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ON LEVY’S CONVERGENCE THEOREMS OF
TWO-PARAMETER MULTIVALUED RANDOM PROCESSES

NGO HOANG LONG AND VU VIET YEN

ABSTRACT. In this paper we prove the Levy’s upward and downward theo-
rems for the convergence of two-parameter multivalued random processes in
Hausdorft’s sense.

1. INTRODUCTION AND PRELIMINARIES

The Levy’s convergence theorems of one-parameter multivalued processes were
presented in the works of Z. P. Wang and X. H. Xue [6], D. Wenlong and W.
Zhenpeng [7]. In this paper we will extend these results to the two-parameter
cases.

Let (2,3, P) be a complete probability space and X a real separable Banach
space with norm ||.||. Let P.(X) denote the family of all nonempty bounded closed
convex subsets of X. For A, B,C € P.(X), the Hausdorff distance h(A, B), the
radius |C| of the set C are defined as in [4, 6]. The concepts and notations such
as X-valued Bochner integrable random variables space L'(£, X), measurable
multifunction, Aumann integral, conditional multivalued expectation, etc. are
the same as in the above references.

For each p > 1, let LP[Q, X] denote the family of measurable multifunction
F : Q — P.(X) satisfying [, |F(w)[PdP < oo, where two multifunctions F, G are
identical if F(w) = G(w) a.e. Let F,G € LF[Q, X]. Since

WP (F(w), G(w)) < (IF()| +G))? < 227N F(@)P +[G(w) ),
the function w — h?(F(w), G(w)) is in LP(R) and we define

A (F,G) = (/ W (F, G)d[P)l/p.
Q

For F,G, H € LE[Q, X] we have
Ap(F, G) = [|M(F, G)lp < [|M(F, H) + h(H, G) ||
< |[R(F, H)[lp + [[R(H, G)lp = Ap(F, H) + Ap(H, G),
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then (LE[Q, X],A,) is a metric space. A measurable multivalued function F
is called simple if there exists a finite measurable partition {Ay,...,A,} of Q
and nonempty subsets X1, ..., X, of X such that F(w) = >"1" | I4,(w)X; for all
w € Q. We denote by LZ[Q, X] the closure of the set of all simple functions in
L2[Q, X]. Tt should be mention that L2[Q, X] & LP[Q, X] (see Example 3.4 [4]).

We denote by N (resp., —N) the set of nonnegative (resp., nonpositive) integers.
The ordering on J = N x N (resp., K = (—N) x (—N)) is defined as the natural
one. Namely, for s = (s1, s2) and ¢t = (t1,t2), we put s < t whenever s; < ¢; and
s9 < to. We also denote s At = (s1 Aty,82 Atg). For each n € Nor n € —N,
let @ = (n,n). F = {F:} is a two-parameter filtration of ¥ if for each ¢, F; is a
sub-o-field of ¥ and whenever s < t, Fs C F;. F is commuting if for all s,t, F;
and F; are conditionally independent, given Fia;.

Definition 1.1. A two-parameter process {M;} is a martingale with respect to
the filtration F if for each t, M; is Fy-measurable, E[M;| < oo and whenever
s < t, E(My|Fs) = M a.s.

In the sequel, we will frequently use the following well known result (see [1]).

Lemma 1.1. (Cairoli’s Maximal inequality) Let F = {F;,t € J} be a commuting
filtration and M = {M; ; : i,j € N} a two-parameter martingale. If p > 1, then
for all m,n € N, we have

P\
E Mmgﬂ—ﬁEM P,
(e [MiglP) < (=) ElMom]

2. MAIN RESULTS

Theorem 2.1. Suppose that p > 1, F € LE[Q,X] and F = {F;,t € J} is a
commuting filtration of ¥. Let F; = E[F|F] and Foo = E[F|Foo] where Foo =
0( Unen .7-%). Then F; converges to Fiy a.s. in the Hausdorff’s sense.

