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ON THE PLANCHEREL THEOREM
FOR THE OLEVSKII TRANSFORM

SEMYON B. YAKUBOVICH

Abstract. We deal here with a class of integral transformations with re-
spect to parameters of hypergeometric functions or the index transforms. In
particular, we treat the familiar Olevskii transform, which is associated with
the Gauss hypergeometric function as a kernel. It involves, in turn, as par-
ticular cases index transforms of the Mehler-Fock type which are used in the
mathematical theory of elasticity. Boundedness L2- properties for the Olevskii
transform are investigated. The Plancherel theorem is proved. It shows that
the Olevskii transform is an isometric isomorphism between two weighted L2

- spaces. More examples of such isomorphisms are exhibited for the Mehler-
Fock type transforms.

1. Introduction and preliminary results

Let f : R+ → C be a measurable function. Fixing real positive parameters c, a
we will deal with the following Olevskii transformation [15], [22], [23]

(1.1) Oc,af(x) =
x−a

Γ(c)

∞∫

0

|Γ(a + iτ)|22F1

(
a + iτ, a− iτ ; c;− 1

x

)
f(τ)dτ, x > 0,

where the integral in (1.1) is with respect to parameters of the Gauss hypergeo-
metric function 2F1 [1, Chapter 2]. It exists in a definite sense, which will be de-
fined below. In the sequel we will use the weighted Lebesgue spaces Lp(Ω; ω(x)dx)
with respect to the measure ω(x)dx equipped with the norm

||f ||p =
(∫

Ω
|f(x)|pω(x)dx

)1/p

, 1 6 p < ∞,

||f ||∞ = ess sup|f(x)|.
We note that Γ(z) in (1.1) is Euler’s Gamma-function [1] and i is the imaginary
unit. The operator (1.1) is called also the Jacobi transform, the Fourier-Jacobi
transform, the generalized Fourier transform, the index hypergeometric trans-
form, the 2F1 - index transform (see [2], [7], [8], [11], [13], [14], [24]). It is not

Received February 07, 2006.
AMS Subject Classification. 44A20, 44A15, 33B15, 33C05.
Key words and phrases. Euler Gamma-function, Gauss hypergeometric function, associated

Legendre function, Bessel functions, Mellin-Barnes integrals, Kontorovich-Lebedev transform,
Mehler-Fock transform.



250 SEMYON B. YAKUBOVICH

difficult to verify that under conditions on the parameters, the Gauss hypergeo-
metric function in (1.1) is represented by the power series for x > 1, τ ∈ R+

(1.2) 2F1

(
a + iτ, a− iτ ; c;− 1

x

)
=

∞∑

n=0

(a + iτ)n (a − iτ)n
(c)n

(−1)n

xnn!
.

When 0 < x < 1 this function is understood by the following relation (cf. [1],
[12])

2F1

(
a + iτ, a− iτ ; c;− 1

x

)
(1.3)

=
Γ(c)Γ(−2iτ)

Γ (a − iτ) Γ (c − a − iτ)
xa+iτ

2F1 (a + iτ, 1− c + a + iτ ; 1 + 2iτ ;−x)

+
Γ(c)Γ(2iτ)

Γ (a + iτ) Γ (c − a + iτ)
xa−iτ

2F1 (a − iτ, 1− c + a − iτ ; 1− 2iτ ;−x) .

On the other hand, we consider the Gauss function as the following Mellin-Barnes
integral [1, Ch. I] (cf. formula (8.4.50.2) from [17])

|Γ(a + iτ)|2

Γ(c)
x−a

2F1 (a + iτ, a− iτ ; c;−1x)(1.4)

=
1

2πi

γ+i∞∫

γ−i∞

Γ (s + iτ) Γ (s − iτ)
Γ(a − s)

Γ(c − a + s)
x−sds, x > 0, 0 < γ < a.

Series (1.2) can be reobtained if we evaluate integral (1.4) as the sum of residues
of the right-hand simple poles s = a + n, n = 0, 1, 2, ... of Gamma-functions of
the integrand, which are separated from the left-hand ones s = ±iτ − n, n =
0, 1, 2, ... . However, evaluating the same integral as the sum of residues at the left-
hand simple poles we obtain series (1.3). We put down here some of important
properties of the Gauss function [1], [20], [23]

2F1(a, b; c; z) = 2F1(b, a; c; z),

2F1(a, b; b; z) = (1− z)−a,

2F1(a, b; c; 0) = 2F1(0, b; c; z) = 1,

2F1(a, b; c; 1) =
Γ(c)Γ(c − a − b)
Γ(c − a)Γ(c− b)

, Re(c − a − b) > 0,

(1.5) 2F1(a, b; c; z) = (1 − z)−a
2F1

(
a, c− b; c;

z

z − 1

)
,

(1.6) 2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c− a, c− b; c; z).

