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ON COLORINGS OF SPLIT GRAPHS

NGO DAC TAN AND LE XUAN HUNG

Abstract. A graph G = (V,E) is called a split graph if there exists a par-
tition V = I ∪ K such that the subgraphs of G induced by I and K are
empty and complete graphs, respectively. In this paper, we determine chro-
matic polynomials for split graphs and characterize chromatically unique split
graphs. Some sufficient conditions for split graphs to be Class one are also
proved. In particular, we prove that the conjecture posed by Hilton and Zhao
is true for split graphs.

1. Introduction

All graphs considered in this paper are finite undirected graphs without loops
or multiple edges. If G is a graph, then V (G), E(G) (or V , E in short), and G
will denote its vertex-set, its edge-set and its complementary graph, respectively.
The set of all neighbours of a subset S ⊆ V (G) is denoted by NG(S) (or N(S)
in short). Further, for W ⊆ V (G) the set W ∩ NG(S) is denoted by NW (S).
If S = {v}, then N(S) and NW (S) are denoted shortly by N(v) and NW (v),
respectively. For a vertex v ∈ V (G), the degree of v (resp., the degree of v with
respect to W ), denoted by deg(v), (resp., degW (v)), is |NG(v)| (resp., |NW (v)|).
The subgraph of G induced by W ⊆ V (G) is denoted by G[W ]. The empty
and complete graphs of order n are denoted by On and Kn, respectively. Unless
otherwise indicated, our graph-theoretic terminology will follow [1].

A graph G = (V, E) is called a split graph if there exists a partition V = I ∪K
such that G[I ] and G[K] are empty and complete graphs, respectively. We will
denote such a graph by S(I ∪ K, E). The notion of split graphs was introduced
in 1977 by Földes and Hammer [10]. A role that split graphs play in graph
theory is clarified in [10] and in [5], [18], [19]. These graphs have been paid at-
tention also because they have connection with packing and knapsack problems
[9], with the matroid theory [11], with Boolean functions [20], with the analysis
of parallel processes in computer programming [12] and with the task allocation
in distributed systems [13]. Many generalizations of split graphs have been made.
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The newest one is the notion of bisplit graphs introduced by Brandstädt et al.
[4].

Both vertex colorings (or simply colorings), and edge colorings of graphs have
applications in many problems. Because of this, they are important topics in
the graph theory. In this paper we consider colorings and edge colorings of split
graphs. We recall now some definitions. Let G be a graph. For a positive integer
λ, a λ-coloring of G is a mapping f : V (G) → {1, 2, . . . , λ} such that f(u) 6= f(v)
for any adjacent vertices u, v ∈ V (G). Two λ-colorings f and g are considered
different if and only if there exists u ∈ V (G) such that f(u) 6= g(u). Let P (G, λ)
(or simply P (G) if there is no danger of confusion), denote the number of distinct
λ-colorings of G. It is well-known that for any graph G, P (G, λ) is a polynomial
in λ, called the chromatic polynomial of G. The notion of chromatic polynomials
was first introduced by Birkhoff [2] in 1912 as a quantitative approach to tackle
the four-color problem. The smallest positive integer λ such that P (G, λ) > 0 is
called the chromatic number of G and is denoted by χ(G). We say that a graph
G is n-chromatic if n = χ(G) and is r-critical if χ(G) = r and χ(H) < χ(G)
for every subgraph H of G with H 6= G. Cycles Cn with n odd are examples of
3-critical graphs. Two graphs G and H are called chromatically equivalent or in
short χ-equivalent, and we write in notation G ∼ H , if P (G, λ) = P (H, λ). A
graph G is called chromatically unique or in short χ-unique if G′ ∼= G (i.e., G′ is
isomorphic to G), for any graph G′ such that G′ ∼ G. For examples, all cycles
are χ-unique [16]. A connected χ-unique graph G is called weakly χ-unique if the
graph G∪O1 is not χ-unique; otherwise, G is called strongly χ-unique. The notion
of χ-unique graphs was first introduced and studied by Chao and Whitehead [7]
in 1978. The readers can see the surveys [16] and [17] for more informations
about χ-unique graphs.

