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AN OPTIMIZATION PROBLEM IN MATRIX DATA
DEPENDENCE ANALYSIS

NGUYEN BAC VAN

Abstract. The paper treats the problem of stepwise maximizing a sum of
squared bilinear forms which stems from the dependence analysis of several
data matrices. A constructive approach is presented which leads to clear-cut
properties of the maximization process.

1. Introduction

The problem originates from the works of Lafosse and Hanafi (1997, 2001).
Let us consider some real data matrix X of order n × p. Its rows are viewed
as multidimensional observations on n individuals, and each column is formed
by observed values of some variable. The set of individuals is given, so every
considered data matrix will be of n rows.

Let M be a p×p positive definite (p.d.) constant matrix. For every unit vector
u in (Rp, M), i.e. u′Mu = 1, we shall call XMu the compoment of X on the axis
u. XMu is also a linear combination of columns of X .
Let the individuals have positive weights d1, . . . , dn with

∑n
i=1 di = 1. Assume

the weighted mean of every column is zero, that will be expressed below by saying
that every data matrix is centered.

Put D = diag(d1, . . . , dn). Then two variables whose n observed values are
respectively x1, . . . , xn and y1, . . . , yn have the empirical covariance

(x1 · · ·xn)D(y1 · · ·yn)′.

Viewing the n × p data matrix X as the empirical realization of p variables, the
dispersion matrix of this set X of p columns is then X ′DX . The covariance
matrix between two data matrices Xn×p and Yn×q is X ′DY . The variance of the
above-mentioned component XMu is u′MX ′DXMu. In the case rank X = p,
if the Mahalanobis (1936) distance is used, i.e. if one chooses M = (X ′DX)−1,
then Var(XMu) = 1 for all axes u.

The classical Principal Component Analysis (PCA) starts from stepwise max-
imizing the variance u′MX ′DXMu when investigating a single data matrix X ,
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where p.d. M is given. The solution u at any maximization step is constrained
by the condition that it should be M -orthogonal to the solutions at all previous
steps.

Generalizing the idea of PCA, Lafosse and Hanafi (1997), Hanafi and Lafosse
(2001) considered real data matrices Xi (i = 1, . . . , l) and Y of order n × pi and
n× q, respectively. They set the problem of discovering the dependence between
Y and the collection {X1, . . . , Xl} by stepwise maximizing the sum of squared
covariances between components XiMiui and Y Nb, where ui ∈ (Rpi , Mi) and
b ∈ (Rq, N) are unit vectors, Mi and N being given p.d. matrices. At every
maximization step, the vector ui (i = 1, . . . , l) and b are to be sought so as to
maximize the sum

l∑

i=1

(u′
iMiX

′
iDY Nb)2 =

l∑

i=1

cov2(Y Nb, XiMiui)(1.1)

subject to the constraint that ui and b respectively have to be Mi-orthogonal and
N -orthogonal to ui-solutions and b-solutions at all previous steps.

The arbitrary choice of p.d. matrices Mi and N gives full generality to the
expression of dependence. However, by assuming linear independence of the
columns of Y as well as of those of Xi, if the Mahalanobis distance is to be used,
i.e. if one takes N = (Y ′DY )−1 and Mi = (X ′

iDXi)−1, then u′
iMiX

′
iDY Nb is

just the correlation coefficient between the components XiMiui and Y Nb. In
this case the expression to be maximized (1.1) is the sum of squared correlation
coefficients.

With a view to comparison, we note that when defining a measure of fit between
two centered data matrices Xn×p and Yn×p Lingoes and Schönemann (1974) tried
to maximize the trace of T ′Y ′X over the set of all p × p orthogonal matrices T .
By choosing D = diag(1/n, . . . , 1/n), computation gives

n−1Tr(T ′Y ′X) =
p∑

k=1

cov(Xuk, (Y T )uk),

where Xuk and Y Tuk are respectively the components of X and Y T along the
kth axis uk in Rp. Thus an important step in the construction of the measure of fit
by Lingoes and Schönemann is to maximize a sum of covariances of components
of the data matrices along different axes.