Formula (1.5) is called the Boltz formula and relation (1.6) is called the self-
transformation formula.
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One can mention also the integral representation of the Gauss function in terms
of the product of Bessel functions (see [16, relation (2.16.21.1)], [23, formula
(1.101)])
(1.7)

2F1

(
a + iτ, a− iτ ; c;−x2

)
=

21−2a+cx1−cΓ(c)
|Γ(a + iτ)|2

∞∫

0

y2a−cJc−1(xy)K2iτ(y)dy, x > 0.

It is easily seen by the asymptotic behavior of the Bessel functions near origin and
at the infinity (cf. [12]) that integral (1.7) absolutely converges for any c, a > 0.
We recall that the Gauss function in (1.1) has the following asymptotic behavior
for each τ ∈ R+, when x → 0+ (cf. [1], [12], [23])

(1.8) 2F1

(
a + iτ, a− iτ ; c;− 1

x

)
= O (xa logx) , x → 0 + .

We note that the kernel (1.8) is a continuous function with respect to τ > 0.
Furthermore, via [23, Theorem 1.12] we see that when τ → +∞ it behaves for
each x > 0 as

(1.9) 2F1

(
a + iτ, a− iτ ; c;− 1

x

)
= O

(
τ1/2−c

)
, τ → +∞.

We mention here that the modified Bessel function K2iτ(2
√

x) is real-valued and
it represents the kernel of the Kontorovich-Lebedev transform [18], [19], [22], [23]

(1.10) [KLf ](x) =

∞∫

0

K2iτ(2
√

x)f(τ)dτ.

At the same time it can be given by the Mellin-Barnes integral (see [23, relation
(1.113)])

(1.11) K2iτ(2
√

x) =
1

4πi

γ+i∞∫

γ−i∞

Γ (s + iτ)Γ (s − iτ)x−sds,

where x > 0, γ > 0, τ ∈ R. As it is known [12], [17], theory of the Mellin - Barnes
integrals is based on the Mellin direct and inverse transforms, which are defined
by the formulas

(1.12) fM(s) =

∞∫

0

f(x)xs−1dx,

(1.13) f(x) =
1

2πi

γ+i∞∫

γ−i∞

fM(s)x−sds, s = γ + it, x > 0,

where integrals (1.12)- (1.13) exist as Lebesgue integrals or, in particular, in
mean with respect to the norm of spaces L2(γ − i∞, γ + i∞) and L2(R+; x2γ−1),
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respectively. In the latter case, the Parseval equality holds

(1.14)

∞∫

0

|f(x)|2x2γ−1dx =
1
2π

∞∫

−∞

|fM(γ + it)|2dt.

The Kontorovich-Lebedev transformation (1.10) (cf. [23], [24]), in turn, is an
isomorphism between the spaces L2(R+; |Γ(2iτ)|2dτ) and L2(R+; x−1dx) with
the Parseval equality of the form

(1.15)

∞∫

0

|[KLf ](x)|2dx

x
=

π

2

∞∫

0

|f(τ)|2|Γ(2iτ)|2dτ.

The corresponding inverse operator in the mean convergence sense is written in
the form

(1.16) f(τ) =
2

π|Γ(2iτ)|2

∞∫

0

K2iτ(2
√

x)[KLf ](x)
dx

x
.

The aim of this paper is to prove the Plancherel type theorem for the Olevskii
transformation (1.1) and its particular cases. We note that the case c = 2a was
considered in [22, p. 136]. The Olevskii transformation for some particular values
of c has been treated also in [13], [14], [28]. About the distributional analog of the
Olevskii transform see in [6], [9], [10]. Some mapping properties for these index
operators have been investigated in [3], [4], [5], [21]. Finally, we will exhibit the
related results for the Mehler-Fock type transforms (see also in [24], [26]).

