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ON THE FUNCTIONAL EQUATION P (f) = Q(g) IN
NON-ARCHIMEDEAN FIELD

NGUYEN TRONG HOA

Abstract. In this paper, we study the existence of non-constant meromor-
phic solutions f and g of the functional equation P (f) = Q(g), where P (z) and
Q(z) are given nonlinear polynomials with coefficients in the non-Archimedean
field K.

1. Introduction

Let K be an algebraically closed field, complete for a non-trivial non-Archimedean
absolute value, f be a non-constant meromorphic function and S be a subset of
distinct elements in K. Define

Ef (S) =
⋃
a∈S

{(z,m)| z is zero of f − a with multiplicity m}.

Two function f and g of the same type are said to share S, counting multiplicity,
if Ef (S) = Eg(S). A subset S is called an unique range set (a URS in short) for
entire (or meromorphic) functions if for any two non-constant entire (or mero-
morphic) functions f and g such that Ef (S) = Eg(S), one has f=g. Assume that
S be a finite set, we set

PS(z) =
∏
a∈S

(x − a).

As a connection to the study of the uniqueness problem, Li and Yang ([3]) intro-
duced the following definition.

Definition 1.1. A non-constant polynomial P (z) is said to be an unique poly-
nomial for entire (or meromorphic) functions if whenever P (f) = P (g) for two
non-constant entire (or meromorphic) functions f and g, it implies that f = g.

P(z) is said to be a strong uniqueness polynomial for entire (or meromorphic)
functions if it satisfies the condition P (f) = cP (g) for two non-constant entire
(or meromorphic) functions f, g and some nonzero constant c, then it implies
that c = 1 and f = g.

To demonstrate that the finite set S be a URS for entire (or meromorphic)
functions, we prove that polynomial PS(z) is a strong uniqueness polynomial. If
P is a strong uniqueness polynomial for entire (or meromorphic) functions, then
the set of the zeros of P can be a URS.
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Recently, H. H. Khoai and C. C. Yang ([1]) generalized the above studies by
considering a pair of two nonlinear polynomials P (z) and Q(z) such that the only
meromorphic solutions f, g satisfying P (f) = Q(g) are constants. This problem
is considered in the complex plane C by H. H. Khoai and C. C. Yang ([1]) as well
as by C. C. Yang and P. Li ([2]).

In this paper, we find the conditions, such that functional equation P (f) =
Q(g) has no non-constant meromorphic solutions f, g in K. To solve the functional
equation, we study the hyperbolicity of the algebraic curve {P (x) − Q(y) = 0}
by estimating its genus. We shall do this by giving sufficiently many linear
independent regular 1-forms of Wronskian type on that curve.

2. Main theorems

Definition 2.1. Let P (z) be a nonlinear polynomial of degree n whose derivative
is given by

P ′(z) = c(z − α1)n1 . . . (z − αk)nk ,

where n1 + · · ·+nk = n−1 and α1, . . . , αk are distinct zeros of P ′. The number
k is called the derivative index of P.

Polynomial P (z) is said to satisfy the condition separating the roots of P ′
(separation condition) if P (αi) �= P (αj) for all i �= j = 1, 2, . . . , k.

Let P (x) and Q(y) be two nonlinear polynomials of degrees n and m, respec-
tively,

P (x) = anxn + . . . + a1x + a0, Q(y) = bmym + . . . + b1y + b0.(1)

Then, we have

P ′(x) = nan(x − α1)n1 · · · (x − αk)nk ,(2)

Q′(y) = mbm(y − β1)m1 · · · (y − βl)ml ,(3)

where n1 + . . . + nk = n − 1, m1 + . . . + ml = m − 1, α1, . . . , αk are distinct
zeros of P ′, and β1, . . . , βl are distinct zeros of Q′. Define

∆ := {αi| there exist βj such that P (αi) = Q(βj)},
Λ := {βj | there exist αi such that P (αi) = Q(βj)}.(4)

Setting

I = #∆, J = #Λ.(5)

Theorem 2.1. Let P (x), Q(y) be two nonlinear polynomials of degrees n � m,
respectively, such that P (x) − Q(y) has no linear factor. Suppose that k, l are
the derivative indexes of P,Q, respectively. Then there exists no non-constant
meromorphic functions f and g such that P (f) = Q(g), if P and Q satisfy one
of the following conditions

(i) k − I � n − m + 2,
(ii) l − J � 2,
(iii) k − I = 1 and n1 � n − m + 2, where n1 is the multiplicity of zero α1 of

P ′ such that α1 /∈ ∆,
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(iv) l − J = 1 and β1 is a unique zero of Q′ such that β1 /∈ Λ, then β1 is a
multiple zero.