We also note that in generalized canonical analysis, see Carroll (1968), Kiers
et al. (1994), Xk denoting the n × pk data matrix for set k, k = 1, . . . , K, and
ak a vector of weights to form a canonical variate Xkak which is the component
of Xk on the axis ak , a consensus variable z is to be found so as to maximize the
weighted sum of squared correlations

K∑

k=1

wkr
2(z, Xkak)
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over a1, . . . , ak and z, where r(·, ·) denotes the correlation between the variables
in parentheses, and wk denotes a fixed (nonnegative) weight for set k.

The method of dependence analysis, called concordance analysis, introduced by
Lafosse (1997) and developped by Lafosse and Hanafi (1997), then by Hanafi and
Lafosse (2001), has practical applications. It is time to review the mathematical
context.

The above consideration concerns empirical distributions. We shall now restate
the same consideration in a general form. Consider l + 1 collections ξ1, . . . , ξl, η
consisting respectively of p1, . . . , pl, q real-valued random variables (r.v.). We
shall write ξ1, . . . , ξl, η as column vectors.

When l = 0, let B be the dispersion matrix of η. It is known that given a q×q
p.d. matrix N , by stepwise maximizing the function of a q-vector u

u′NBNu = var(u′Nη)

over u, u′Nu = 1, under the constraints that at the kth step u has to be N -
orthogonal to the solutions u1, . . . , uk−1 at k − 1 previous steps, we arrive at
an N -orthonormal (o.n.) system {u1, . . . , um}, where m = rank B. The r.v’.s
u′

1Nη, . . . , u′
mNη are just the principal components of η.

When l > 1, let Ai be the covariance matrix between ξi and η, i = 1, . . . , l.
Let Mi and N be respectively pi × pi and q × q p.d. matrices. Then, generalizing
the idea of principal components, we set the problem of stepwise maximizing the
sum of squared covariances

l∑

i=1

(e′iMiAiNb)2 =
l∑

i=1

cov2(b′Nη, e′iMiξi)

over ei and b, e′iMiei = 1, b′Nb = 1. With no constraint at the first step,
the constraint at the kth (k > 1) maximizing step is that the vectors ei and b
respectively have to be Mi-orthogonal and N -orthogonal to the solutions ei(j)
and b(j) at every previous jth step. In mathematical form, the problem to which
the paper is devoted is as follows, the corresponding notations are to be kept in
mind.

Given l real matrices Ai of order pi × q and p.d. Mi and N , we shall construct
unit vectors ei and b, i.e. e′iMiei = 1 and b′Nb = 1, so that the function

L(e1, . . . , el, b) =
l∑

i=1

(e′iMiAiNb)2(1.2)

will be maximized stepwise. At each maximizing step additional constraints mean
the solutions ei and b have to be respectively Mi-orthogonal and N -orthogonal
to the corresponding solutions at all previous steps.

The aim of this paper is to present a general constructive approach to the above
problem, which enables us to give a thorough discussion about the solution, to
establish clear-cut properties of the maximization process, and to clarify the
geometrical meaning of the assertions.
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The main results of the paper are contained in Sections 3 and 4. In Section 3 we
introduce a consistent construction which gives the first o.n. systems in all cases,
whereas the construction given by Hanafi and Lafosse (2001) did not. Section 4 is
devoted to establish an accurate formula for the cardinality of these o.n. systems
which, together with others in Section 5, constitute the crucial tool in dependence
analysis. Notice that Hanafi and Lafosse (2001) gave no precise indication about
this cardinality.

2. Two lemmas on maximization

We shall make use of the Cauchy-Schwarz inequality: for real column vectors
X, Y and a p.d. matrix M

(X ′MY )2 6 (X ′MX)(Y ′MY ),

the equality is attained if and only if X and Y are colinear.
Let us start from the matrices Ai of size pi × q, p.d. Mi of size pi × pi, and N of
size q × q , i = 1, . . . , l. Put

p =
l∑

i=1

pi, A = (A′
1 · · ·A′

l)
′, M = diag(M1, . . . , Ml).