An edge coloring of a graph G can be defined similarly. Namely, an edge λ-
coloring of a graph G is a mapping f : E(G) → {1, 2, . . .λ} such that two adjacent
edges have distinct images. The chromatic index of G, denoted by χ′(G), is the
smallest positive integer λ such that G has an edge λ-coloring. In 1964, Vizing
[24] proved that χ′(G) is equal to either ∆(G) or ∆(G) + 1, where ∆(G) is the
maximum degree of G. A graph G is said to be Class one (resp., Class two),
if χ′(G) = ∆(G) (resp., ∆(G) + 1). We say that G is Class-two-critical if it
is connected, Class two and G − e is Class one for every edge e ∈ E(G). For
examples, all cycles Cn with n even are Class one; all cycles Cn with n odd are
Class two and moreover they are Class-two-critical.

The core of a graph G, denoted by G∆, is the subgraph of G induced by the set
of all vertices of degree ∆(G). We say that G is overfull if |E(G)| >

⌊
|V (G)|

2

⌋
∆(G).

It is easy to see that if G is overfull, then G is Class two. Vizing [25] proved that,
if G∆ has at most two vertices, then G is Class one. Let P ∗ be a graph obtained
from the Petersen graph by removing one vertex. Then it is not difficult to see
that χ(P ∗) = 3 and χ′(P ∗) = 4. Thus, P ∗ is Class two, but it is not overfull. In
[15] Hilton and Zhao posed the following conjecture:
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Conjecture 1. Let G be a connected graph such that ∆(G∆) 6 2 and G 6= P ∗.
Then G is Class two if and only if G is overfull.

In this paper, we shall determine chromatic polynomials for split graphs and
characterize chromatically unique split graphs (Section 2). Namely, we shall prove
that a connected split graph G is χ-unique if and only if G is isomorphic to a
connected split graph G′ = S(I ′ ∪ K ′, E ′) with |I ′| = 1, and a disconnected split
graph G is χ-unique if and only if G ∼= H∪Ok, where k > 1 and H = S(I ′∪K ′, E ′)
is a connected split graph such that |I ′| = 1 but |N(I ′)| > 1 if |K ′| > 1. Some
sufficient conditions for split graphs to be Class one will be given in Section 3. In
particular, we shall prove that Conjecture 1 is true for split graphs. The reader
can see other particular cases where Conjecture 1 is true in [6].

2. Vertex colorings

First of all, we prove the following theorem for chromatic polynomials of split
graphs.

Theorem 2.1. Let G = S(I ∪ K, E) be a split graph with I = {u1, u2, . . . , um},
deg(ui) = ti for i = 1, 2, . . . , m and |K| = n. Then

P (G, λ) = λ(λ− 1) . . .(λ− n + 1)(λ− t1) . . .(λ− tm).

Proof. Let K = {v1, v2, . . . , vn} and f be a coloring of G using λ colors 1, 2, . . . , λ.
It is clear that f(v1) ∈ {1, 2, . . . , λ},
f(v2) ∈ {1, 2, . . . , λ} \ {f(v1)}, . . . , f(vn) ∈ {1, 2, . . . , λ} \ {f(v1), . . . , f(vn−1)}
and f(ui) ∈ {1, 2, . . . , λ} \ f(N(ui)) for i = 1, 2, . . . , m. Therefore, the number
of distinct λ-colorings of G is

P (G, λ) = λ(λ− 1) . . .(λ− n + 1)(λ− t1) . . .(λ− tm).

Using the above result we now characterize χ-unique split graphs. We need
the following lemmas.

Lemma 2.1. Let G = S(I ∪ K, E) be a split graph with |K| = n and k =
max{deg(u) | u ∈ I}.Then

(i) G is n-chromatic if and only if k < n;
(ii) G is (n + 1)-chromatic if and only if k = n.

Proof. Let I = {u1, u2, . . . , um} and deg(ui) = ti for i = 1, 2, . . . , m. By Theorem
2.1, we have

P (G, λ) = λ(λ− 1) . . .(λ− n + 1)(λ− t1) . . .(λ− tm).