Theorem 2.2. Let P (x), Q(y) be two nonlinear polynomials of degrees n,m,
respectively, n � m, and P (x) − Q(y) has no linear factor. Λ,∆, I, J, ni,mj be
defined as above. Rearrange βj ∈ Λ so that m1 � m2 � . . . � mJ .

If J � 2, P satisfies the separation condition and P (αit) = Q(βt) for it ∈
{1, 2, . . . , I}, t = 1, 2, then there exists no pair of non-constant meromorphic
functions f and g such that P (f) = Q(g) if one of the following conditions is
satisfied

(i) m2 � 2, m1 � ni1 and m2 � ni2, or
(ii) ni1 > m1, m2 � ni2,m2 > 2 and m1+1

m1
� ni1

−m1

m2−2 , or

(iii) m1 � ni1, ni2 > m2 � 2,m1 > 2 and m2+1
m2

� ni2
−m2

m1−2 , or

(iv) ni1 > m1, ni2 > m2 > 2, m1+1
m1

� ni1
−m1

m2−2 and m2+1
m2

� ni2
−m2

m1−2 .
If J = 1 and β1 ∈ Λ with multiplicities m1, then there exists no non-constant

meromorphic functions f and g such that P (f) = Q(g) if∑
t|αt∈∆

nt − (n − m + 2) � m1 � maxt|αt∈∆{nt}.

Corollary 2.1. If the hypotheses of Theorem 2.2 are satisfied, then there exists
no pair of non-constant meromorphic functions f and g such that P (f) = Q(g)
provided J � 2 and m1 + m2 − 3 � max{ni1 , ni2}.

In the case P ≡ Q, we obtain the following result.

Theorem 2.3. Assume that P (z) is nonlinear polynomial of degrees n and P
satisfies the separation condition. Suppose that α1, . . . , αk are distinct zeros of
P ′ with multiplicities n1, . . . , nk, respectively. Rearrange αi so that n1 � n2 �
. . . � nk. Then there exists no non-constant meromorphic functions f �= g such
that P (f) = P (g) if and only if k � 3 or k = 2 and min{n1, n2} � 2.

3. Proofs of the main theorems

Suppose that H(X,Y,Z) is a homogeneous polynomial of degree n and

C := {(X : Y : Z) ∈ P
2(K)| H(X,Y,Z) = 0}.

Put

W1 = W (X,Y ) =
∣∣∣∣ X Y
dX dY

∣∣∣∣ , W2 = W (Y,Z) =
∣∣∣∣ Y Z
dY dZ

∣∣∣∣ ,
W3 = W (X,Z) =

∣∣∣∣ X Z
dX dZ

∣∣∣∣ .

Assume that R(X,Y,Z) and S(X,Y,Z) are two homogeneous polynomials in
P

2(K). Let

ωi =
R(X,Y,Z)
S(X,Y,Z)

Wi,
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with i = 1, 2, 3. If R(X,Y,Z) and S(X,Y,Z) such that deg S = deg R + 2 then
ωi is a well-defined rational 1-form on P

2(K).

Definition 3.1. Let C be an algebraic curve in P
2(K). An 1-form ω on C is said

to be regular if it is the pull-back of a rational 1-form on P
2(K) such that the

pole set of ω does not intersect C. A well-defined rational regular 1-form on C is
said to be an 1-form of Wronskian type.

