\big)<\epsilon.$$

For any $t \in K$, we have

$$h(F_t, H_t) = h(\mathcal{E}[F|\mathcal{F}_t], \mathcal{E}[H|\mathcal{F}_t]) \leqslant \mathbb{E}(h(F, H)|\mathcal{F}_t) = h_t,$$

$$h(F_{-\infty}, H_{-\infty}) = h(\mathcal{E}[F|\mathcal{F}_{-\infty}], \mathcal{E}[H|\mathcal{F}_{-\infty}]) \leqslant \mathbb{E}(h(F, H)|\mathcal{F}_{-\infty}) = h_{-\infty}$$

Since $\{h_t, \mathcal{F}_t, \overline{n} \leq t \leq \overline{-1}\}$ is a real martingale for any $n \in -\mathbb{N}$, by Lemma 1.2 we have

$$\mathbb{P}\Big(\max_{\overline{n}\leqslant t\leqslant \overline{-1}}h_t \geqslant \epsilon\Big) \leqslant \frac{1}{\epsilon^p} \mathbb{E}(\max_{\overline{n}\leqslant t\leqslant \overline{-1}}h_t^p) \leqslant \frac{1}{\epsilon^p} \Big(\frac{p}{p-1}\Big)^{2p} \mathbb{E}(h_{\overline{-1}}^p)$$
$$\leqslant \frac{1}{\epsilon^p} \Big(\frac{p}{p-1}\Big)^{2p} \Delta_p^p(F,H) \leqslant \epsilon.$$

Letting $n \to -\infty$, we obtain $\mathbb{P}(\sup_t h_t \ge \epsilon) \le \epsilon$. Moreover,

$$\mathbb{P}\big(h(F_{-\infty}, H_{-\infty}) \geqslant \epsilon\big) \leqslant \frac{1}{\epsilon^p} \mathbb{E}(h_{-\infty}^p) \leqslant \frac{1}{\epsilon^p} \Delta_p^p(F, H) < \epsilon$$

Then, for any $\epsilon > 0$, there exists a $t_1 \in K$ such that

$$\mathbb{P}\Big(\sup_{t\leqslant t_1} h(F_t, F_{-\infty}) \ge 3\epsilon\Big) \leqslant \mathbb{P}\Big(\sup_{t\leqslant t_1} h(F_t, H_t) \ge \epsilon\Big) + \mathbb{P}\Big(\sup_{t\leqslant t_1} h(H_t, H_{-\infty}) \ge \epsilon\Big) \\ + \mathbb{P}\Big(h(H_{-\infty}, F_{-\infty}) \ge \epsilon\Big) < 3\epsilon,$$

which give $F_t \to F_{-\infty}$ a.s. The theorem is proved.

References

- E. Cairoli, Une inégalité pour martingales à indices multiples et les application. Séminaire de Probabilités IV, Lecture Note in Math. 124 (1970), Springer-Verlag.
- [2] G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Cambridge Univ. Press (1992).
- [3] F. Hiai, Convergence of conditional expectations and strong laws of large numbers for multivalued random variables, Trans. Amer. Math. Soc. 291 (2) (1985), 613-627.

- [4] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Multivariate Anal. 7 (1977) 149-182.
- [5] D. Q. Luu and N. H. Hai, On the essential convergence in law of two-parameter random processes, Bull. Polon. Acad. Sci.: Math. 40 (3) (1992), 197-204.
- Z. P. Wang and X. H. Xue, On convergence and closedness of multivalued martingale, Trans. Amer. Math. Soc. 341 (2) (1994), 807-827.
- [7] D. Wenlong and W. Zhenpeng, On representation and regularity of continuous parameter multivalued martingales, Proc. Amer. Math. Soc. 126 (6) (1998), 1799-1810.

DEPARTMENT OF MATHEMATICS, HANOI UNIVERSITY OF EDUCATION HANOI, VIET NAM