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ON LEVY’S CONVERGENCE THEOREMS OF
TWO-PARAMETER MULTIVALUED RANDOM PROCESSES

NGO HOANG LONG AND VU VIET YEN

Abstract. In this paper we prove the Levy’s upward and downward theo-
rems for the convergence of two-parameter multivalued random processes in
Hausdorff’s sense.

1. Introduction and preliminaries

The Levy’s convergence theorems of one-parameter multivalued processes were
presented in the works of Z. P. Wang and X. H. Xue [6], D. Wenlong and W.
Zhenpeng [7]. In this paper we will extend these results to the two-parameter
cases.

Let (Ω, Σ,P) be a complete probability space and X a real separable Banach
space with norm ‖.‖. Let Pc(X) denote the family of all nonempty bounded closed
convex subsets of X. For A, B, C ∈ Pc(X), the Hausdorff distance h(A, B), the
radius |C| of the set C are defined as in [4, 6]. The concepts and notations such
as X-valued Bochner integrable random variables space L1(Ω, X), measurable
multifunction, Aumann integral, conditional multivalued expectation, etc. are
the same as in the above references.

For each p > 1, let Lp
c [Ω, X] denote the family of measurable multifunction

F : Ω → Pc(X) satisfying
∫
Ω |F (ω)|pdP < ∞, where two multifunctions F, G are

identical if F (ω) = G(ω) a.e. Let F, G ∈ Lp
c [Ω, X]. Since

hp(F (ω), G(ω)) 6 (|F (ω)|+ |G(ω)|)p 6 2p−1(|F (ω)|p + |G(ω)|p),

the function ω 7→ hp(F (ω), G(ω)) is in Lp(R) and we define

∆p(F, G) =
( ∫

Ω

hp(F, G)dP
)1/p

.

For F, G, H ∈ Lp
c [Ω, X] we have

∆p(F, G) = ‖h(F, G)‖p 6 ‖h(F, H) + h(H, G)‖p

6 ‖h(F, H)‖p + ‖h(H, G)‖p = ∆p(F, H) + ∆p(H, G),
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then (Lp
c [Ω, X], ∆p) is a metric space. A measurable multivalued function F

is called simple if there exists a finite measurable partition {A1, . . . , An} of Ω
and nonempty subsets X1, . . . , Xn of X such that F (ω) =

∑n
i=1 IAi(ω)Xi for all

ω ∈ Ω. We denote by Lp
c [Ω, X] the closure of the set of all simple functions in

Lp
c [Ω, X]. It should be mention that Lp

c [Ω, X]  Lp
c [Ω, X] (see Example 3.4 [4]).

We denote by N (resp., −N) the set of nonnegative (resp., nonpositive) integers.
The ordering on J = N× N (resp., K = (−N) × (−N)) is defined as the natural
one. Namely, for s = (s1, s2) and t = (t1, t2), we put s 6 t whenever s1 6 t1 and
s2 6 t2. We also denote s ∧ t = (s1 ∧ t1, s2 ∧ t2). For each n ∈ N or n ∈ −N,
let n = (n, n). F = {Ft} is a two-parameter filtration of Σ if for each t, Ft is a
sub-σ-field of Σ and whenever s 6 t, Fs ⊂ Ft. F is commuting if for all s, t, Fs

and Ft are conditionally independent, given Fs∧t.

Definition 1.1. A two-parameter process {Mt} is a martingale with respect to
the filtration F if for each t, Mt is Ft-measurable, E|Mt| < ∞ and whenever
s 6 t, E(Mt|Fs) = Ms a.s.

In the sequel, we will frequently use the following well known result (see [1]).

Lemma 1.1. (Cairoli’s Maximal inequality) Let F = {Ft, t ∈ J} be a commuting
filtration and M = {Mi,j : i, j ∈ N} a two-parameter martingale. If p > 1, then
for all m, n ∈ N, we have

E
(

max
(i,j)6(n,m)

|Mi,j |p
)

6
( p

p − 1

)2p
E|Mn,m|p.

2. Main results

Theorem 2.1. Suppose that p > 1, F ∈ Lp
c [Ω, X] and F = {Ft, t ∈ J} is a

commuting filtration of Σ. Let Ft = E [F |Ft] and F∞ = E [F |F∞] where F∞ =
σ
(
∪n∈N Fn

)
. Then Ft converges to F∞ a.s. in the Hausdorff’s sense.