Notice that to solve the functional equation P (f) = Q(g), is the same as to find
meromorphic functions f, g on K such that (f(z), g(z)) in curve {P (x) −Q(y) =
0}. On the other hand, if C is hyperbolic on K and f, g be meromorphic functions
such that (f(z), g(z)) ∈ C, for all z ∈ K, then f and g are constant (see [6]).
Therefore, to show that this equation has no non-constant solution, we shall
prove the hyperbolicity of {P (x)−Q(y) = 0}. By Picard-Berkovich’s theorem in
the p-adic case, a curve C in K is hyperbolic if and only if the genus of the curve
C is at least 1.

It is well-known that the genus g of a algebraic curve C is equal to the dimension
of the space of regular 1-forms on C. Therefore, to compute the genus, we have
to construct a basis of the space of regular 1-forms on C.

Let P and Q be two nonlinear polynomials of degrees n and m, respectively,
in K, defined by (1). Without loss of generality, we can assume that n � m. We
set

H(x, y) := P (x) − Q(y).

F (X,Y,Z) := Zn

{
P (

X

Z
) − Q(

Y

Z
)
}

.(6)

C := {(X : Y : Z) ∈ P
2(K) |F (X,Y,Z) = 0}.(7)

Define
P ′(X,Z) := Zn−1P ′(

X

Z
) , Q′(Y,Z) := Zm−1Q′(

Y

Z
),

then
∂F

∂X
= P ′(X,Z),

∂F

∂Y
= −Zn−mQ′(Y,Z),

∂F

∂Z
=

n−1∑
i=0

(n − i)aiX
iZn−1−i −

m′∑
j=0

(n − j)bjY
jZn−1−j,

where

m′ =

{
n − 1 if n = m

m if n > m.

Then, by Euler’s theorem, for all points (X : Y : Z) ∈ C, we have
∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = nF (X,Y,Z) = 0.(8)
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The equation of the tangent space of C the point (X : Y : Z) ∈ C is defined by

∂F

∂X
dX +

∂F

∂Y
dY +

∂F

∂Z
dZ = 0.(9)

From (8) and (9), we obtain

∂F

∂X
=

∣∣∣∣ Y Z
dY dZ

∣∣∣∣∣∣∣∣ X Y
dX dY

∣∣∣∣
∂F

∂Z
,

∂F

∂Y
=

∣∣∣∣ Z X
dZ dX

∣∣∣∣∣∣∣∣ X Y
dX dY

∣∣∣∣
∂F

∂Z
.

Hence,

W (Y,Z)
∂F

∂X

=
W (Z,X)

∂F

∂Y

=
W (X,Y )

∂F

∂Z

.(10)

Setting

η :=
W (Y,Z)

∂F

∂X

=
W (Z,X)

∂F

∂Y

=
W (X,Y )

∂F

∂Z

,

we obtain

η =
W (Y,Z)
P ′(X,Z)

=
W (X,Z)

Zn−mQ′(Y,Z)

=
W (X,Y )∑n−1

i=0 (n − i)aiXiZn−1−i − ∑m′
j=0(n − j)bjY jZn−1−j

.
(11)

In order to prove the main results, we need the following lemmas.

Lemma 3.1. Let P,Q be two nonlinear polynomials of degrees n,m, respectively,
where, n � m, and C be a projective curve defined by (7). If P (αi) �= Q(βj) for
all zeros αi of P ′ and βj of Q′, then we have the following assertions

(i) If n = m or n = m + 1, then C is non-singular in P
2(K).

(ii) If n − m � 2, then the point (0 : 1 : 0) be a unique singular point of C in
P

2(K).

Proof. By the hypothesis of the Lemma, P (αi) �= Q(βj) for all zeros αi of P ′ and
βj of Q′, we conclude that C is non-singular in P

2(K) \ [Z = 0]. Now we consider
the singularity of C in [Z = 0]. Assume that (X : Y : 0) is a singular point of C.
We have

∂F

∂X
(X,Y, 0) =

∂F

∂Y
(X,Y, 0) =

∂F

∂Z
(X,Y, 0) = 0.

If n = m or n = m + 1, then the above system has no root in P
2(K).

If n − m � 2, then the system has a unique root (0 : 1 : 0) in P
2(K).