2. The plancherel theorem

We have

Theorem. Let c > a > 0. The Olevskii transformation (1.1) is the isomorphism

(2.1) Oc,a : L2

(
R+;

∣∣∣∣
Γ(2iτ)Γ(a + iτ)
Γ(c − a + iτ)

∣∣∣∣
2

dτ

)
↔ L2

(
R+; (1 + x)2a−c dx

x

)
,

where integral (1.1) converges in mean with respect to the norm in

L2

(
R+; (1 + x)2a−c dx

x

)
.

The inverse operator is given by the formula

f(τ) =l.i.m.
N→∞

|Γ(c − a + iτ)|2

2πΓ(c)|Γ(2iτ)|2(2.2)

×
N∫

1/N

(1 + x)2a−cx−a−1
2F1

(
a + iτ, a− iτ ; c;− 1

x

)
Oc,af(x)dx,



THE OLEVSKII TRANSFORM 253

where the limit is in mean square with respect to the norm in the space

L2

(
R+;

∣∣∣∣
Γ(2iτ)Γ(a + iτ)
Γ(c − a + iτ)

∣∣∣∣
2

dτ

)
.

Besides, if f, g ∈ L2

(
R+;

∣∣∣Γ(2iτ)Γ(a+iτ)
Γ(c−a+iτ)

∣∣∣
2
dτ

)
then the Plancherel formula holds

(2.3)

∞∫

0

Oc,af(x)Oc,ag(x)(1 + x)2a−cdx

x
= 2π

∞∫

0

∣∣∣∣
Γ(2iτ)Γ(a + iτ)
Γ(c− a + iτ)

∣∣∣∣
2

f(τ)g(τ)dτ

with the Parseval equality

(2.4)

∞∫

0

|Oc,af(x)|2 (1 + x)2a−c dx

x
= 2π

∞∫

0

∣∣∣∣
Γ(2iτ)Γ(a + iτ)
Γ(c − a + iτ)

∣∣∣∣
2

|f(τ)|2dτ.

Proof. Let f ∈ C∞
0 (R+). Then we use integral representation (1.4) to substitute

it in (1.1) and to invert the order of integration via Fubini’s theorem. This is
indeed possible due to the absolute and uniform convergence of the integral (1.4)
with respect to τ ∈ R+. Denoting

(2.5) Φf(z) =

∞∫

0

Γ (z + iτ) Γ (z − iτ) f(τ)dτ,

we arrive then at the representation
(2.6)

Oc,af(x) = 12π

∞∫

−∞

Φf(α + iy)
Γ(a − α − iy)

Γ(c− a + α + iy)
x−α−iydy, x > 0, 0 < α < a.

On the other hand, employing the self-transformation formula (1.6) for the Gauss
function we represent the Olevskii transform in the form

Oc,af (x) =
xa−c(1 + x)c−2a

Γ(c)

∞∫

0

|Γ(a+iτ)|22F1

(
−a + iτ, c− a − iτ ; c;− 1

x

)
f(τ)dτ,

which gives the following operational relation

(2.7) Oc,af (x) = (1 + x)c−2aOc,c−ah (x) ,

where h(τ) =
∣∣∣ Γ(a+iτ)
Γ(c−a+iτ)

∣∣∣
2
f(τ). Hence, taking into account (2.6), (2.7), as the

consequence of the Parseval equality for the Mellin transform (1.14) with the
parallelogram identity, we obtain

∞∫

0

|Oc,af(x)|2 (1 + x)2a−cx2α−1dx =

∞∫

0

Oc,c−ah(x)Oc,af(x)x2α−1dx
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(2.8) =
1
2π

∞∫

−∞

Φh(α + iy)Φf(α + iy)
Γ(a − α + iy)

Γ(c − a + α − iy)
Γ(c − a − α − iy)

Γ(a + α + iy)
dy.

Equality (2.6) yields (see (1.13)) that

Oc,af(x) ↔ Φf (α + iy)
Γ(a − α − iy)

Γ(c− a + α + iy)
,

Oc,c−ah (x) ↔ Φh(α + iy)
Γ(c− a − α − iy)

Γ(a + α + iy)
,

where 0 < α 6 b < min(a, c− a) are Mellin’s L2-pairs and all integrals in (2.8)
are finite. In fact, we will show that for any f ∈ C∞

0 (R+)

(2.9) sup0<α6 b

∞∫

−∞

∣∣∣∣Φf (α + iy)
Γ(a − α + iy)

Γ(c− a + α − iy)

∣∣∣∣
2

dy < ∞,

(2.10) sup0<α6 b

∞∫

−∞

∣∣∣∣Φh(α + iy)
Γ(c− a − α − iy)

Γ(a + α + iy)

∣∣∣∣
2

dy < ∞.

