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THE UNIQUENESS OF VISCOSITY SOLUTIONS OF SECOND
ORDER NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS
IN A HILBERT SPACE OF TWO-DIMENSIONAL FUNCTIONS

TRAN VAN BANG

Abstract. In this paper we prove the uniqueness of viscosity solutions of
the second order nonlinear partial differential equations associated with the
Stokes and Euler operators in a Hilbert space of two-dimensional functions.

1. Introduction

Since the early 1980s, the concept of viscosity solutions introduced by M.G.
Crandall and P.-L. Lions ([1], [3]) has been used in a large portion of research in a
nonclassical theory of first-order nonlinear PDEs as well as in other types of PDEs.
For convex Hamilton-Jacobi equations, the viscosity solution - characterized by a
semiconcave stability condition, was first introduced by S.N. Kruzkov [6]. There
is an enormous activity based on these studies. The primary virtues of this
theory are that it allows merely nonsmooth functions to be solutions of nonlinear
PDEs, this theory provides very general existence and uniqueness theorems, and
it yields precise formulations of general boundary conditions. Let us mention
here the names of M.G. Crandall, P.-L. Lions, L.C. Evans, H. Ishii, R. Jensen,
V. Barbu, M. Bardi, G. Barles, Barron, L. Cappuzzo-Dolcetta, P. Dupuis, S.
Lenhart, S. Osher, B. Perthame, P. Soravia, P.E. Souganidis, D. Tataru, Y.
Tomita, N. Yamada,... and many others, whose contributions make great progress
in nonlinear PDEs. The concept of viscosity solutions is motivated by the classical
maximum principle which distinguishes it from other definitions of generalized
solutions. The results of viscosity solutions were generalized to infinite dimensions
by P.-L. Lions, H. Ishii, A. Swiech, D. Tataru... (see [4], [5], [7] and the references
therein).

Let Ω ⊂ R2 be the open and bounded set with smooth boundary. Set

H = the closure of {x ∈ D(Ω; R2), div x = 0} in L2(Ω; R2),

V = the closure of {x ∈ D(Ω; R2), div x = 0} in H1
0(Ω; R2)

and let PH be the orthogonal projection in L2(Ω; R2) onto H. The operators
Ax = −PH∆x and B(x, y) = PH[(x.∇)y] are called the Stokes and the Euler
operators respectively. Let 〈., .〉 and |.| be the inner product and the norm in
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H space. This paper is concerned with fully nonlinear second order Hamilton-
Jacobi-Bellman-Isaccs equations in the H space

u(x) + 〈Ax+B(x, x), Du(x)〉
+ F (x,Du(x), D2u(x)) = 0, x ∈ H.

(*)

The assumptions about F will be given later in Section 3. The viscosity solution
approach is adapted to those equations under consideration and the uniqueness
of viscosity solutions is established.

We notice that, the equation (∗) was studied in [4] without Euler operator,
and in [5] in case the function F does not depend on the second order partial
derivatives of u.

This paper is presented in five sections. In Section 2, we give some preliminaries
on the abstract spaces and the Stokes and Euler operators. Section 3 is devoted
to the assumptions about F. In Section 4 and Section 5 we present the definition
of a viscosity solution and we prove a general uniqueness result for (*).

2. Notation and preliminaries

2.1. Abstract spaces and the Stokes operator. We denote by Wm,p(Ω; R2)
(or simply by Wm,p(Ω)) the Sobolev space of order 0 6 m ∈ R and power
p ≥ 1 of functions with values in R2 (which can be seen as a product space
Wm,p(Ω; R2) = [Wm,p(Ω; R)]2). The norm of x ∈ Wm,p(Ω; R2) will be denote by
|x|m,p. We will use the notation Lp for W 0,p and Hm for Wm,2. We will also be
using the negative Sobolev spaces H−m. The space H can be alternatively defined
by

H = {x ∈ L2(Ω; R2), div x = 0 in D′(Ω; R2), x.n = 0 in H− 1
2 (∂Ω)}

where n is the outward normal to the boundary (see [5]). The Stokes operator A
has the domain of definition

D(A) = H2(Ω; R2) ∩ V.

It is well known that A is linear, positive definite, self-adjoint, A−1 is self-adjoint,
injective and compact. For γ ≥ 0 we denote by Vγ the domain of definition of
A

γ
2 ,D(A

γ
2 ), equipped with the norm

(2.1) |x|γ = |A
γ
2 x|0,2.