Proof. Without loss of generality, we may assume that F is F∞-measurable. For
any ε > 0, pick a simple function H ∈ Lp

c such that H is F∞-measurable and
∆p(F, H) < ε2. Assume that H =

∑K
i=1 HiIAi , where {Ai : i = 1, . . . , K}

is a measurable partition of Ω and Hk ∈ Pc(X). Pick δ > 0 such that δ <

ε2p
(
2p max

16i6K
|Hi|p

)−1
. Choose n1 < n2 < . . . < nK such that for each i, there

exists Bi ∈ Fni satisfying P(Ai∆Bi) < δ/2K. Let

Ci = Bi\
( ⋃

16j<i

Bj

)
, 1 6 i < K, CK = Ω\

⋃

16i<K

Ci,

and G(ω) =
∑K

i=1 HiICi . Then

[∆p(G, H)]p = E(hp(G, H)) =
K∑

j,i=1

E
(
hp(G, H)ICi∩Aj

)



TWO-PARAMETER MULTIVALUED PROCESSES 263

=
K∑

i,j=1

E(hp(Hi, Hj)ICi∩Aj)

6
K∑

j,i=1,j 6=i

E
(
2p−1(|Hi|p + |Hj |p)ICi∩Aj

)

62p max
16i6K

|Hi|p
K∑

j=1

P
(
Cj ∩

⋃

i 6=j

Ai

)

=2p max
16i6K

|Hi|p
[ K−1∑

j=1

P(Cj ∩ Ac
j) + P(CK ∩ Ac

K)
]
.(2.1)

For 1 6 j < K − 1,

P(Cj ∩ Ac
j) 6 P(Bj ∩ Ac

j) 6 P(Bj∆Aj) 6
δ

2K
.(2.2)

Since
CK = Ω\ ∪

16i<K
Ci = Ω\ ∪

16i<K
Bi

we have
(CK ∩ Ac

K)c = Cc
K ∪ AK = ( ∪

16i<K
Bi) ∪ AK

and

P
(
( ∪
16i<K

Bi) ∪ AK

)
> P

(
( ∪
16i<K

BiAi) ∪ AK

)
=

∑

16i<K

P(AiBi) + P(AK)

> P(AK) +
∑

16i<K

(
P(Ai) − P(Ai∆Bi)

)

= 1 −
∑

16i<K

P(Ai∆Bi)

> 1 − (K − 1)
δ

2K
.

Therefore

P(CK ∩ Ac
K) 6

(K − 1)δ
2K

.(2.3)

According to (2.1), (2.2) and (2.3), we have

[∆p(G, H)]p 6 2p max
16i6K

|Hi|p
2(K − 1)δ

2K
6 ε2p.

Then, ∆p(G, H) 6 ε2 and

∆p(G, F ) 6 ∆p(G, H) + ∆p(H, F ) 6 2ε2.(2.4)

For any t > nk , by Lemma 2.6 of [3], we have

h(Ft, G) = h
(
E [F |Ft], E [G|Ft]

)
6 E(h(F, G)|Ft) = ht.
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For any m > nk, using Markov’s inequality, Lemma 1.2, Jensen’s inequality and
(2.4) we have

P
(

sup
nk6t6m

ht > ε
)

6
1
εp
E
(

sup
nk6t6m

hp
t

)
6

1
εp

( p

p − 1

)2p
E(hp

m)

=
1
εp

( p

p − 1

)2p
E
(
Ep(h(F, G)|Fm)

)

6
1
εp

( p

p − 1

)2p
E
(
E(hp(F, G)|Fm)

)

=
1
εp

( p

p − 1

)2p
Ehp(F, G) 6 (2ε)p

( p

p − 1

)2p
.

Letting m → ∞, we obtain

P
(

sup
t>nk

ht > ε
)

6 (2ε)p
( p

p− 1

)2p
.

Finally, we have

P
(

sup
t>nk

h(Ft, F ) > 2ε
)

6 P
(

sup
t>nk

h(Ft, G) > ε
)

+ P
(
h(F, G) > ε

)

6 P
(

sup
t>nk

ht > ε
)

+
Ehp(F, G)

εp

6 (2ε)p
(

1 +
( p

p − 1
)2p

)
,

and by Lemma 2 of [5], we obtain that h − limFt = F a.s. The theorem is
proved.

We have proved the upward case of Levy’s convergence theorem. For the
downward case, we need first the following technical lemma.

Lemma 2.1. Let M be a square integrable random variable, F = {Ft : t ∈ K} a

commuting filtration. Then E(M |Ft) → E(M |F−∞) a.s. where F−∞ =
−∞⋂

n=−1

Fn.

Proof. To prove this convergence, we consider the set

G = {X ∈  L2(R) : E(X |Ft) = E(X |F−∞) for some t ∈ K}.
Then, we claim that the closed linear spand of G is all of L2(R). Suppose that
there exists a random variable Y ∈  L2(R) such that Y ⊥G, it means that EXY = 0
for all X ∈ G. For each t ∈ K, since X = Y − E(Y |Ft) ∈ G then we have

E(Y (Y − E(Y |Ft)) = 0 ⇔ E(Y − E(Y |Ft))2 = 0.

It implies that Y is Ft-measurable. Since this is true for all t ∈ K, Y is F−∞-
measurable. On the other hand, G contains all F−∞-measurable random vari-
ables, so Y ⊥G implies Y = 0.