Then, since the integrands in (2.9), (2.10) are analytic in the strip 0 < α <
min(a, c− a) we will get immediately that each one belongs to the Hardy space
H(0,b]

2 (cf. [19]). Thus, almost everywhere one admits the limit L2- values, which
are equal correspondingly to

(2.11) [Gf ](y)
Γ(a + iy)

Γ(c− a − iy)
,

and

(2.12) [Gh](y)
Γ(c− a − iy)

Γ(a + iy)
,

where by [Gf ](x) we denote the so-called Gamma-product transform, which has
been introduced and studied by the author in [25]

(2.13) [Gf ](x) = P.V.

∞∫

0

Γ (i(x + τ)) Γ (i(x − τ)) f(τ)dτ, x ∈ R.

Furthermore, it is not difficult to conclude that Oc,af(x), Oc,c−ah (x) are recipro-
cal Mellin’s transforms (1.13) from L2(R+; x−1dx). Moreover, by (1.14) we have
the Parseval equalities

(2.14)

∞∫

0

|Oc,af(x)|2 dx

x
=

1
2π

∞∫

−∞

∣∣∣∣[Gf ](y)
Γ(a + iy)

Γ(c− a − iy)

∣∣∣∣
2

dy,

(2.15)

∞∫

0

|Oc,c−ah(x)|2 dx

x
=

1
2π

∞∫

−∞

∣∣∣∣[Gh](y)
Γ(c− a − iy)

Γ(a + iy)

∣∣∣∣
2

dy.
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Hence, returning to (2.8) and employing the Cauchy-Schwarz inequality we find
by using Fatou’s lemma that

∞∫

0

|Oc,af(x)|2 (1 + x)2a−c dx

x
6 lim infα→0+

∞∫

0

|Oc,af(x)|2 (1 + x)2a−cx2α−1dx

=
1
2π

lim infα→0+

∞∫

−∞

Φh(α+ iy)Φf(α + iy)
Γ(a − α + iy)

Γ(c − a + α − iy)
Γ(c − a − α − iy)

Γ(a + α + iy)
dy

6 sup0<α6 b
1
2π

∞∫

−∞

∣∣∣∣Φh(α + iy)Φf(α + iy)
Γ(a − α + iy)

Γ(c− a + α − iy)
Γ(c − a − α − iy)

Γ(a + α + iy)

∣∣∣∣ dy

6 sup0<α6 b

1
2π







∞∫

−∞

∣∣∣∣Φf (α + iy)
Γ(a − α + iy)

Γ(c− a + α − iy)

∣∣∣∣
2

dy




1/2

×




∞∫

−∞

∣∣∣∣Φh(α + iy)
Γ(c − a − α − iy)

Γ(a + α + iy)

∣∣∣∣
2

dy




1/2

 < ∞.

So in order to prove (2.9), (2.10) we appeal to the following integral represen-
tation for the product of Gamma-functions (cf. [23, relation (1.104)]

Γ (α + i(x + τ)) Γ (α + i(x− τ)) =
Γ (2(α + ix))
22(α+ix)−1

∞∫

0

cos τy

cosh2(α+ix)(y/2)
dy.

We substitute it into (2.5), change the order of integration and the result we write
in the form
(2.16)

Φf(α + iy) =
√

π

2
Γ(2(α + iy))
22(α+iy)−1

∞∫

0

df̂

dt

dt

cosh2(α+iy) t
, 0 < α 6 b < min(a, c− a),

where f̂(t) denotes the following Fourier sine integral

f̂(t) =

√
2
π

∞∫

0

f(τ)
sin τt

τ
dτ.