For γ < 0, the space Vγ is defined as the completion of H under the norm (2.1).
If γ > −1

2 the norm of Vγ is equivalent to the norm of Hγ (see [5] or [8], [9]).
Moreover, the space V1 coincides with V. Identifying H with its dual, the space
V−γ is the dual of Vγ for γ > 0. We will also use the customary notation V′

for the dual of V and the duality pairing between V′ and V will be denoted by
〈., .〉. The same symbol will also be used to denote the inner product in H if both
entries are in H.

We recall below Sobolev imbeddings and other inequalities that we will need
in the remainder of the paper.
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-Sobolev imbedding type inequalities: If m ≥ 0, mp 6 2 and p 6 q 6 2p
2−mp then

Wm,p(Ω) ↪→ Lq(Ω), i.e.,

|x|0,q 6 C|x|m,p, x ∈ Wm,p(Ω).

(noting that when mp = 2 the imbedding holds for all p 6 q < +∞). Combining
the above with the equivalence of norm of Vγ and Hγ, we find that for γ ∈ (0, 1]
and q ∈ [2, 2

1−γ ] (q ∈ [2,+∞) if γ = 1) Vγ ↪→ Lq(Ω), i.e.,

(2.2) |x|0,q 6 C|x|γ , x ∈ Vγ .

-Interpolation inequality: If an operator S generates an analytic semigroup,
then there exists a constant C such that, for every z ∈ D(S) and 0 6 γ 6 1,

(2.3) |Sγz| 6 C|Sz|γ |z|1−γ .

Let γ ∈ (0, 1], α ∈ (0, γ). For every σ > 0, these exists Cσ > 0 such that

(2.4) |Aαz| 6 σ|Aγz|+ Cσ |z|, ∀z ∈ D(Aγ).

2.2. The Euler operator. We define the trilinear form b(., ., .) : V×V×V → R
as

b(x, y, z) =
∫

Ω
z(ξ)(x(ξ).5ξ)y(ξ)dξ

and the bilinear operator B(., .) : V × V → V′ as

〈B(x, y), z〉 = b(x, y, z), z ∈ V.
This is just another way to introduce the operator B that we have already used
in Section 1. By the incompressibility condition (divx = 0) we have

(2.5) b(x, y, y) = 0, b(x, y, z) = −b(x, z, y).

2.3. Preliminaries on the operators and spaces of operators. Throughout
this subsection E will denote a real separable Hilbert space endowed with the
inner product 〈., .〉 and the norm |.|. We denote by L(E) the Banach space of
continuous linear operators T : E → E with the operator norm ‖.‖, and we set

∑
(E) = {T ∈ L(E), T − self-adjoint}.

For any Hilbert spaces E and Ẽ, we denote by UC(E, Ẽ), BUC(E, Ẽ) the
Banach space of all functions ϕ : E → Ẽ which are, respectively, uniformly
continuous, uniformly continuous and bounded on E with the usual norm

‖ϕ‖ = sup
x∈E

|ϕ(x)|Ẽ.

We say that a function ρ : [0,+∞) → [0,+∞) is a modulus if ρ is continuous,
nondecreasing, subadditive, and ρ(0) = 0. Subadditivity in particular implies
that for all ε > 0, there exists Cε > 0 such that

ρ(r) 6 ε+ Cεr, for every r ≥ 0.

Moreover, a function ω : [0,+∞) × [0,+∞) → [0,+∞) is a local modulus if ω
is continuous, nondecreasing in both variables, subadditive in the first variable,
and ω(0, r) = 0, for every r ≥ 0.
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Let f : M ⊂ E → R be a functional on the subset M of E. Then function f is
called weakly sequentially lower (upper) semicontinuous iff, for each x ∈ M, and
each sequence (xn) in M,xn ⇀ x (the weakly convergence) implies

lim inf
n→∞

f(xn) ≥ f(x)

(respectively: lim sup
n→∞

f(xn) 6 f(x)).

Function f is called weakly sequentially continuous iff it is both weakly sequen-
tially lower semicontinuous and weakly sequentially upper semicontinuous.

Proposition 2.1 (see [10]). Suppose that the functional f : E → R has the
following two properties

(i) f is weakly sequentially upper semicontinuous;
(ii) f(x) → −∞ as |x| → +∞.
Then f has a global maxima.

Next, we will give an important property of partial sup-convolution.
Let E be a separable infinite dimensional Hilbert space which is written as a

product E = Z ×W where Z,W are Hilbert spaces and Z is finite dimensional,
u : E → R is a functional. We define the partial sup-convolution of u by

û(z, ω) = sup
ŵ∈W

(
u(z, ω̂) − α

2
|ω̂ − ω|2

)
, α > 0.