Thus, if n = m or n = m + 1 then C is a smooth curve. If n − m � 2 then C
is singular with a unique singular point at (0 : 1 : 0). �
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Remark 3.1. (i) We also require that the 1-form, defined by (11), is non trivial
when it restricts to a component of K. This is equivalent to the condition that the
nominators are not identically zero when they restrict to a component of C i.e.,
the Wronskians W (X,Y ),W (X,Z),W (Y,Z) are not identically zero. It means
that the homogeneous polynomial defining C has no linear factors of the forms
aX − bY, aY − bZ, or aX − bZ, with a, b ∈ K if P �= Q. Indeed, on the contrary,
suppose that aX − bZ is a factor of curve C defined by (7). Without loss of
generality, we can take a �= 0. Since aX − bZ is a factor of F (X,Y,Z), we have

0 = F (
b

a
Z, Y, Z) = Zn{P (

b
aZ

Z
) − Q(

Y

Z
)} = Zn{P (

b

a
) − Q(

Y

Z
)},

which gives P ( b
a) ≡ Q(Y

Z ) for all Y,Z, a contradiction.
(ii) Assume that P (αi) �= Q(βj) for all zeros αi of P ′ and βj of Q′ and m > n.

If m = n + 1 then C is non-singular in P
2(K). If m − n � 2 then the point

(1 : 0 : 0) is an unique singular point of C in P
2(K).

Next, we recall the following notations. Let C be a curve on K defined by a
homogeneous polynomial F (X,Y,Z) = 0 and let ρ be a point of C. A holomorphic
map

φ = (φ1, φ2, φ3) : �ε = {t ∈ K||t| < ε} =⇒ C,

with φ(0) = ρ, is referred to a holomorphic parameterization of C at ρ. Local
holomorphic parameterization always exists for sufficiently small ε. If φ is a local
holomorphic parameterization of C at ρ, then the Laurent expansion of F ◦ φ(t)
at ρ has the form

F ◦ φ(t) =
q∑

i=p

cit
i, cp �= 0.

The order of F at ρ (it is also the order of F ◦ φ(t) at t = 0) is defined by p and
denoted by

p := ordρ,φF = ordt=0F (φ(t)).
Assume that ϕ(x, y) is an analytic function in x, y and is singular at (a, b). The
Puiseux expansion of ϕ(x, y) at ρ := (a, b) is given by

[x = a + aαtα + higher terms, y = b + bβtβ + higher terms],

where α, β ∈ N
∗ and aα, bβ �= 0. The α (respectively, β) is the order (also the

multiplicity number) of x at ρ (respectively, the order of y at ρ) for F and is
denoted by

α := ordρ,ϕ(x) (respectively, β := ordρ,ϕ(y)).
Denote by α1, . . . , αk zeros of P ′ with multiplicities n1, . . . , nk, and by β1, . . . , βl

zeros of Q′ with multiplicities m1, . . . ,ml, respectively, then singularities of C in
P

2(K)\[Z = 0] are (αi : βj : 1), which satisfy P (αi) = Q(βj). Let

Γ := {(αi : βj : 1) | (αi : βj : 1) is a singular point of C},
∆ := {αi | (αi : βj : 1) is a singular point of C},
Λ := {βj | (αi : βj : 1) is a singular point of C}.

(12)
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Setting I = #∆, J = #Λ, we have k � I, l � J. Without loss of generality, we
can take

∆ = {α1, . . . , αI}, Λ = {β1, . . . , βJ} and m1 � m2 � . . . � mJ .(13)

Lemma 3.2. Suppose that ∆,Λ, αi, βj , ni,mj be defined as above. Then, the
1-forms

θ :=
W (X,Z)∏

j|βj /∈Λ (Y − βjZ)mj
,

σ :=
Zn−mW (Y,Z)∏

i|αi /∈∆(X − αiZ)ni
,

are regular on C.

Proof. By the hypotheses of the lemma, θ is regular on C because no point of
the set {(αi : βj : 1)| βj /∈ Λ, i = 1, 2, . . . , k} is in C.