Proof. Without loss of generality, we may assume that F' is F,,-measurable. For
any € > 0, pick a simple function H € L such that H is F,-measurable and
Ap(F,H) < €2 Assume that H = Zfil H;l,,, where {A; : i =1,... K}
is a measurable partition of Q and Hy € P.(X). Pick § > 0 such that § <

€2p (27’ lglzix |H; |p) . Choose n1 < ng < ... < ng such that for each i, there
YA

exists B; € Fg, satisfying P(A;AB;) < 6/2K. Let

Ci:Bi\(UBj),1<i<K, CK:Q\ U CZ',

1<j<i 1<i<K

and G(w) = YK Hilo.. Then

K
[A,(G H)P =E(W(G,H)) = > E(h(G, H)Icna,)
7,i=1
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=1
K

< Z E(2p_1(|Hi|p+|Hj|p)ICiﬂAj)
=L

<2P Iglax |H; [P ZIP’C’ OUA

J=1 i#]
K-1
(2.1) —op 112%(|H|P[§; P(C; N AS) +P(Ck N A)|.
J:
For1<j< K -1,
5
Since
CK—Q\ UKC Q\1<%J<KB
we have
Cc \C — [ — BZ A
(Cx N A%) Ci UAk (1<%J<K YU Ak
and
P((, 1, B)UAK) > P((| U, Bid) UAK) = > B(AiB) +P(A)
1<i<K
P(Ax)+ Y. (P(4) -~ P(4AB))
1<i<K
=1- ) P(4AB)
1<i<K
>1— (K- 1)i
- 2K
Therefore
. (K—-1)0
. < —.
According to (2.1), (2.2) and (2.3), we have
2K —1)5 _
P < 9P |P < 4P,
[Ap(G, H)P < 27 max |Hil" === <e
Then, A,(G, H) < € and
(2.4) A (G, F) < A(G, H) + Ay(H, F) < 262

For any t > my, by Lemma 2.6 of [3], we have

h(Fy,G) = h(E[F|F), E[G|F]) < E(h(F,G)|F) =

263
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For any m > ng, using Markov’s inequality, Lemma 1.2, Jensen’s inequality and
(2.4) we have

1 1 P \2p
P( sup h:>e€) < —E( sup HK g—(—) E(hL
(ﬁkgtrg)m ! ) €pP (ﬁkgtlzm t) €p -1 ( )
1 2p
-3 (;57) EEnwosm)
e \p—1
1 2p
<= (-£)” ( (W7 (F, G)|Fm))
e \p—1
1 2
G < ()
e \p—1 D —

Letting m — oo, we obtain

P\
P( sup hy > €) < 26*”( > .
(tZWi t ) (2e) p—1

Finally, we have
P( sup h(F;, F) > 2¢) < P(sup h(F,,G) > ¢) + P(h(F,G) > ¢)

t>ny, t>ny

ERP(F, G
QP(Supht>e)+#
t>my, €p

<@ (1+ (59)™),

and by Lemma 2 of [5], we obtain that h — lim F; = F a.s. The theorem is
proved. ]

We have proved the upward case of Levy’s convergence theorem. For the
downward case, we need first the following technical lemma.

Lemma 2.1. Let M be a square integrable random variable, F = {F; : t € K} a

commuting filtration. Then E(M|F;) — E(M|F_«) a.s. where F_o = ﬂ Fz.
n=-—1
Proof. To prove this convergence, we consider the set
G ={X € L*(R) : E(X|F;) = E(X|F_o) for some t € K}.
Then, we claim that the closed linear spand of G is all of L?(R). Suppose that

there exists a random variable Y € L2(R) such that Y LG, it means that EXY = 0
for all X € G. For each t € K, since X =Y — E(Y|F;) € G then we have

E(Y (Y —E(Y|F)) =0e EY - E(Y|FR))? =

It implies that Y is Fi-measurable. Since this is true for all ¢t € K, Y is F_-
measurable. On the other hand, G contains all F_,,-measurable random vari-
ables, so Y LG implies Y = 0.