Proposition 2.2 (see [2]). Let u be a weakly sequentially upper semicontinuous
functional and satisfy

u(z, ω) 6 aR +
K

2
|ω|2, for z ∈ Z, |z| 6 R,

where aR ≥ 0 for R > 0 and K ≥ 0. Then û is also weakly sequentially upper
semicontinuous.

Let A : D(A) ⊂ E → E be a linear operator. We will call that
A is monotone iff 〈Av, v〉 ≥ 0, ∀v ∈ D(A);
A is maximal monotone iff A is monotone and R(I +A) = E.

Proposition 2.3 (see [11]). Let A : D(A) ⊂ E → E be a linear symmetric
monotone operator. Then A is maximal monotone iff it is self-adjoint.

Proposition 2.4 (see [11]). Let A : D(A) ⊂ E → E be maximal monotone on
E. Then, it follows from Avn ⇀ b and vn → v as n→ ∞ that Av = b.
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3. The assumptions on F

Let H1 ⊂ H2 ⊂ · · · be finite dimensional subspaces of H generated by eigen-
vectors of A such that ∪∞

N=1HN = H. Given any N ∈ N, denote by PN the
orthogonal projection in H onto HN . Let QN = I − PN and let H⊥

N = QNH.
We then have an orthogonal decomposition H = HN × H⊥

N and we will denote
by xN an element of HN and by x⊥N an element of H⊥

N . For x ∈ H, we will write
x = (PNx,QNx). We make the following assumptions about F.

Hypothesis F :

(F0) There exists β ∈ (0, 1
2) such that the function F : Vβ × Vβ ×

∑
(H) → R is

continuous (in the topology of Vβ × Vβ ×
∑

(H));

(F1) F (x, p, S1) 6 F (x, p, S2), ∀x, p ∈ Vβ, ∀S1 ≥ S2, where S1 ≥ S2 iff S1 − S2

is monotone;

(F2) There exists a modulus ρ such that

|F (x, p, S1) − F (x, q, S2)| 6 ρ
(
(1 + |x|β)|p− q|β + (1 + |x|2β)‖S1 − S2‖

)
,

∀x, p, q ∈ Vβ and ∀S1, S2 ∈
∑

(H);

(F3) There exists a modulus ω such that, ∀ε > 0, ∀N ≥ 1, η = 1 − β, ∀x, y ∈ Vβ

and X, Y ∈
∑

(HN ) such that

(3.1)
(
X 0
0 −Y

)
6

2
ε

(
PNA

−ηPN −PNA
−ηPN

−PNA
−ηPN PNA

−ηPN

)

we have

F
(
x,
A−η(x− y)

ε
,X

)
− F

(
y,
A−η(x− y)

ε
, Y

)

≥ −ω
(
|x− y|β

(
1 +

|x− y|β
ε

))
;

(F4) For every R < +∞, |λ| 6 R, x, p ∈ Vβ ,

sup
{
|F (x, p, SN + λQN) − F (x, p, SN)| :

SN = PNSPN , ‖S‖ 6 R
}
→ 0 as N → ∞.

Remark. By the properties of moduli, condition (F2) guarantees the existence
of a constant C such that for all x, p ∈ Vβ, for all S ∈

∑
(H),

(3.2) |F (x, p, S)| 6 C
(
1 + (1 + |x|β)|p|β + (1 + |x|2β)‖S‖

)
+ |F (x, 0, 0)|.
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4. Viscosity solutions

The definition of a viscosity solution that we propose here has its predecessors
in [4] and [5].

Definition 4.1. A function ψ : H → R is a test function for (*) if

ψ(x) = ϕ(x) + δ|x|2,
where

(1) δ > 0;
(2) ϕ ∈ C2(H) and is weakly sequentially lower semicontinuous;
(3) Dϕ ∈ UC(H,H) ∩ UC(D(A

1
2
−ε),V), for some ε = ε(ϕ) > 0;

(4) D2ϕ ∈ BUC(H,
∑

(H)).

Definition 4.2. A weakly sequentially upper (lower) semicontinuous function
u : H → R is a viscosity subsolution (respectively: viscosity supersolution) of (*)
if for every test function ψ, whenever u− ψ has a local maximum (respectively:
u+ ψ has a local minimum) at x then x ∈ V and

u(x) + 〈Ax+ B(x, x), Dψ(x)〉+ F (x,Dψ(x), D2ψ(x)) 6 0

(resp.: u(x) + 〈Ax+B(x, x),−Dψ(x)〉+ F (x,−Dψ(x),−D2ψ(x)) ≥ 0),

where 〈Ax, y〉 := 〈A
1
2x,A

1
2 y〉, ∀x, y ∈ V.