Note that

σ =
Zn−m

∏
i|αi∈∆(X − αiZ)ni∏k

j=1(X − αjZ)nj
W (Y,Z)

=
pZn−m

∏
i|αi∈∆(X − αiZ)ni

P ′(X,Z)
W (Y,Z)

=
p

∏
i|αi∈∆(X − αiZ)ni

Q′(Y,Z)
W (X,Z),

where, p = nan �= 0. Because Q′(Y,Z) |X=0,Y =1,Z=0= mbm �= 0 and no point of
the set {(αi : βj : 1)| αi /∈ ∆, j = 1, 2, . . . , l} is in C, σ is regular on C. �

Proposition 3.1. Suppose that n � m, P (x) − Q(y) has no linear factor and
k, l,∆,Λ, I, J, ni,mj be defined as above. Then the curve C is hyperbolic if one
of following conditions is satisfied

(i)
∑

i|αi /∈∆ ni � n − m + 2,
(ii)

∑
j|βj /∈Λ mj � 2.

Proof. Set

ϑ := Z j|βj /∈Λ mj−2
θ.

By Lemma 3.2, ϑ is a well-defined regular 1-form of Wronskian type on C if∑
j|βj /∈Λ mj � 2. Hence gC � 1, that is, C is hyperbolic, if

∑
j|βj /∈Λ mj � 2.

Setting
ς := Z i|αi /∈∆ ni−(n−m+2)

σ,

and arguing similarly as above, we can that the curve C is hyperbolic if∑
i|αi /∈∆

ni � n − m + 2.

This completes the proof. �
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Assume that (αi : βj : 1) is a singular point of C. Then

P (x) − P (αi) =
n∑

t=ni+1

at(x − αi)t,

Q(y) − Q(βj) =
m∑

t=mj+1

bt(y − βj)t,

when ani+1 �= 0, bmj+1 �= 0, P (αi) = Q(βj). Therefore, we have

F (X,Y,Z) = Zn{P (
X

Z
) − Q(

Y

Z
)}

= Zn

{
{P (

X

Z
) − P (αi)} − {Q(

Y

Z
) − Q(βj)}

}

=
n∑

t=ni+1

at(X − αiZ)t − Zn−m
m∑

t=mj+1

bt(Y − βjZ)t.

Using the Puiseux expansion of F (X,Y,Z) at ρij = (αi : βj : 1), we have

(ni + 1)ordρij ,F (X − αiZ) = (mj + 1)ordρij ,F (Y − βjZ).(14)

Suppose that ρ1 = (αi1 : βj1 : 1) and ρ2 = (αi2 : βj2 : 1) are two distinct finite
singular points of C. Setting

L12 :=




(X − αi1Z) − αi2
−αi1

βj2
−βj1

(Y − βj1Z) if βj1 �= βj2

(Y − βj2Z) − βj2
−βj1

αi2
−αi1

(X − αi2Z) if αi1 �= αi2 ,

we conclude that L12(αi1 , βj1 , 1) = L12(αi2 , βj2 , 1) = 0 and

ordρt,F L12 � min{ordρt,F (X − αitZ), ordρt,F (Y − βjtZ)}.
Hence, by (14) we have

ordρt,F L12 �
{

ordρt,F (X − αitZ) if mjt < nit

ordρt,F (Y − βjtZ) if mjt � nit

(15)

for t = 1, 2.

We have the following proposition.

Proposition 3.2. Let P,Q be nonlinear polynomials such that P (x) − Q(y) has
no linear factor. Let C be a projective curve defined by (7), Γ = {(αij : βj : 1)}
be the set of all finite singular points of C, and let Λ = {β1, . . . , βJ} (defined
by (12)), where m1 � m2 � . . . � mJ . In addition, assume that (αi1 : β1 :
1), (αi2 : β2 : 1) ∈ Γ, and P satisfies the separation condition. Then the curve C
is hyperbolic if J � 2 and one of following conditions is satisfied