Since n > ti for any i = 1, 2, . . . , m and χ(G) is the smallest positive integer λ
such that P (G, λ) > 0, it is not difficult to see now that χ(G) = n if n 6= ti for
every i = 1, 2, . . . , m and χ(G) = n + 1 if n = ti for some i = 1, 2, . . . , m.
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Table 1. The graphs Gm
n (t1, . . . , tm) and Hm

n (t1, . . . , tm)

The graph The vertex-set The edge-set

G = (V, E) V = I ∪ K E = E1 ∪ E2 ∪ . . .∪ Em+1

Gm
n (t1, . . . , tm) I = {u1, . . . , um}, E1 = {u1v1, u1v2, . . . , u1vt1},

(2 6 m, K = {v1, . . . , vn}. E2 = {u2v1, u2v2, . . . , u2vt2},

1 6 t1 6 t2 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 6 tm < n) Em = {umv1, umv2, . . . , umvtm},

Em+1 = {vivj | i 6= j; i, j = 1, . . . , n}.

Hm
n (t1, . . . , tm) I = {u1, . . . , um}, E1 = {u1v1, u1v2, . . . , u1vt1},

(2 6 m, K = {v1, . . . , vn}. E2 = {u2v1, u2v2, . . . , u2vt2},

1 6 t1 6 t2 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 6 tm < n) Em−1 = {um−1v1, . . . , um−1vtm−1},

Em = {umv2, umv3, . . . , umv(tm+1)},

Em+1 = {vivj | i 6= j; i, j = 1, . . . , n}.

The results of the following lemma were proved in [22]. So we omit their proofs
here.

Lemma 2.2 ([22]). Let G and H be two χ-equivalent graphs. Then

(i) |V (G)| = |V (H)|;
(ii) |E(G)| = |E(H)|;
(iii) χ(G) = χ(H);
(iv) G is connected if and only if H is connected;
(v) G is 2-connected if and only if H is 2-connected.

In Table 1 we define the graphs Gm
n (t1, . . . , tm) and Hm

n (t1, . . . , tm). The
conditions that m, n and t1, t2, . . . , tm must be satisfied for the corresponding
graphs are indicated in the parentheses under their name in Column 1. The
subsets I and K of the vertex-set V for each of these graphs are indicated in
Column 2. Finally, in Column 3, we present the edges of the corresponding
graphs. It is clear by definition that Gm

n (t1, . . . , tm) and Hm
n (t1, . . . , tm) are split

graphs.

Lemma 2.3. (i) Gm
n (t1, . . . , tm) ∼ Hm

n (t1, . . . , tm);
(ii) Gm

n (t1, . . . , tm) 6∼= Hm
n (t1, . . . , tm).
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Proof. Assertion (i) follows immediately from Theorem 2.1 and the definitions of
Gm

n (t1, . . . , tm) and Hm
n (t1, . . . , tm). In order to prove Assertion (ii), we set

Ai = {u ∈ V (Gm
n (t1, . . . , tm)) | deg(u) = i},

Bi = {u ∈ V (Hm
n (t1, . . . , tm)) | deg(u) = i}.

It is not difficult to see that

Am+n−1 = {v1, v2, . . . , vt1} and Bm+n−1 = {v2, v3, . . . , vt1}.
So, |Am+n−1| = |Bm+n−1 | + 1. It follows that Gm

n (t1, . . . , tm) 6∼= Hm
n (t1, . . . , tm)

because otherwise |Ai| = |Bi| for every i = 1, 2, . . . , m + n − 1.

We shall apply the following known results on r-critical (see Chapter 8 in [3]),
and strongly χ-unique (see [16] and [23]), graphs to prove Theorems 2.2 and 2.3.

Lemma 2.4 ([3]). (i) Every r-chromatic graph contains an r-critical subgraph.
(ii) If H is an r-critical graph and H is not complete, then |V (H)| > r + 2.

Lemma 2.5 ([16]). Let G be a connected χ-unique graph. Then G is strongly
χ-unique if and only if G is 2-connected.

Lemma 2.6 ([23]). Let G be a disconnected graph. Then G is χ-unique if and
only if G ∼= H ∪ Ok, where k > 1 and H is a strongly χ-unique graph.