A function u is a viscosity solution of (*) if it is both a viscosity subsolution
and a viscosity supersolution.

5. The uniqueness of viscosity solutions

We denote by K the class of functions u : H → R such that u is weakly sequen-
tially continuous, bounded and Lipschitz continuous in |.|−η norm on bounded
subsets of H.

Theorem 5.1. Let Hypothesis F hold. Let u,−v 6 M for some constant M,u be
a viscosity subsolution of (*) and v be a viscosity supersolution of (*). If u and
−v are Lipschitz continuous in |.|−η norm on bounded subsets of H then u 6 v
on H. Moreover, if (*) has a viscosity solution u ∈ K then it is unique.

First, we need some prepairing.

Let E be a Hilbert space, u : E → [−∞,+∞] be a functional. If x̂ ∈ E and
(p,X) ∈ E ×

∑
(E) we say that (p,X) ∈ J2,+u(x̂) provided that

u(x) 6 u(x̂) + 〈p, x− x̂〉 +
1
2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2)

as x→ x̂. The closure of J2,+u(x), J̄2,+u(x), is defined as follows:

J̄2,+u(x) =
{

(p,X) ∈ E ×
∑

(E) : ∃(xn, pn, Xn) ∈ E ×E ×
∑

(E) :

(pn, Xn) ∈ J2,+u(xn) and (xn, u(xn), pn, Xn) → (x, u(x), p,X)
}
.
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We are interested in the situation where E = E1 × E2 is the product of two
spaces and u(x1, x2) = u1(x1) + u2(x2). The proposition below is a straightfor-
ward corollary from Theorem 3.2 in [3].

Proposition 5.1. Let ui, i = 1, 2 be upper semicontinuous on RN and ϕ be twice
continuously differentiable on R2N . Suppose that

u1(x1) + u2(x2) − ϕ(x1, x2)

has a local maximum at (x̂1, x̂2) ∈ R2N . Then, for every α > 0 there are X1, X2 ∈∑
(RN) such that

(Dxiϕ(x̂), Xi) ∈ J̄2,+ui(x̂i), i = 1, 2,

and the block diagonal matrix with entries Xi satisfies

−
( 1
α

+ ‖φ‖
)
I 6

(
X1 0
0 X2

)
6 φ+ αφ2,

where φ = D2ϕ(x̂) ∈
∑

(R2N).

The norm of the symmetric matrix φ used above is

‖φ‖ = sup
{
|λ| : λ is an eigenvalue of φ

}
= sup

{
|〈φξ, ξ〉| : |ξ| 6 1

}
.

Remark 5.1. Proposition 5.1 is also true if we take the finite dimensional Hilbert
space HN instead of RN . Then, for

u1(x1) = ũ1(xN ), u2(x2) = −ṽ1(yN )

and

ϕ(xN , yN) =
1
2ε

〈PNA
−ηPN (xN − yN ), xN − yN 〉, xN , yN ∈ HN

we have

DxN
ϕ(x̂N , ŷN) = −DyN

ϕ(x̂N , ŷN) =
1
ε
PNA

−ηPN(x̂N − ŷN )

and

φ = D2ϕ(x̂N , ŷN) =
1
ε



PNA

−ηPN −PNA
−ηPN

−PNA
−ηPN PNA

−ηPN


 .

Thus

φ2 =
2
ε2




(PNA
−ηPN )2 −(PNA

−ηPN )2

−(PNA
−ηPN )2 (PNA

−ηPN )2


 .
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We notice that, if 0 < λ1 < λ2 < · · · are eigenvalues of operator A then we
obtain

φ =
1
ε




λ−η
1 0 −λ−η

1 0
. . . . . .

0 λ−η
N 0 −λ−η

N

−λ−η
1 0 λ−η

1 0
. . . . . .

0 −λ−η
N 0 λ−η

N




,

φ2 =
2
ε2




λ
−2η
1 0 −λ−2η

1 0
.. . . . .

0 λ−2η
N 0 −λ−2η

N

−λ−2η
1 0 λ−2η

1 0
.. . . . .

0 −λ−2η
N 0 λ−2η

N




.