Next, we show that the set

H = {X ∈  L2(R) : E(X |Ft) → E(X |F−∞) a.s.}
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is a closed linear space of  L2(R). Indeed, for any random variable X in the closed
hull of H and ε > 0, there exists Y ∈ H such that ‖X − Y ‖2

2 < ε3/4. For each
t ∈ K, put Xt = E(X |Ft), Yt = E(Y |Ft). Then for any n ∈ −N, we have

P
(

sup
n6t6−1

|Xt − Yt| > ε
)

6
1
ε2
E( sup

n6t6−1

|Xt − Yt|2)

6
4
ε2
E|X−1 − Y−1|

2 6
4
ε2
‖X − Y ‖2

2 6 ε.

Letting n tend to −∞, we have

P
(

sup
t

|Xt − Yt| > ε
)

6 ε.

On the other hand,

sup
t

|E(Yt|F−∞) − E(X |F−∞)| = |E(Y |F−∞) − E(X |F−∞)|

= |E(Y − X |F−∞)| 6 E(|Y − X ||F−∞).

Thus

P
(

sup
t

|E(Yt|F−∞) − E(X |F−∞)| > ε
)

6 P
(
E(|Y − X ||F−∞) > ε

)

6
1
ε2
‖Y − X‖2

2 6 ε.

Since Yt → E(Y |F−∞) = E(Yt|F−∞) a.s., there exists t0 ∈ K such that

P
(

sup
t6t0

|Yt − E(Yt|F−∞)| > ε
)

6 ε.

Hence

P
(

sup
t6t0

|Xt − E(X |F−∞)| > 3ε
)

6 3ε,

which implies that Xt → E(X |F−∞) a.s., so X ∈ H and H is closed.
Moreover, G ⊂ H then  L2(R) = G ⊂ H ⊂  L2(R), it implies that H =  L2(R).

The proof is complete.

Theorem 2.2. Suppose that F is a commuting filtration, F ∈ Lp
c , Ft = E [F |Ft],

t ∈ K. Then Ft
h→ F−∞ a.s., where F−∞ = E [F |F −∞].

Proof. Without loss of generality we may assume that F is F(−1,−1)-measureable.
First, we suppose that F is a simple function in Lp

c , i.e. F =
∑k

i=1 HiIAi , where
(Ai) is a measurable partition of Ω and Hk ∈ Pc(X). For any F1, F2, G1, G2 ∈
Pc(X) it is known that

h(F1 + F2, G1 + G2) 6 h(F1, G1) + h(F2, G2).
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Thus, by Lemma 2.2 we have

h(Ft, F−∞) = h(
k∑

i=1

HiE(IAi |Ft),
k∑

i=1

HiE(IAi |F−∞))

6
k∑

i=1

h(HiE(IAi |Ft), HiE(IAi |F−∞))

6 ( max
16i6K

|Hi|)
k∑

i=1

|E(IAi |Ft) − E(IAi |F−∞)| −→ 0 a.s.

Now, we suppose that F ∈ Lp
c . For any ε > 0, there exists a simple function

H ∈ Lp
c such that H is F(−1,−1)-measurable and ∆p(F, H) 6

(
p−1

p

)2
ε(p+1)/p.

Suppose that H =
∑k

i=1 HiIAi , where (Ai) is a F(−1,−1)-measurable partition of
Ω and Hi ∈ Pc(X). For each t ∈ K, denote Ht = E [H |Ft] and H−∞ = E [H |F−∞].
Since h(Ht, H−∞) → 0 a.s, there exists t0 ∈ K such that

P
(

sup
t6t0

(h(Ht, H−∞)) > ε
)

< ε.

For any t ∈ K, we have

h(Ft, Ht) = h(E [F |Ft], E [H |Ft]) 6 E(h(F, H)|Ft) = ht,

h(F−∞, H−∞) = h(E [F |F−∞], E [H |F−∞]) 6 E(h(F, H)|F−∞) = h−∞.

Since {ht,Ft, n 6 t 6 −1} is a real martingale for any n ∈ −N, by Lemma 1.2
we have

P
(

max
n6t6−1

ht > ε
)

6
1
εp
E( max

n6t6−1
h

p
t ) 6

1
εp

( p

p − 1

)2p
E(hp

−1
)

6
1
εp

( p

p − 1

)2p
∆p

p(F, H) 6 ε.

Letting n → −∞, we obtain P
(

supt ht > ε
)

6 ε. Moreover,

P
(
h(F−∞, H−∞) > ε

)
6

1
εp
E(hp

−∞) 6
1
εp

∆p
p(F, H) < ε.

Then, for any ε > 0, there exists a t1 ∈ K such that

P
(

sup
t6t1

h(Ft, F−∞) > 3ε
)

6P
(

sup
t6t1

h(Ft, Ht) > ε
)

+ P
(

sup
t6t1

h(Ht, H−∞) > ε
)

+ P
(
h(H−∞, F−∞) > ε

)
< 3ε,

which give Ft → F−∞ a.s. The theorem is proved.
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