After integration by parts and elimination of the outintegrated terms in (2.16)
we use the relation Γ(2z)2z = Γ(1 + 2z) and the substitution eξ = cosh2 t. Thus,
we arrive at the following Fourier integral

Φf (α + iy) =
√

π

2
Γ(1 + 2(α + iy))

22(α+iy)

∞∫

0

e−(α+iy)ξ f̂(arccosh eξ/2)dξ.
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Hence
∞∫

−∞

∣∣∣∣Φf (α + iy)
Γ(a − α + iy)

Γ(c− a + α − iy)

∣∣∣∣
2

dy =
π

24α+1

∞∫

−∞

∣∣∣∣
Γ(1 + 2(α + iy))Γ(a− α + iy)

Γ(c − a + α − iy)

∣∣∣∣
2

(2.17) ×

∣∣∣∣∣∣

∞∫

0

e−(α+iy)ξf̂(arccosh eξ/2)dξ

∣∣∣∣∣∣

2

dy.

However, the Gamma-ratio in (2.17) is bounded on (α − i∞, α + i∞), 0 6 α 6
b < min(a, c− a) since via Stirling’s asymptotic formula [1] we have

∣∣∣∣
Γ(1 + 2(α + iy))Γ(a− α + iy)

Γ(c − a + α − iy)

∣∣∣∣ = O(e−π|y||y|2a−c+1/2), |y| → ∞.

Consequently, applying twice the Parseval equality for the Fourier transform and
making elementary substitutions we obtain from (2.17)

∞∫

−∞

∣∣∣∣Φf (α + iy)
Γ(a − α + iy)

Γ(c− a + α − iy)

∣∣∣∣
2

dy 6 C1

∞∫

−∞

∣∣∣∣∣∣

∞∫

0

e−(α+iy)ξ f̂(arccosh eξ/2)dξ

∣∣∣∣∣∣

2

dy

= C2

∞∫

0

α|f̂(arccosh eξ/2)|2dξ 6 C2

∞∫

0

|f̂(arccosh eξ/2)|2dξ

= 2C2

∞∫

0

|f̂(y)|2 tanh y dy 6 2C2

∫

suppf

|f(τ)|2dτ

τ2
< ∞,

where C1, C2 are absolute positive constants. Thus, we have proved (2.9). In the
same manner we establish (2.10). Combining now with (2.7), (2.14), (2.15) we
apply (1.14) and the Plancherel identity for the Gamma-product transform [25].
Therefore, as a consequence of (2.8) we derive the chain of equalities

∞∫

0

|Oc,af(x)|2 (1 + x)2a−c dx

x
=

∞∫

0

Oc,c−ah(x)Oc,af(x)
dx

x

=
1
2π

∞∫

−∞

[Gh](y)[Gf ](y)dy = 2π

∞∫

0

∣∣∣∣
Γ(2iτ)Γ(a + iτ)
Γ(c − a + iτ)

∣∣∣∣
2

|f(τ)|2dτ,

which prove (2.4) for any f ∈ C∞
0 (R+). Moreover, it gives the validity of the

Plancherel identity (2.3). Then we continuously extend these equalities from the
dense set of smooth functions with compact support on the whole weighted L2-
spaces to obtain the desired isomorphism (2.1). The Olevskii transform (1.1) is
understood as a limit in the mean square with respect to the norm in the space
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L2

(
R+; (1 + x)2a−c dx

x

)
. The reciprocal formula (2.2) can be proved as follows.

From the Plancherel identity (2.3), it is not difficult to arrive at the equality

f(τ) =
∣∣∣∣

Γ(c − a + iτ)
Γ(a + iτ)Γ(2iτ)

∣∣∣∣
2 1

2πΓ(c)τ
d

dτ

∞∫

0

Oc,af(x)

τ∫

0

t |Γ(a + it)|2

×2F1

(
a + it, a− it; c;− 1

x

)
(1 + x)2a−cx−a−1dtdx.

Hence, f(τ) = l.i.m.
N→∞

fN (τ), where the limit is in the mean square sense with

respect to the norm in the space L2

(
R+;

∣∣∣Γ(2iτ)Γ(a+iτ)
Γ(c−a+iτ)

∣∣∣
2
)

and

fN (τ) =
∣∣∣∣

Γ(c − a + iτ)
Γ(a + iτ)Γ(2iτ)

∣∣∣∣
2 1

2πΓ(c)τ
d

dτ

N∫

1/N

Oc,af(x)

τ∫

0

t |Γ(a + it)|2

×2F1

(
a + it, a − it; c;− 1

x

)
(1 + x)2a−cx−a−1dtdx

=
|Γ(c − a + iτ)|2

2πΓ(c)|Γ(2iτ)|2

N∫

1/N

(1 + x)2a−cx−a−1
2F1

(
a + iτ, a− iτ ; c;− 1

x

)
Oc,af(x)dx,

since we can put the derivative under the sign of the latter integral via its uniform
convergence with respect to τ . Theorem is proved.