Therefore, if we choose α = ε
2λ with λ = sup

j
{λ−η

j } then it follows from Proposi-

tion 5.2 that there exists XN , YN ∈
∑

(HN) such that
(1
ε
PNA

−ηPN (x̂N − ŷN), XN

)
∈ J̄2,+ũ1(x̂N ),

(
− 1
ε
PNA

−ηPN (x̂N − ŷN ),−YN

)
∈ J̄2,+(−ṽ1)(ŷN)

and XN , YN satisfy


XN 0

0 −YN


 6 φ+ αφ2 6

2
ε



PNA

−ηPN −PNA
−ηPN

−PNA
−ηPN PNA

−ηPN


 .

Remark 5.2. Let (p,X) ∈ J̄2,+u(x̄). Then by the definition of J̄2,+u(x̄), there
exists (xn, pn, Xn) ∈ RN × RN ×

∑
(RN), (pn, Xn) ∈ J2,+u(xn) and

(xn, u(xn), pn, Xn) → (x̄, u(x̄), p,X) as n→ ∞.

Since (pn, Xn) ∈ J2,+u(xn), as x→ xn we have

u(x) 6 u(xn) + 〈p, x− xn〉 +
1
2
〈Xn(x− xn), x− xn〉+ o(|x− xn|2).

Setting

ϕn(x) = u(xn) + 〈pn, x− xn〉 +
1
2
〈(Xn +

1
n
I)(x− xn), x− xn〉 + o(|x− xn|2),

we obtain ϕn ∈ C2(RN), Dϕn = pn, D
2ϕn = Xn + 1

nI. Moreover, u − ϕn has a
local unique, strict maxima at xn. Global strict maximum at xn of u−ϕn may be
achieved by first restricting u to some compact neighborhood K of xn and then
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extending the restriction to RN by u(x) = inf
RN
u(x) if x /∈ K (still writing u). The

compactness of K guarantees that u is still upper semicontinuous on RN .

Proof of Theorem 5.1.
Step 1: For ε, δ > 0, we consider the function

Φ(x, y; ε, δ) := u(x)− v(y)−
|x− y|2−η

2ε
− δ(|x|2 + |y|2).

We will prove that Φ has a global maximum at (x̄, ȳ) (x̄, ȳ depend on ε and δ)
satisfying

(5.1) lim sup
δ↘0

lim sup
ε↘0

δ(|x̄|2 + |ȳ|2) = 0

and

(5.2) lim sup
ε↘0

( |x̄− ȳ|2−η

2ε

)
= 0 for fixed δ > 0.

Since u,−v are bounded from above, weakly sequentially upper semicontinu-
ous, and A−1 is compact, the function Φ is also weakly sequentially upper semi-
continuous in H × H. Therefore, by Proposition 2.1, it has a global maximum at
(x̄, ȳ).

Setting
m1(ε, δ) := sup

x,y∈H
Φ(x, y; ε, δ),

m2(δ) := sup
x,y∈H

{u(x)− v(y)− δ(|x|2 + |y|2)},

we have that
m = lim

δ↘0
m2(δ) and m2(δ) = lim

ε↘0
m1(ε, δ).

Now

m1(ε, δ) = Φ(x̄, ȳ; ε, δ) = u(x̄) − v(ȳ) −
|x̄− ȳ|2−η

2ε
− δ(|x̄|2 + |ȳ|2)

and, for fixed δ,

m1(ε, δ) +
|x̄− ȳ|2−η

4ε
= u(x̄) − v(ȳ)−

|x̄− ȳ|2−η

4ε
− δ(|x̄|2 + |ȳ|2)

6 m1(2ε, δ).

Thus
|x̄− ȳ|2−η

4ε
6 m1(2ε, δ)−m1(ε, δ).

This gives (5.2). Similarly,

m1(ε, δ) +
δ

2
(|x̄|2 + |ȳ|2) = u(x̄) − v(ȳ) −

|x̄− ȳ|2−η

2ε
− δ

2
(|x̄|2 + |ȳ|2)

6 m1(ε,
δ

2
)
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which gives
δ

2
(|x̄|2 + |ȳ|2) 6 m1(ε,

δ

2
)−m1(ε, δ).

From this we obtain (5.1).