(i) m2 � 2, m1 � ni1 and m2 � ni2, or
(ii) ni1 > m1, m2 � ni2,m2 > 2 and m1+1

m1
� ni1

−m1

m2−2 , or

(iii) m1 � ni1, ni2 > m2 � 2,m1 > 2 and m2+1
m2

� ni2
−m2

m1−2 , or

(iv) ni1 > m1, ni2 > m2 > 2, m1+1
m1

� ni1
−m1

m2−2 and m2+1
m2

� ni2
−m2

m1−2 .
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Proof. By the hypotheses, if ρ1 = (αi1 : β1 : 1) �= ρ2 = (αi2 : β2 : 1) then β1 �= β2.
Indeed, assume to the contrary that β1 = β2. Since ρ1 �= ρ2, we obtain αi1 �= αi2 .
Hence P (αi1) = Q(β1) = Q(β2) = P (αi2), which is a contradiction. Let

L := (X − αi1Z) − αi2 − αi1

β2 − β1
(Y − β1Z).

By (14) and (15) we get

ordρt,F L �
{

ordρt,F (X − αitZ) if mt < nit

ordρt,F (Y − βtZ) if mt � nit

(16)

for t = 1, 2. The rational 1-form

ω :=
Lm1+m2−2

(Y − β1Z)m1(Y − β2Z)m2
W (X,Z),

is well-defined (since m1 � m2 � 1). We claim that ω is regular. To prove this
we need only to check the regularity at ρt = (αit : βt : 1), for t = 1, 2. The ω is
regular at ρt if the 1-forms

χt :=
Lm1+m2−2

(Y − βtZ)mt
W (X,Z),

are regular at ρt with t = 1, 2.
First of all, we check the regularity of χ1 at ρ1. If m1 � ni1, by (16) we have

ordρ1,F
Lm1+m2−2

(Y − β1Z)m1
� (m2 − 2)ordρ1,F (Y − β1Z).(17)

If ni1 > m1, by (16), we obtain

ordρ1,F
Lm1+m2−2

(Y − β1Z)m1
= (m1 + m2 − 2)ordρ1,F (X − αi1Z) − m1ordρ1,F (Y − β1Z)

=
(m1 + 1)(m2 − 2) − m1(ni1 − m1)

ni1 + 1
ordρ1,F (Y − β1Z).(18)

From (17) and (18) it follows that

ordρ1,F
Lm1+m2−2

(Y − β1Z)m1
�

{
(m2 − 2)ordρ1,F (Y − β1Z) if m1 � ni1
(m1+1)(m2−2)−m1(ni1

−m1)

ni1
+1 ordρ1,F (Y − β1Z) if m1 < ni1 .

Thus, χ1 is regular at ρ1 if one of following conditions is satisfied
(i) m1 � ni1 and m2 � 2, or
(ii) ni1 > m1 � m2 > 2 and m1+1

m1
� ni1

−m1

m2−2 .
The regularity of χ2 at ρ2 can be checked similarly. Thus, ω is regular on C if

one of conditions of the proposition is satisfied. �

In the case J = #Λ = 1, we obtain following result.

Proposition 3.3. Let P,Q be two nonlinear polynomials such that P (x)−Q(y)
has no linear factor, C be a projective curve defined by (7). Assume that Γ =
{(αi : β1 : 1)} is the set of all finite singular points of C, where α1, α2, . . . , αI are
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zeros of P ′ with multiplicities n1, n2, . . . , nI , respectively; β1 is zero of Q′ with
multiplicities m1. Then the curve C is hyperbolic if

I∑
i=1

ni − (n − m + 2) � m1 � max
I i 1

{ni}.

Proof. Let

ς :=
Z

I
i=1 ni−(2+m1)(Y − β1Z)m1∏I

i=1(X − αiZ)ni
W (Y,Z).

Then

ς =
Z

I
i=1 ni−(2+m1)(Y − β1Z)m1

∏
j|αj /∈∆(X − αjZ)nj∏k

i=1(X − αiZ)ni
W (Y,Z)

=
pZ

I
i=1 ni−(2+m1)(Y − β1Z)m1

∏
j|αj /∈∆(X − αjZ)nj

P ′(X,Z)
W (Y,Z)

=
pZ

I
i=1 ni−(n−m+2+m1)Zn−m(Y − β1Z)m1

∏
j|αj /∈∆(X − αjZ)nj

Zn−mQ′(Y,Z)
W (X,Z)

=
pZ

I
i=1 ni−(n−m+2+m1)

∏
j|αj /∈∆(X − αjZ)nj∏l

i=2(Y − βiZ)mi
W (X,Z),

where ∆ = {α1, α2, . . . , αI}, p = nan �= 0, is regular in C ∩ [Z = 0] if
I∑

i=1

ni − (n − m + 2 + m1) � 0.