The null matrix of any order will be denoted by the symbol 0. The notation
(Rp, M) means the space Rp endowed with the inner product u′Mv, u, v ∈ Rp.
The induced norm is denoted by ‖ · ‖M . Note the formula:

‖x‖2
M =

l∑

i=1

‖xi‖2
Mi

(2.1)

for x = (x′
1 · · ·x′

l)
′ ∈ Rp, xi ∈ Rpi .

Lemma 2.1. For ei ∈ Rpi , e′iMiei = 1, i = 1, . . . , l, and b ∈ Rq, we have
l∑

i=1

(e′iMiAiNb)2 6 b′NA′MANb,(2.2)

where the right hand side is just ‖ANb‖2
M. For ANb 6= 0, the equality is attained

if and only if

ANb

‖ANb‖M
=




µ11e1

· · ·
µl1el


 ,

where µ11, . . . , µl1 are norming coefficients, i.e.
∑l

i=1 µ2
i1 = 1.

Proof. Put λ = ‖ANb‖M > 0, ANb = λc, with c ∈ Rp, c′Mc = 1. Then,
writing c = (c′1 · · ·c′l)′ with λci = AiNb, we have

l∑

i=1

(e′iMiAiNb)2 = λ2
l∑

1

(e′iMici)2.
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By Cauchy-Schwarz inequality (e′iMici)2 6 (e′iMiei)(c′iMici) with equality if and
only if ci = µi1ei, where µi1 is some number. From (2.1) we get

l∑

i=1

c′iMici = (c′Mc)2 = 1,

hence
l∑

i

(e′iMiAiNb)2 6 λ2,

the equality is attained if and only if

c =




µ11e1

· · ·
µl1el


 ,

where
∑l

i=1 µ2
i1 = 1 by (2.1).

The following definition is very important for our subject. Let B be any p× q
real matrix, S and T be respectively p × p and q × q p.d. ones, S and T being
given once for all to specify norms in Rp and Rq respectively.

Definition 2.1. A positive number λ is called a singular value of a nonnull
matrix B if and only if λ2 is an eigenvalue of BTB′ (resp. B′SB). The latent
subspace of BTB′ (resp. B′SB) induced by λ2 is called the left (resp. right)
singular subspace of B corresponding to the singular value λ. Any unit vector in
the left (resp. right) singular subspace endowed with the norm ‖·‖S (resp. ‖·‖T )
is called a left (resp. right) singular vector corresponding to the singular value λ.

If B = 0, any singular value is zero. In this case, the right singular subspace
corresponding to the singular value zero is Rq.

Lemma 2.2. Let λ1 be the greatest singular value of the p × q matrix B. Then

‖BTb‖2
S 6 λ2

1 (∀b ∈ Rq, b′Tb = 1).

If B 6= 0 the equality is attained if and only if b is a right singular vector of B
corresponding to λ1.

Proof. Let C = B′SB and C = PΦP ′ be the spectral decomposition, Φ =
diag(ϕ1, . . . , ϕq), ϕ1 > · · · > ϕq > 0, P ′TP = TPP ′ = PP ′T = Iq.
Put P ′Tb = c = (c1 · · ·cq)′. Then c′c = b′Tb = 1, and

‖BTb‖2
S = b′TCTb = c′Φc =

q∑

i=1

ϕic
2
i 6 ϕ1,

which proves the inequality. The equality occurs if and only if the following
equivalent conditions are fulfilled:

(‖BTb‖2
S = ϕ1) ⇐⇒ (Φc = ϕ1c) ⇐⇒

⇐⇒ (PΦc = ϕ1Pc = ϕ1PP ′Tb = ϕ1b) ⇐⇒ (PΦP ′Tb = ϕ1b) ⇐⇒
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⇐⇒ (CTb = ϕ1b)⇐⇒ b belongs to the right singular subspace of B corresponding
to the greatest singular value λ1 = ϕ

1/2
1 .