Now we characterize χ-unique split graphs.

Theorem 2.2. A connected split graph G = S(I ∪K, E) is χ-unique if and only
if G is isomorphic to a connected split graph G′ = S(I ′ ∪ K ′, E ′) with |I ′| = 1.

Proof. First we prove the necessity. Suppose that G = S(I∪K, E) is a connected
χ-unique split graph with |I | = m, |K| = n. If m > 3 or m = 2 but deg(u) < n
for any u ∈ I , then by Lemma 2.3, it is not difficult to see G is not χ-unique, a
contradiction. So m = 1 or m = 2 but there exists u ∈ I such that deg(u) = n.
It follows that G is isomorphic to a connected split graph G′ = S(I ′ ∪ K ′, E ′)
with |I ′| = 1.

Now we prove the sufficiency. Suppose G′ = S(I ′ ∪ K ′, E ′) is a connected
split graph with I ′ = {u} and |K ′| = n. If deg(u) = n then G′ is the complete
graph Kn+1. Therefore, G′ is χ-unique. So we may assume that 1 6 deg(u) < n.
Let R be a graph such that P (R, λ) = P (G′, λ). By Lemmas 2.1 and 2.2, R is
n-chromatic of order n + 1. By Assertion (i) of Lemma 2.4, R has an n-critical
subgraph H . It is clear that |V (H)| > n. If |V (H)| > n, then H is not complete
because H is n-chromatic. By Assertion (ii) of Lemma 2.4, |V (H)| > n + 2,
contradicting the fact that |V (H)| 6 |V (R)| = n + 1. Hence we must have
|V (H)| = n. Now if H is not complete then it is not difficult to see that χ(H) < n,
a contradiction. It follows that H is complete and therefore R = S(I ∪ K, E)
with I = {u∗}, K = V (H). Since P (R, λ) = P (G′, λ), by Theorem 2.1 it is not
difficult to see that degR(u∗) = degG′(u). It follows that R ∼= G′. Thus, G′ is
χ-unique.
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Theorem 2.3. A disconnected split graph G = S(I ∪ K, E) is χ-unique if and
only if G ∼= H ∪ Ok, where k > 1 and H = S(I ′ ∪ K ′, E ′) is a connected split
graph such that |I ′| = 1 but |N(I ′)| > 1 if |K ′| > 1.

Proof. First we prove the necessity. Let G = S(I ∪ K, E) be a disconnected
χ-unique split graph. Then by Lemma 2.6, G ∼= G′ ∪ Ok, where k > 1 and G′

is a strongly χ-unique split graph. By Theorem 2.2, G′ is isomorphic to a split
graph H = S(I ′ ∪ K ′, E ′) with |I ′| = 1. By Lemma 2.5, H is 2-connected. So
|N(I ′)| > 1 if |K ′| > 1.

Now we prove the sufficiency. Let G ∼= H ∪ Ok, where k > 1 and H =
S(I ′ ∪ K ′, E ′) is a connected split graph such that |I ′| = 1 but |N(I ′)| > 1 if
|K ′| > 1. If |K ′| = 1, then by Lemma 2.2 it is not difficult to see that the graph H
is strongly χ-unique. If |K ′| > 1, then H is 2-connected because |N(I ′)| > 1. By
Lemma 2.5, H is strongly χ-unique. Therefore, by Lemma 2.6, G is χ-unique.

3. Edge colorings

In this section we consider the problem of determining when a split graph
is Class one. Without loss of generality we may assume that all split graphs
considered in this section are graphs without isolated vertices. We need the
following Lemmas 3.1–3.4 to prove our results.

Lemma 3.1 ([21]). If G is a graph of order 2n + 1 and ∆(G) = 2n, then G is
Class one if and only if |E(G)| > n.

Lemma 3.2 ([8]). Let G be a split graph. If ∆(G) is odd, then G is Class one.

Lemma 3.3 ([14]). Let G be a connected Class two graph with ∆(G∆) 6 2. Then
1. G is Class-two-critical;
2. δ(G∆) = 2;
3. δ(G) = ∆(G)− 1, unless G is an odd cycle;
4. N(V (G∆)) = V (G).