Step 2: Next we will prove that x̄, ȳ ∈ V.
We now fix N ∈ N. Then

|x− y|2−η = 〈A−η(x− y), x− y〉

= 〈PNA
−ηPN(x− y), x− y〉 + |A

−η
2 QN(x− y)|2,

and we have

|A
−η
2 QN(x− y)|2 6 2〈QNA

−ηQN(x̄− ȳ), x− y〉
− 〈QNA

−ηQN(x̄− ȳ), x̄− ȳ〉

+ 2|A
−η
2 QN (x− x̄)|2 + 2|A

−η
2 QN (y − ȳ)|2

with equality if and only if x = x̄, y = ȳ. Therefore, if we define

u1(x) = u(x)− 〈x,QNA
−ηQN(x̄− ȳ)〉
ε

+
〈QNA

−ηQN (x̄− ȳ), x̄− ȳ〉
2ε

− |A− η
2QN (x− x̄)|2

ε
− δ|x|2

and

v1(y) = v(y)− 〈y,QNA
−ηQN(x̄− ȳ)〉
ε

+
|A− η

2QN(y − ȳ)|2

ε
+ δ|y|2,

it follows that the function

Φ̃(x, y) := u1(x)− v1(y)−
〈PNA

−ηPN (x− y), x− y〉
2ε

always satisfies Φ̃ 6 Φ and attains a strict global maximum at x̄, ȳ. Moreover,

Φ̃(x̄, ȳ) = Φ(x̄, ȳ).

We now define, for xN , yN ∈ HN , the functions

ũ1(xN) := sup
x⊥

N∈H⊥
N

u1(xN , x
⊥
N), ṽ1(yN ) := inf

y⊥N∈H⊥
N

v1(yN , y
⊥
N).

Since the assumptions about u,−v and the weakly sequentially continuity of the
inner product, using Proposition 2.2 with ω = 0 we see that ũ1 and −ṽ1 are upper
semicontinuous on HN . Moreover, by the definition of u1, v1 and by the form of
Φ̃, it follows that

(5.3) ũ1(PN x̄) = u1(x̄), ṽ1(PN ȳ) = v1(ȳ).

Now define the map ΦN : HN × HN → R as

ΦN(xN , yN) := ũ1(xN )− ṽ1(yN) − 〈PNA
−ηPN (xN − yN ), xN − yN )〉

2ε
= sup

x⊥
N ,y⊥N∈H⊥

N

Φ̃
(
(xN , x

⊥
N), (yN , y

⊥
N)

)
.
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It is not difficult to check that ΦN attains a strict global maximum over HN ×HN

at (x̄N , ȳN ) = (PN x̄, PN ȳ). By Remarks 5.1 and 5.2, for every n ∈ N, there exist
xn

N , y
n
N ∈ HN such that

(5.4) xn
N → x̄N , yn

N → ȳN , ũ1(xn
N) → ũ1(x̄N ), ṽ1(yn

N) → ṽ1(ȳN)

as n → ∞, and there are functions ϕn, ψn ∈ C2(HN ) such that ũ1 − ϕn and
−ṽ1 + ψn have unique, strict, global maxima at xn

N and yn
N respectively, and

Dϕn(xn
N ) → 1

ε
PNA

−ηPN (x̄N − ȳN ),

Dψn(yn
N ) → 1

ε
PNA

−ηPN (x̄N − ȳN ),
(5.5)

(5.6) D2ϕn(xn
N ) → XN , D2ψn(yn

N) → YN ,

where XN , YN satisfy (3.1).
Consider finally the map Φn

N : H × H → R defined as

(5.7) Φn
N (x, y) := u1(x) − v1(y)− ϕn(PNx) + ψn(PNy).

This map has the variables split and, by the definition of u1 and v1, attains its
global maximum at some point (x̂n, ŷn). This point depends also on N but we
will drop this dependence since N is now fixed. Setting now

ϕ̄N,n(x) :=
〈x,QNA

−ηQN (x̄− ȳ)〉
ε

+
|A− η

2QN(x− x̄)|2

ε
+ ϕn(PNx),

we easily see that ψ(x) = ϕ̄N,n(x) + δ|x|2 is a test function of (*). From (5.7) it
follows that u(x) − ψ(x) has a maximum at x̂n. Therefore, by the definition of
viscosity subsolution, x̂n ∈ V and

u(x̂n) + 〈Ax̂n, Dψ(x̂n)〉 + 〈B(x̂n, x̂n), Dψ(x̂n)〉
+ F

(
x̂n, Dψ(x̂n), D2ψ(x̂n)

)
6 0

(5.8)

where

Dψ(x̂n) = Dϕn(PN x̂
n) +

A−ηQN(x̄− ȳ)
ε

+
2A−ηQN (x̂n − x̄)

ε
+ 2δx̂n,

D2ψ(x̂n) = D2ϕn(PN x̂
n) +

2A−ηQN

ε
+ 2δI.