3. Construction of the first orthonormal systems

This section presents an iterative construction to generate an o.n. system in
(Rpi, Mi), i = 1, . . . , l. From now on, the notation M(T ) will denote the linear
hull of a set T of vectors as well as that of the set of column vectors of a matrix
T .
In Rpi let {ai1, . . . , aij}, j 6 pi, be an Mi-o.n. system. We shall put
P

(j)
i = Mi-orthogonal projector of Rpi onto M(ai1, . . . , aij), j = 1, . . . , pi,

P
(0)
i = null projector,

P
(pi)
i = unit matrix Ipi .

Then Ipi − P
(j)
i is also an Mi-orthogonal projector. We have in (Rpi, Mi)

M(P (j)
i ) = M(ai1, . . . , aij),

M(Ipi − P
(j)
i ) = M(ai1, . . . , aij)⊥.(3.1)

Thus

a′ikMi(Ipi − P
(j)
i ) = 0 ∀k = 1, . . . , j.(3.2)

The following matrices will be of constant use :

A
(j)
i = (Ipi − P

(j−1)
i )Ai, j = 1, . . . , pi + 1,(3.3)

A
(pi+1)
i = 0,(3.4)

A
(1)
i = Ai.

Put A(j) = ((A(j)
1 )′ · · · (A(j)

l )′)′. In particular A(1) = A. For the existence of A(j),
all the A

(j)
i have to exist. Hence j 6 min16 i6 l pi + 1. By (3.1) and (3.3) we

have

M(A(j)
i ) ⊂ M(ai1, . . . , ai,j−1)⊥.(3.5)

An o.n. system will be generated as follows.
Construction process

If A(j) 6= 0, choose bj arbitrarily in Rq so that A(j)Nbj 6= 0.
Define aij in Rpi , i = 1, . . . , l so that ‖aij‖Mi = 1 and




µ1ja1j

· · ·
µljalj


 =

A(j)Nbj

‖A(j)Nbj‖M
,(3.6)

where

µij =
‖A(j)

i Nbj‖Mi

‖A(j)Nbj‖M
and

l∑

i=1

µ2
ij = 1.
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(i) If A
(j)
i Nbj 6= 0, it is colinear with aij , namely aij = A

(j)
i Nbj

‖A
(j)
i Nbj‖Mi

.

(ii) If A
(j)
i Nbj = 0 and A

(j)
i 6= 0, we shall choose aij arbitrarily in M(A(j)

i ).
(iii) If A

(j)
i = 0 choose aij in Rpi so that aij ⊥Mi M(ai1, . . . , ai,j−1) (choose ai1

arbitrarily if j = 1).

From (i), (ii), (iii) one can construct aij for each given i providing A(j) 6= 0.
To ensure that A(j) exists and may be non-null, the construction of aij for given
i assume that j 6 min16 k6 l pk +1 and that j 6 pi. Furthermore, the condition
j 6 pi is necessary for (ii) and (iii) to be effective.

Remark. Hanafi and Lafosse (2001) solved the problem of seeking o.n. sys-
tems {aij , j = 1, . . .} that stepwise maximize the expression (1.1) which can be
rewritten as

∑l
i=1(e

′
iMiAiNb)2 with Ai = X ′

iDY , but they allowed the existence
of null vectors aij . The present construction always leads to an o.n. system {aij}
for each i, moreover, on the very basis of such a consistent construction we can
prove the accurate formula (4.10) for the cardinality of these o.n. systems, which
formula is lacking in the above-mentioned paper.

We now highlight some properties of the vectors aij .

Lemma 3.1. Assume j 6 mink pk + 1 and j 6 pi for given i. If A(j) 6= 0 then
{ai1, . . . , aij} is an Mi-o.n. system in Rpi.

Proof. From (3.2), for j > 2, a′ikMiA
(j)
i Nbj = 0 (k = 1, . . . , j − 1). From the

construction (i), (iii), (ii) and (3.5) the property follows.