Lemma 3.4. Let G = S(I ∪ K, E) be a split graph with ∆(G) = |V (G)| − 1.
Then G is Class two if and only if G is overfull.

Proof. Suppose that |I | = m, |K| = n and G is Class two. By Lemma 3.2, ∆(G)
is even and therefore |V (G)| is odd. By Lemma 3.1, we have

|E(G)| = |Km+n| − |E(G)|

>
(n + m)(n + m − 1)

2
− n + m − 1

2

=
n + m − 1

2
(n + m − 1)

=
⌊

n + m

2

⌋
∆(G)

=
⌊
|V (G)|

2

⌋
∆(G).
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Thus, G is overfull. The converse is already well-known to be true.

Now we prove some sufficient conditions for split graphs to be Class one.

Theorem 3.1. Let G = S(I ∪K, E) be a split graph and G1 = G−E(G[K]). If
∆(G1) = deg(v) for some vertex v ∈ K, then G is Class one.

Proof. If the order of G2 = G[K] is even then G2 has an edge coloring f2 using
∆(G2) colors 1, 2, . . . , ∆(G2). The graph G1 is bipartite. So G1 has an edge
coloring f1 using ∆(G1) colors ∆(G2) + 1, . . . , ∆(G2) + ∆(G1). Since ∆(G1) =
deg(v) for some vertex v ∈ K, it is clear that the mapping

f : E → {1, 2, . . . , ∆(G2), ∆(G2) + 1, . . . , ∆(G2) + ∆(G1)}

such that f(e) = f1(e) if e ∈ E(G1) and f(e) = f2(e) if e ∈ E(G2) is an edge
coloring of G. Since ∆(G) = ∆(G1) + ∆(G2), it follows that χ′(G) = ∆(G) and
G is Class one.

If the order of G2 = G[K] is odd then G2 has an edge coloring f2 using
∆(G2)+1 colors 1, 2, . . . , ∆(G2)+1. The graph G1 has an edge coloring f1 using
∆(G1) colors ∆(G2) + 2, . . . , ∆(G1) + ∆(G2) + 1. Let f be the edge coloring of
G such that

(i) f(e) = f2(e) if e ∈ E(G2),
(ii) f(e) = f1(e) if e ∈ E(G1) and f1(e) 6= ∆(G1) + ∆(G2) + 1,
(iii) For e = uv with u ∈ I, v ∈ K and f1(e) = ∆(G1) + ∆(G2) + 1, f(e) is the

color from {1, 2, . . . , ∆(G2) + 1} not used in the star with the star center v (i.e.,
in the subgraph induced by the edges of G incident with v). Thus, we obtain an
edge coloring f for G which used only ∆(G1) + ∆(G2) = ∆(G) colors, i.e., G is
Class one.

Theorem 3.2. Let G = S(I ∪ K, E) be a split graph and A = V (G∆). If
|NI(S)| > |S| for every S ⊆ A, then G is Class one.

Proof. If ∆(G) is odd then by Lemma 3.2, G is Class one. So we may assume
that ∆(G) is even. It is not difficult to see that A ⊆ K. Since |NI(S)| > |S|
for every S ⊆ A, by the Hall’s theorem on matching G contains a complete
matching M from A to I . Let A = {v1, . . . , vk} and M = {u1v1, u2v2, . . . , ukvk},
where u1, u2, . . . , uk ∈ I . Consider the graph G′ = G − M . It is clear that
∆(G′) = ∆(G)−1. Since ∆(G) is even, ∆(G′) is odd and G′ has an edge coloring
f1 using ∆(G)−1 colors 1, 2, . . . , ∆(G)−1. Let f be the edge coloring of G such
that

(i) f(e) = f1(e) if e ∈ E(G′),
(ii) f(e) = ∆(G) if e ∈ M .
Then f is an edge ∆(G)-coloring for G. Thus, G is Class one.

Theorem 3.3. Let G = S(I ∪ K, E) be a connected split graph with deg(u) 6 2
for each u ∈ I and G 6∼= K3. Then G is Class one.