We now write

x̂n = (PN x̂
n, QN x̂

n), ŷn = (PN ŷ
n, QN ŷ

n).

Then, for every x⊥N , y
⊥
N ∈ HN we have

ũ1(PN x̂
n) − ṽ1(PN ŷ

n) − ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ u1(PN x̂
n, QN x̂

n) − v1(PN ŷ
n, QN ŷ

n) − ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ u1(xn
N , x

⊥
N) − v1(yn

N , y
⊥
N) − ϕn(xn

N ) + ψn(yn
N ).
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Therefore taking suprema over x⊥N and y⊥N in the above inequality we obtain

ũ1(PN x̂
n) − ṽ1(PN ŷ

n) − ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ u1(PN x̂
n, QN x̂

n) − v1(PN ŷ
n, QN ŷ

n) − ϕn(PN x̂
n) + ψn(PN ŷ

n)

≥ ũ1(xn
N) − ṽ1(yn

N ) − ϕn(xn
N ) + ψn(yn

N ).

This implies that

PN x̂
n = xn

N , PN ŷ
n = yn

N , u1(x̂n) = ũ1(xn
N), v1(ŷn) = ṽ1(yn

N ),

which, together with (5.4) and (5.3), yields

(5.9) u1(x̂n) → u1(x̄), v1(ŷn) → v1(ȳ) as n→ ∞.

Finally, since
u1(x̂n) = ũ1(PN x̂

n), v1(ŷn) = ṽ1(PN ŷ
n)

and
u1(x̄) = ũ1(PN x̄), v1(ȳ) = ṽ1(PN ȳ),

formula (5.9), together with the weakly sequentially upper semicontinuity of u1

and −v1, implies

(5.10) x̂n → x̄, ŷn → ȳ as n→ ∞.

Therefore, since

〈Ax̂n, Dψ(x̂n)〉 = 〈A
1
2 x̂n, A

1
2Dϕ̄N,n(x̂n)〉+ 2δ|A

1
2 x̂n|2,

using (5.10), (5.9), (3.2), (F0) and (2.4), it follows from (5.8) that |A
1
2 x̂n| are

bounded independently of n. Then there exists a subsequence of A
1
2 x̂n (still writ-

ten as A
1
2 x̂n) converges weakly to b. Thanks to (5.10), since A

1
2 is maximal

monotone (by Proposition 2.3) and Proposition 2.4, we have b = A
1
2 x̄. Thus

x̄ ∈ V and

(5.11) A
1
2 x̂n ⇀ A

1
2 x̄ as n→ ∞.

Similarly, we also get ȳ ∈ V.
Step 3: We now would like to pass to the limit as n→ ∞ in (5.8) keeping ε, δ, N
fixed.

Since A− η
2 is compact we conclude that, as n→ ∞,

(5.12) A
1−η
2 x̂n = A− η

2 (A
1
2 x̂n) → A− η

2 (A
1
2 x̄) = A

1−η
2 x̄.

Using (5.4), (5.5), (5.6), (5.10) we have, as n→ ∞,

Dψ(x̂n) → 1
ε
A−η(x̄− ȳ) + 2δx̄,

D2ψ(x̂n) → XN +
2A−ηQN

ε
+ 2δI 6 XN +

2‖A−η‖QN

ε
+ 2δI,

which together with (5.11), (5.12) and the weakly semicontinuity of the norm
implies that

lim inf
n→∞

〈Ax̂n, Dψ(x̂n)〉 ≥
〈
A

1−η
2 x̄,

A
1−η

2 (x̄− ȳ)
ε

〉
+ 2δ|A

1
2 x̄|2.



THE UNIQUENESS OF VISCOSITY SOLUTIONS OF SECOND ORDER PDES 161

Therefore, using the last inequality, (2.5) and (F1), letting n → ∞ in (5.8) we
get

u(x̄) +
1
ε

〈
A

1−η
2 x̄, A

1−η
2 (x̄− ȳ)

〉
+

1
ε
〈B(x̄, x̄), A−η(x̄− ȳ)〉

+2δ|x̄|21 + F
(
x̄,

1
ε
A−η(x̄−ȳ) + 2δx̄,

XN +
2
ε
‖A−η‖QN + 2δI

)
6 0.

(5.13)

We now eliminate the terms with δ and N. Using (F2) we have

F
(
x̄,

1
ε
A−η(x̄− ȳ), XN +

2
ε
‖A−η‖QN

)
− ρ

(
dδ(1 + |x̄|2β)

)

6 F
(
x̄,

1
ε
A−η(x̄− ȳ) + 2δx̄, XN +

2
ε
‖A−η‖QN + 2δI

)(5.14)

for some constant d > 0. Now, given τ > 0, let Kτ be such that

ρ(s) 6 τ +Kτs.