Lemma 3.2. Under the constraints ei ⊥Mi M(ai1, . . . , ai,j−1) (i = 1, . . . , l), we
have

(∀b ∈ Rq)
l∑

i=1

(e′iMiAiNb)2 =
l∑

i=1

(e′iMiA
(j)
i Nb)2, 1 6 j 6 min

i
pi.(3.7)

Proof. Because

ei ⊥Mi M(ai1, . . . , ai,j−1) ⇐⇒ e′iMiP
(j−1)
i = 0,

which entails e′iMiA
(j)
i = e′iMiAi on account of (3.3).

Lemma 3.3. Given bj such that A(j)Nbj 6= 0. The vectors ±aij (i = 1, . . . , l)
are the only vectors ei that maximize

∑l
i=1(e

′
iMiA

(j)
i Nbj)2 unconditionally, and

also the only vectors ei that maximize
∑l

i(e
′
iMiAiNbj)2 under the constraints

ei ⊥Mi M(ai1, . . . , ai,j−1), i = 1, . . . , l (no constraints when j = 1).

Proof. The first assertion follows from Lemma 2.1 and (3.6), the second from
Lemmas 3.2 and 3.1.
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4. The stopping step

This section aims at establishing an accurate formula for the cardinality of the
o.n. systems constructed in Section 3.

The jth step produces {a1j , . . . , alj}, j 6 mini pi. By the construction j is
the stopping step, i.e. the process stops just after producing aij , if and only if
either j = mini pi or A(j) 6= 0 and A(j+1) = 0.
We shall first study the successive matrices A

(j)
i . The symbol PF will denote the

orthogonal projector onto a subspace F of some vector space.
Consider the vector space (Rpi, Mi). Put

F = M(ai1, . . . , ai,j−1)⊥,

F = Rpi when j = 1.

Consider some given i. For pi + 1 > h > j > 1 we have

F = M(aij, . . . , ai,h−1) ⊕ H, with H ⊂ F.(4.1)

Then H = M(ai1, . . . , ai,h−1)⊥. When h = pi + 1, H = {0}. By (3.1) we have
Ipi − P

(j−1)
i = PF , then by (3.3)

A
(j)
i = PF Ai, A

(h)
i = PHAi.

Since H is a subspace of F we have PH = PHPF . Thus

A
(h)
i = PHPF Ai = PHA

(j)
i .

Thus from (4.1) we have the orthogonal decomposition in the vector space F

A
(j)
i = A

(h)
i + PM(aij,... ,ai,h−1)A

(j)
i , 1 6 j < h 6 pi + 1.(4.2)

This formula leads directly to the following

Proposition 1. For given i and h, pi +1 > h > j > 1, if M(aij , . . . , ai,h−1) ⊂
M(A(j)

i ) then M(A(h)
i ) ⊂ M(A(j)

i ).

By Lemma 2.1, given any b ∈ Rq the maximum of
∑l

i=1(e
′
iMiA

(j)
i Nb)2 equals

‖A(j)Nb‖2
M which enjoys the following lemma

Lemma 4.1. As j increases we have

(i) ‖A(j)
i Nb‖Mi and rankA(j)

i are non-increasing for 1 6 j 6 pi + 1,
(ii) so are ‖A(j)Nb‖M and rankA(j) for 1 6 j 6 min16 i6 l pi + 1.

Proof. From (4.2) for any b ∈ Rq we have the orthogonal decomposition in Rpi

A
(j)
i Nb = A

(h)
i Nb + PM(aij,... ,ai,h−1)A

(j)
i Nb, 1 6 j < h 6 pi + 1,

hence the Mi-norm of the left-hand side equals the sum of norms of the two
summands on the right-hand side. The first assertion (i) follows. Then kerA

(j)
i ⊂

kerA
(h)
i , hence rankA

(j)
i > rankA

(h)
i by the dimension formula. From (2.1) we
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have ‖A(j)Nb‖2
M =

∑l
i=1 ‖A

(j)
i Nb‖2

Mi
, then ‖A(j)Nb‖M > ‖A(h)Nb‖M when

1 6 j < h 6 mini pi + 1.