By (14),

(ni + 1)ordρi,F (X − αiZ) = (m1 + 1)ordρi,F (Y − β1Z),

We have
m1ordρi,F (Y − β1Z) − niordρi,F (X − αiZ)

= ordρi,F (X − αiZ) − ordρi,F (Y − β1Z),
for all αi ∈ ∆ and ρi := (αi : β1 : 1). Hence, ς is regular at point ρi if

ordρi,F (X − αiZ) − ordρi,F (Y − β1Z) � 0,

that is, m1 � ni for all i such that αi ∈ ∆. Therefore, ς is regular in C if
I∑

i=1

ni − (n − m + 2) � m1 � max
I i 1

{ni}.

This completes the proof. �

Remark 3.2. If m1 + m2 − 3 � max {ni1 , ni2}, then

(m1 + 1)(m2 − 2) − m1(ni1 − m1)
ni1 + 1

=
(m1 + m2 − 2)(m1 + 1)

ni1 + 1
− m1 � 1,
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(m2 + 1)(m1 − 2) − m2(ni2 − m2)
ni2 + 1

=
(m1 + m2 − 2)(m2 + 1)

ni2 + 1
− m2 � 1.

Thus, we have ω =
Lm1+m2−2

(Y − β1Z)m1(Y − β2Z)m2
W (X,Z) is regular on C.

Lemma 3.3. If k = I = J = l = 1, then there exist non-constant meromorphic
functions f, g such that P (f) = Q(g).

Proof. If k = I = J = l = 1, then can rewrite the equation P (f) = Q(g) in
the form (f − α)n = (bg − β)m, where b �= 0. Assume that h is a non-constant
meromorphic function. Set

f = α + hm, g =
1
b
hn +

β

b
.

Then f and g are non-constant meromorphic solutions of equation P (f) = Q(g).
�

Proof of Theorem 2.1. From Proposition 3.1, if
∑

j|βj /∈Λ mj − 2 � 0, i.e., p =∑
j|βj /∈Λ mj � 2, then the functional equation P (f) = Q(g) has no solution in

the set of non-constant meromorphic functions. As mj � 1, we conclude that
if l − J � 2 then p � 2. If l − J = 1, then there only exists a unique zero β1

with multiplicity m1 of Q′ such that P (α) �= Q(β1), with all zeros α of P ′. Since
m1 � 2, we have p = m1 � 2. Therefore, (ii) and (iv) are valid.

Note that
∑

i|αi /∈∆ ni � k − I. Therefore, if k − I � n − m + 2 then the curve
C is hyperbolic. If k − I = 1 and n1 � n − m + 2, then∑

i|αi /∈∆

ni = n1 � n − m + 2.

Thus, we obtain (i) and (iii). This completes the proof. �

Proof of Theorem 2.2 and Corollary 2.1. Theorem 2.2 can be derived from Propo-
sitions 3.2 and 3.3. Corollary 2.1 follows from Theorem 2.2 and Remark 3.2. �

Proof of Theorem 2.3. Let

H∗(x, y) :=
P (x) − P (y)

x − y
.

F ∗(X,Y,Z) := Zn−1H∗(
X

Z
,
Y

Z
).

C∗ := {(X,Y,Z) ∈ P
2(K) |F ∗(X,Y,Z) = 0}.