Let us consider particular cases of the Olevskii transform (1.1), which are
associated with the Mehler-Fock integrals [18], [22], [23]. Precisely, putting in
(1.4) a = 1

2 , c = 1 − µ, µ < 1
2 , we employ relation (8.4.41.12) in [17] to obtain

2F1

(
1
2

+ iτ,
1
2
− iτ ; 1− µ;− 1

x

)
= Γ(1 − µ)(1 + x)−µ/2Pµ

−1/2+iτ

(
2
x

+ 1
)

,

where Pµ
ν (z) is the associated Legendre function of the first kind [20]. Thus, we

arrive at the formula of the generalized Mehler-Fock transform

(2.18) [Pµf ](x) = x−1/2(1 + x)−µ/2

∞∫

0

|Γ(1/2 + iτ)|2 P
µ
iτ−1/2

(
1 +

2
x

)
f(τ)dτ,

where integral (2.18) converges with respect to the norm in L2

(
R+; (1 + x)µ dx

x

)
.

According to our Theorem, it forms the isometric isomorphism

[Pµf ] : L2

(
R+;

∣∣∣∣
Γ(2iτ)Γ(1/2 + iτ)
Γ(1/2− µ + iτ)

∣∣∣∣
2

dτ

)
↔ L2

(
R+; (1 + x)µ dx

x

)

with the Parseval equality
∞∫

0

|[Pµf ](x)|2(1 + x)µ dx

x
= 2π

∞∫

0

∣∣∣∣
Γ(2iτ)Γ(1/2 + iτ)
Γ(1/2 − µ + iτ)

∣∣∣∣
2

|f(τ)|2dτ.



258 SEMYON B. YAKUBOVICH

The reciprocal inverse operator is written in the form

f(τ) =
1
2π

∣∣∣∣
Γ(1/2− µ + iτ)

Γ(2iτ)

∣∣∣∣
2

∞∫

0

(1 + x)µ/2x−3/2Pµ
−1/2+iτ

(
2
x

+ 1
)

[Pµf ](x)dx,

where the latter integral converges with respect to the norm in

L2

(
R+;

∣∣∣Γ(2iτ)Γ(1/2+iτ)
Γ(1/2−µ+iτ)

∣∣∣
2
)

.

Finally, if we set c = a + 1, then by virtue of the formula (7.3.1.52) in [17] we
have

2F1

(
a + iτ, a− iτ ; a + 1;− 1

x

)
=

Γ(a + 1)xa(1 + x)(1−a)/2

2iτ

×
[
P 1−a

iτ

(
1 +

2
x

)
− P 1−a

iτ−1

(
1 +

2
x

)]
.

Thus we obtain the following transformation of the Mehler-Fock type

[P af ](x) =
i

2
(1 + x)(1−a)/2

×
∞∫

0

|Γ(a + iτ)|2
[
P 1−a

iτ−1

(
1 +

2
x

)
− P 1−a

iτ

(
1 +

2
x

)]
f(τ)

dτ

τ
.

It isomorphically maps the space L2

(
R+;

∣∣∣Γ(2iτ)Γ(a+iτ)
Γ(1+iτ)

∣∣∣
2
dτ

)
onto the space

L2

(
R+; (1 + x)a−1 dx

x

)
. Moreover, the Parseval equality

∞∫

0

|[P af ](x)|2(1 + x)a−1dx

x
= 2π

∞∫

0

∣∣∣∣
Γ(2iτ)Γ(a + iτ)

Γ(1 + iτ)

∣∣∣∣
2

|f(τ)|2dτ

holds. The inverse operator is given by the formula

f(τ) =
|Γ(1 + iτ)|2

4πiτ |Γ(2iτ)|2

∞∫

0

(1+x)(a−1)/2

[
P 1−a

iτ

(
1 +

2
x

)
− P 1−a

iτ−1

(
1 +

2
x

)]
[P af ](x)

dx

x
,

where the convergence is with respect to the norm in L2

(
R+;

∣∣∣Γ(2iτ)Γ(a+iτ)
Γ(1+iτ)

∣∣∣
2
dτ

)
.
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