Lemma 4.2. For given i and 1 6 j 6 h 6 pi, the following hold.

(A(h)
i 6= 0) ⇐⇒ (M(A(j)

i ) ⊃ M(aij , . . . , aih)),(4.3)

(A(h)
i 6= 0) =⇒ (rankA

(j)
i > h − j + 1),(4.4)

(A(h+1)
i = 0) ⇐⇒ (M(A(j)

i ⊂ M(aij, . . . , ai,h)),(4.5)

(A(h+1)
i = 0) =⇒ (rankA

(j)
i 6 h − j + 1).(4.6)

Proof. Let i be given. First note that by (4.2) for pi + 1 > h + 1 > j > 1

(A(h+1)
i = 0) ⇐⇒ (∀b ∈ Rq, A

(j)
i Nb = PM(aij,... ,ai,h)A

(j)
i Nb)

⇐⇒ (M(A(j)
i ) ⊂ M(aij, . . . , ai,h)).

Thus we get (4.5) and (4.6). Let 1 6 j 6 k 6 h 6 pi. Then by Lemma 4.1(i)

∀h 6 pi, (A(h)
i 6= 0) =⇒ (A(k)

i 6= 0, k = j, . . . , h).

Then by the construction (i), (ii) in Section 3 we see that

(A(h)
i 6= 0) =⇒ (aik ∈ M(A(k)

i ), k = j, . . . , h).

Assume A
(h)
i 6= 0, h > j, then aij ∈ M(A(j)

i ). Using Proposition 4.1 it follows
that

(aij ∈ M(A(j)
i )) =⇒ (M(A(j+1)

i ) ⊂ M(A(j)
i )) =⇒ (aij , ai,j+1 ∈ M(A(j)

i ))

when h > j + 1, by Proposition 4.1 the last inclusion in turn entails

(M(A(j+2)
i ) ⊂ M(A(j)

i )) =⇒ (aij , ai,j+1, ai,j+2 ∈ M(A(j)
i ))

when h > j + 2, and so on. Finally we get

(A(h)
i 6= 0) =⇒ (M(aij, . . . , aih) ⊂ M(A(j)

i )), 1 6 j 6 h 6 pi,

and by the way we get (4.4).
To prove the converse note that from (4.5)

(A(h)
i 6= 0) ⇐⇒ (M(A(j)

i ) 6⊂ M(aij, . . . , ai,h−1)), 1 6 j < h 6 pi.

Let M(aij , . . . , aih) ⊂ M(A(j)
i ), then M(A(j)

i ) 6⊂ M(aij , . . . , ai,h−1), j < h, thus
A

(h)
i 6= 0. For j = h, if M(aij) ⊂ M(A(j)

i ) then A
(h)
i 6= 0 too. Thus

(M(aij, . . . , aih) ⊂ M(A(j)
i )) =⇒ (A(h)

i 6= 0), 1 6 j 6 h 6 pi,

and (4.3) is proved.

Lemma 4.3. For given i and pi > h > j > 1,

(A(h)
i 6= 0, Ah+1

i = 0) ⇔ (M(A(j)
i ) = M(aij , . . . , aih)),(4.7)

(A(h)
i 6= 0, A

(h+1)
i = 0) ⇔ (rankA

(j)
i = h − j + 1, j 6 h 6 pi).(4.8)
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The relation

rankA
(j)
i = rankAi − j + 1(4.9)

holds for 1 6 j 6 min(pi, rankAi + 1).

Proof. (4.7) follows immediately from (4.3) and (4.5). From (4.7), for pi > h >
j > 1 we have

(A(h)
i 6= 0, A

(h+1)
i = 0) =⇒ (rankA

(j)
i = h − j + 1).

Let us prove the converse. For h = pi, from (3.4) A
(h+1)
i = 0 is trivially true. For

h < pi, i.e. h + 1 6 pi, by (4.4)

(A(h+1)
i 6= 0) =⇒ (rankA

(j)
i > h − j + 2).