By Remark 3.1, F ∗(X,Y,Z) has no factor of the forms aX−bY, aX−bZ, aY −bZ.
Assume that F ∗(X,Y,Z) has no factor of the form aX +bY +cZ. Then, the curve
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C∗ is only singular in P
2(K) at ρi = (αi : αi : 1), with {αi | i = 1, 2, . . . , k} being

the set of distinct zeros of P ′. We have

∂F ∗

∂X
=

P ′(X,Z) − F ∗(X,Y,Z)
X − Y

,

∂F ∗

∂Y
=

−P ′(Y,Z) + F ∗(X,Y,Z)
X − Y

,

∂F ∗

∂Z
=

n−1∑
i=1

(n − i)aiZ
n−i−1

i−1∑
t=0

Xi−t−1Y t.

Note that if (X : Y : Z) ∈ C∗ then F ∗(X,Y,Z) = 0. From (11) we obtain

η =
(X − Y )W (Y,Z)

P ′(X,Z)
=

(X − Y )W (X,Z)
P ′(Y,Z)

=
(X − Y )W (X,Y )∑n−1

i=1 (n − i)ai(Xi − Y i)Zn−1−i
.

Let

θ := nan(X − Y )n−4η =
(X − Y )n−3W (X,Z)

(Y − α1Z)n1 . . . (Y − αkZ)nk
.

Since ordρi,F ∗(X − Y ) � ordρi,F ∗(X − αiZ) = ordρi,F ∗(Y − αiZ),

ordρi,F ∗
(X − Y )n−3∏k

t=1(Y − αtZ)nt
= (n − 3)ordρi,F ∗(X − Y ) − niordρi,F ∗(Y − αiZ)

� (n − ni − 3)ordρi,F ∗(Y − αiZ)

= (
k∑

i�=t=1

nt − 2)ordρi,F ∗(Y − αiZ).

This implies that if
∑k

i�=t=1 nt � 2 then θ is regular at ρi, with i = 1, 2, . . . , k.

Since n1 � n2 � . . . � nk � 1, we conclude that if k � 3 or k = 2 and min{n1, n2} �
2 then the curve C∗ is hyperbolic.

Now we consider the cases k = 1 and k = 2, min{n1, n2} < 2.
If k = 1 then P (x) = a(x − α)n + b,with a, b ∈ K, a �= 0. Let 1 �= ε ∈ K

such that εn = 1 and h is any non-constant meromorphic function. We set
f = h + α, g = εh + α. Then P (f) = Q(g).

In the case k = 2 and min{n1, n2} < 2, we have n1 = n2 = 1 or n1 � 2, n2 = 1.
If n1 = n2 = 1, then n = 3 and P = ax3 + bx2 + cx + d with a �= 0, b2 − 3ac �= 0.
From the equation P (f) = P (g) and the fact f �= g we have

a(f + g)2 + b(f + g) + c = afg.

Let f = u + v, g = u − v. We observe that

(u − i√
3
v +

b

3a
)(u +

i√
3
v +

b

3a
) =

b2 − 3ac

9a2
,
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with i2 = −1. Assume that h is any non-constant meromorphic function. Setting

u − i√
3
v +

b

3a
=

b2 − 3ac

9a2
h, u +

i√
3
v +

b

3a
=

1
h

,

we see that

f =
{

b2 − 3ac

9a2

}{
i −√

3
2i

}
h +

{
i +

√
3

2i

}
1
h
− b

3a

and

g =
{

b2 − 3ac

9a2

}{
i +

√
3

2i

}
h +

{
i −√

3
2i

}
1
h
− b

3a

constitute a solution of the equation P (f) = P (g).
If k = 2, n1 � 2 and n2 = 1, by Proposition 1 ([9]) the curve C∗ has only

one singular point ρ1 = (α1 : α1 : 1) with multiplicity n1. Assume that F ∗ is
reducible at ρ1, i.e., F ∗ = HG where H is a proper irreducible factor of F ∗. Let
nH , nG be the multiplicity of ρ1 in H = 0 and G = 0, respectively. Then we have
nH + nG = n1 and deg H + deg G = deg F ∗ = n − 1 = n1 + 1. Since deg H �
nH , deg G � nG, by Bezout’s theorem we obtain nHnG = (deg H)(deg G). Then
we have nH = deg H, nG = deg G and n1 = n1 + 1, a contradiction. Therefore,
F ∗ is irreducible and curve C∗ has genus zero. This completes the proof. �
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