202 NGO DAC TAN AND LE XUAN HUNG

Proof. Let |I | = m and |K| = n. If degI(v) > 2 for some v ∈ K, then by Theorem
3.1 G is Class one. So we may assume that degI(v) 6 1 for any v ∈ K. It is clear
that ∆(G) = n. If n = 1 or 2 then it is clear that G is Class one. So we may
assume that n > 2 and n is even because otherwise G is Class one by Lemma
3.2. Since ∆(G) = n and deg(u) 6 2 for each u ∈ I , we may assume that

I = {u1, u2, . . . , um},
V (G∆) = K = {v1, v2, . . . , vn},
N(ui) = {vi} for i = 1, 2, . . . , p,

N(ui) = {v2i−p−1, v2i−p} for i = p + 1, . . . , m.

Let L = [li,j] with i, j ∈ {1, 2, . . . , n} be the latin square of order n such that
li,j ≡ i+ j(mod n) where numbers modulo n are 1, 2, . . . , n. We will use the latin
square L to obtain an edge n-coloring f for G. Since n > 2, it is not difficult to
see that l2i−1,2i−1 6= l2i,2i for i = 1, 2, . . . , m. Let f be the edge coloring of G
such that

f(vivj) = li,j for 1 6 i 6= j 6 n,

f(viui) = li,i for i = 1, 2, . . . , p,

f(v2i−p−1ui) = l2i−p−1,2i−p−1 for i = p + 1, . . . , m,

f(v2i−pui) = l2i−p,2i−p for i = p + 1, . . . , m.

Then f is an edge ∆(G)-coloring for G. Thus, G is Class one.

The following theorem shows that Conjecture 1 posed by Hilton and Zhao in
[15] and already mentioned in Section 1 is true for split graphs.

Theorem 3.4. Let G = S(I ∪K, E) be a connected split graph with ∆(G∆) 6 2.
Then G is Class two if and only if G is overfull.

Proof. It is already well-known that if G is overfull then G is Class two. We
prove now the converse. Suppose that G is Class two. If G ∼= K3 then G is
overfull. So we may assume that G 6∼= K3. Let A = V (G∆). It is not difficult to
see that A ⊆ K and |A| 6 3. If |A| 6 2, then by using Theorems 3.2 and 3.3 it
is not difficult to show that G is Class one. So we may assume that |A| = 3. By
Lemma 3.3, NI(A) = I . If |NI(v)| > 3 for some v ∈ A, then |NI(S)| > |S| for
every S ⊆ A. By Theorem 3.2, G is Class one, a contradiction. So |NI(v)| 6 2
for every v ∈ A. If |I | > 3, then it is not difficult to see that |NI(S)| > |S|
for every S ⊆ A. Again by Theorem 3.2, G is Class one, a contradiction again.
So |I | 6 2. First assume that |NI(v)| = 2 for some v ∈ A. Then |I | = 2 and
∆(G) = |V (G)|−1, by Lemma 3.4, G is overffull. Now we assume that |NI(v)| = 1
for every v ∈ A. If |I | = 2, say I = {u1, u2}, then without loss of generality we
may assume that A = {v1, v2, v3}, N(u1) = {v1}, N(u2) = {v2, v3}. Consider the
graph G′ = G− u1v1. By Lemma 3.3, G is Class-two-critical. So G′ is Class one.
Let f1 be an edge coloring of G′ using ∆(G′) = ∆(G) colors 1, 2, . . . , ∆(G). Let
f be the edge coloring of G such that
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(i) f(e) = f1(e) if e ∈ E(G′);
(ii) f(u1v1) is a color in {1, 2, . . . , ∆(G)} which is not used to color any edges

incident to v1.
Then f is an edge ∆(G)-coloring for G, i.e., G is Class one, a contradiction. So
|I | = 1. Then ∆(G) = |V (G)| − 1. Again by Lemma 3.4, G is overfull.

Acknowledgement. We would like to express our sincere thanks to the referees
for valuable comments and useful suggestions which help us to improve the paper.
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[10] S. Földes, P. L. Hammer, Split graphs, In: Proc. Eighth Southeastern Conf. on Combin.,
Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1977), pp. 311–
315. Congressus Numerantium, No XIX, Utilitas Math., Winnipeg, Man., 1977.
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