On the other hand, by (4.6), for h 6 pi

(A(h)
i = 0) =⇒ (rankA

(j)
i 6 h − j).

Therefore,

(rankA
(j)
i = h − j + 1, j 6 h 6 pi) =⇒ (A(h)

i 6= 0, A
(h+1)
i = 0).

Thus (4.8) is proved. Letting j = 1 in (4.8) we get (4.9) which holds only for
rankAi − j + 1 > 0, i.e. for j 6 rankAi + 1.

Lemma 4.4. (∀j : 1 6 j 6 h 6 min16 i6 l pi)

(A(h) 6= 0, A(h+1) = 0) ⇔ ( max
i=1,... ,l

rankA
(j)
i = h − j + 1, j 6 h 6 min

i
pi)

⇔ ( max
i=1,... ,l

rankAi = h, h 6 min
i

pi).

Proof. Using (4.4) and (4.6) for 1 6 j 6 h 6 mini pi we get

(A(h) 6= 0) =⇒ ((∃i) rankA
(j)
i > h − j + 1),

(A(h+1) = 0) =⇒ ((∀i) rankA
(j)
i 6 h − j + 1),

hence

(A(h) 6= 0, A(h+1) = 0) =⇒ (max
i

rankA
(j)
i = h − j + 1).

Let us prove the converse. From above it follows that

(max
i

rankA
(j)
i = h − j + 1, j 6 h 6 min

i
pi) =⇒ (A(h) 6= 0).

Now assume that maxi rankA
(j)
i = h − j + 1, j 6 h 6 mini pi. Then A(h) 6= 0.

We shall show that

(max
i

rankA
(j)
i = h − j + 1, j 6 h 6 min

i
pi) =⇒ (A(h+1) = 0).
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Indeed, A(h) being nonnull, A(h+1) exists from the construction in Section 3. If
A(h+1) 6= 0 then ∃i′ : A

(h+1)
i′ 6= 0, hence by (3.4) h + 1 6 pi′ . Therefore, by (4.4)

it would follow that rank A
(j)
i′ > h − j + 2. Thus, for 1 6 j 6 h 6 mini pi

(max
i

rankA
(j)
i = h − j + 1, j 6 h 6 min

i
pi) ⇐⇒ (A(h) 6= 0, A(h+1) = 0).

From the preceding consideration we shall now get a clear-cut formula for the
stopping step m of the construction process. Since {ai1, . . . , aim} is an o.n.
system in Rpi (∀i = 1, . . . , l), it is required that m 6 mini pi.

Theorem 4.1. We have

m = min{p1, . . . , pl, max
i

rankA
(j)
i + j − 1},

m = min{p1, . . . , pl, max
i

rankAi}.(4.10)

Proof. It suffices to prove (4.10). For the stopping step m, always A(m) 6= 0.
Assume h = maxi rankAi 6 mini pi. Then from Lemma 4.4 it follows that
A(h) 6= 0, A(h+1) = 0. Thus the stopping step m = h. If h = max rankAi >
min pi, by Lemma 4.4 we cannot have A(k) 6= 0, A(k+1) = 0 for any k 6 min pi.
Then the stopping step m must be min pi.

5. Generating an o.n. system in (Rq, N)

We shall see that the construction in Section 3 induces two other o.n. systems.
The jth step of the construction in Section 3 is based on A(j) 6= 0, j 6 m. bj is
arbitrarily chosen subject to A(j)Nbj 6= 0. Let us put

λj = ‖A(j)Nbj‖M > 0, aj =
A(j)Nbj

‖A(j)Nbj‖M
, j 6 m.

Then A(j)Nbj = λjaj , ‖aj‖M = 1, λj > 0.
Assume that the system {ai1, . . .} is o.n.

Lemma 5.1. For any (j, k), 1 6 j 6 k 6 m, we have

A′
iMiaik = (A(j)

i )′Miaik,(5.1)

A′Mak = (A(j))′Mak.(5.2)

Moreover, {a1, . . . , am} is an o.n. system in (Rp, M).