Next, we show that the set

H={X cL*R):E(X|F) - E(X|F_ o) as.}
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is a closed linear space of L?(R). Indeed, for any random variable X in the closed
hull of H and e > 0, there exists Y € H such that || X — Y3 < €/4. For each
te K, put Xy =E(X|F), Y =E(Y|F). Then for any n € —N, we have

1
P( sup |X¢—Yi =€) < SE( sup |X;—Vif?)
At<—1 € age<TT

4 4
< GEX-Yo < 5IX -YiE<e
Letting n tend to —oo, we have

P(sup|X; — Y| > €) <e
t

On the other hand,
SUp [E(Y;|F o) = E(X [/ —oo)| = [E(Y|F—00) — E(X|F )|
= [E(Y = X[F_oo)| S E(Y — X|[F_c0).
Thus

P(sup [E(Yy| Fooo) — E(X|F_o0)| = €) <P(E(]Y — X|[|F_s0) > €)
t
1
< 6—2||Y—X||§ < e

Since V; — E(Y|F_x) = E(Y;|F_) a.s., there exists ¢y € K such that

P(sup [V; —E(Yy|F-x)| =€) <e.
t<to

Hence

P(sup | X; — E(X[F-o0)| = 3¢) < 3,
t<to

which implies that X; — E(X|F_o) a.s., so X € H and H is closed.
Moreover, G C H then L?(R) = G ¢ H C L%(R), it implies that H = L?(R).
The proof is complete. O

Theorem 2.2. Suppose that F is a commuting filtration, F € LY, F, = E[F|F],
te K. Then F; L F_ a.s., where F_oo = E[F|F _o].

Proof. Without loss of generality we may assume that F' is F(_; _j)-measureable.

First, we suppose that F is a simple function in £F, i.e. F = Zle H;I,,, where
(4;) is a measurable partition of Q and Hy € P.(X). For any Fi, F5,G1,G2 €
P.(%) it is known that

h(F1 4 F», G1 + Ga) < h(F1, G1) 4 h(Fy, G2).
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Thus, by Lemma 2.2 we have

k
h(Fy, F-o) —hZHE (La|F2), > HiE(I4,| F o))
=1

=1

k
<D A(HE(La,| Fy), HE(L, | F-o0))
=1

112223%|H| Z |E(14,|Ft) — E(14,|F-c0)] — 0 a.s.

Now, we suppose that F' € LE. For any e > 0, there exists a simple function
H ¢ [P such that H is F(~1,—1)-measurable and A,(F, H) < (1’%1)26(1’”'1)/1”.

Suppose that H = Zle H;ly,, where (A;) is a F(_; _j)-measurable partition of
Q and H; € P.(X). For each t € K, denote Hy = E[H|F;] and H_o = E[H|F_o).
Since h(Hy, H_o,) — 0 a.s, there exists ¢ty € K such that

P(sup(h(Hy, H-x)) =€) < e.

Xto

For any t € K, we have
h(Fy, Hy) = h(€
PP Hooo) = h(E
Since {hy, F;,n <t < —1

we have

FIF], E[H|F]) < E(h(F, H)|Ft) = h,
FIF ool E[H|F oo]) SE(A(F, H)|F -00) = h—oo

[
[
} is a real martingale for any n € —N, by Lemma 1.2

1 1 P 2p
P( max h; > €) < —E( max hp < <—> E(h2—
(ﬁgtg—_l ! ) €P (n<t< i )< e \p—1 ( —1)
L/ p
(1) A <o

Letting n — —o0, we obtain P(Supt hy > e) < €. Moreover,

1 1
P(h(Foo, Hooo) > €) < SE(Ao) < SAJ(F H) < e

Then, for any € > 0, there exists a t; € K such that
P( sup h(F;, F_o) > 3€) <P(sup h(Fy, Hy) > €) + P(sup h(Hy, H_oo) > €)
t<ty t<ty

t<ty
+ P(h(H-so, F_o) > €) < 3e,
which give F; — F_,, a.s. The theorem is proved. O
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