Proof. Since aik ⊥ M(ai1, . . . , ai,j−1) we get a′ikMiP
(j−1)
i = 0. Then (5.1) fol-

lows from (3.3), whereas (5.2) from (5.1) and (3.6). Because of (3.6) a′hMaj =∑l
i=1 µihµija

′
ihMiaij = 0 for h 6= j, the last assertion follows.

Let us now restrict the choice of bj . We shall choose bj so that, 1 6 j 6 m,

A(j)Nbj = λjaj , (λj > 0, ‖aj‖M = 1),(5.3)

(A(j))′Maj = λjbj .(5.4)

From this choice we get the
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Lemma 5.2. The bj’s form an N -o.n. system in Rq.

Proof. For h > j, using (5.3) and (5.4) we get

b′hNbj =

λ−1
h a′hMA(h)Nbj = λ−1

h (a′hMA(j))Nbj = λ−1
h λja

′
hMaj

=
{

0 if j < h
1 if j = h.

(5.3) and (5.4) mean that (aj , bj, λj) is a trio, always existing, consisting respec-
tively of a left singular vector, the associated right one and the corresponding
positive singular value of the matrix A(j) 6= 0, 1 6 j 6 m.

6. Maximum of a sum of squared bilinear forms

We are now in a position to solve the maximization problem.
From Lemma 3.3 it is known that the system {ε1a1j , . . . , εlalj}, εi = ±1, is
the unique one that maximizes

∑l
i=1(e

′
iMiA

(j)
i Nbj)2, bj being given so that

A(j)Nbj 6= 0 . The maximum equals ‖A(j)Nbj‖2
M . By Lemma 2.2 the maxi-

mum value of ‖A(j)Nbj‖2
M equals the squared greatest singular value λ2

(j) of A(j).
Since A(j) 6= 0, 1 6 j 6 m, this maximum is attained if and only if bj is a right
singular vector b(j) of A(j) corresponding to the greatest singular value λ(j).

By Lemma 3.2 and 3.3 to maximize
∑

i(e
′
iMiA

(j)
i Nbj)2 unconditionally is equiv-

alent to maximize
∑

i(e
′
iMiAiNbj)2 under the constraints

ei ⊥Mi M(ai1, . . . , ai,j−1), i = 1, . . . , l.(6.1)

Therefore, by (3.7), the system {a1j, . . . , alj, b
(j)} not only unconditionally max-

imizes
∑

i(e
′
iMiA

(j)
i Nbj)2 , but also maximizes

∑
i(e

′
iMiAiNbj)2 under the con-

straints (6.1) and under even the constraints

ei ⊥Mi M(ai1, . . . , ai,j−1), bj ⊥N M(b(1), . . . , b(j−1)).

Indeed, the system {a1j , . . . , alj , b
(j)} satisfies the last constraints because of

Lemma 5.2. Thus, we have solved the stepwise maximization problem in Sec-
tion 1. The maximum at every step enjoys the obvious following lemma:

The maximum λ2
(j) at the jth maximization step is non-increasing as j in-

creases.

7. Conclusion

The number m, given by (4.10), being the stopping step of the construction in
Section 3, the solution to the stepwise maximization problem for the sum (1.2)
of squared bilinear forms highlights the following o.n. systems:
{ai1, . . . , aim} in (Rpi , Mi), i = 1, . . . , l,

{a(1), . . . , a(m)} in (Rp, M), where a(j) is some left singular vector corresponding
to the greatest singular value λ(j) of A(j),
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{b(1), . . . , b(m)} in (Rq, N), where b(j) is the right singular vector associated to
the left one a(j).
If l = 1, p1 = p = q these systems all coincide to become the o.n. system
{u1, . . . , um} in PCA, m = rankA. Hanafi and Lafosse (2001) discussed the use
of these o.n. systems for analyzing the dependence between several collections of
variables.
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