Applying (2.4) with α = β
2 and γ = 1

2 we obtain

ρ
(
dδ(1 + |x̄|2β)

)
6 δ|x̄|21 + δCτ |x̄|2 + τ +Kτdδ

for some constant Cτ > 0 independent of δ and ε. It then follows from (5.1) that

(5.15) lim sup
δ↘0

lim sup
ε↘0

(
ρ
(
dδ(1 + |x̄|2β)

)
− δ|x̄|21

)
6 0.

Setting
ω1(ε, δ) := ρ

(
dδ(1 + |x̄|2β)

)
− δ|x̄|21,

using (5.14) and (F4) in (5.13), we obtain

u(x̄) +
1
ε

〈
A

1−η
2 x̄, A

1−η
2 (x̄− ȳ)

〉
+

1
ε
〈B(x̄, x̄), A−η(x̄− ȳ)〉

+ δ|x̄|21 + F
(
x̄,

1
ε
A−η(x̄− ȳ), XN)

6 ω1(ε, δ) + ω2(N ; ε, δ),

(5.16)

where limN→∞ ω2(N ; ε, δ) = 0 if ε, δ are fixed.
Similarly, we have

v(ȳ) +
1
ε

〈
A

1−η
2 ȳ, A

1−η
2 (x̄− ȳ)

〉
+

1
ε
〈B(ȳ, ȳ), A−η(x̄− ȳ)〉

− δ|ȳ|21 + F
(
ȳ,

1
ε
A−η(x̄− ȳ), YN)

≥ −ω1(ε, δ)− ω2(N ; ε, δ).

(5.17)

Step 4: Finally, we will prove that

lim sup
δ↘0

lim sup
ε↘0

(u(x̄) − v(ȳ)) 6 0.

If this is true, for any x ∈ H we have

u(x) − v(x) − 2δ|x|2 = Φ(x, x; ε, δ) 6 Φ(x̄, ȳ; ε, δ) 6 u(x̄)− v(ȳ).
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Letting ε↘ 0, δ ↘ 0 we will get u 6 v on H.
Subtracting (5.17) from (5.16), using (F3), and letting N → ∞, we obtain

u(x̄) − v(ȳ)+δ(|x̄|21 + |ȳ|21)

+
1
ε

(
b(x̄, x̄, A−η(x̄− ȳ))− b(ȳ, ȳ, A−η(x̄− ȳ))

)

6ω
(
|x̄− ȳ|β

(
1 +

1
ε
|x̄− ȳ|β

))
− 1
ε
|x̄− ȳ|21−η

+ 2ω1(ε, δ).

(5.18)

We are now going to estimate the crucial second line in (5.18). The following
techniques are originated from [5]. We have

b(x̄, x̄, A−η(x̄− ȳ))− b(ȳ, ȳ, A−η(x̄− ȳ))

= b(x̄− ȳ, x̄, A−η(x̄− ȳ)) + b(ȳ, x̄− ȳ, A−η(x̄− ȳ)).

The two terms on the right-hand side of this equality can be estimated similarly,
hence we will only show how to estimate the first one. We have, by the Hölder
inequality,

1
ε
|b(x̄−ȳ, x̄, A−η(x̄− ȳ))|

=
1
ε
|b(x̄− ȳ, A−η(x̄− ȳ), x̄)|

6 c

ε
|x̄|0,q|A−η+ 1

2 (x̄− ȳ)|0,2p|x̄− ȳ|0,2p,

(5.19)

where we took p and q such that 1
p + 1

q = 1, and later p will be sufficiently small.
To continue we choose τ such that 0 < τ < η− 1

2 (this choice is possible because
of η ∈ (1

2 , 1)), and notice that if p is sufficiently close to 1, the Sobolev imbedding
(2.2) guarantees that

|A−η+ 1
2 (x̄− ȳ)|0,2p 6 C|A−η+ 1

2
+ τ

2 (x̄− ȳ)|

We now set S = A
1
2 and z = A− η

2 (x̄− ȳ) in (2.3). Then

|A−η+ 1
2
+ τ

2 (x̄− ȳ)| = |S1−η+τz|
6 C|Sz|1−η+τ |z|η−τ

= C|A
1−η

2 (x̄− ȳ)|1−η+τ |x̄− ȳ|η−τ
−η .

To estimate |x̄− ȳ|0,2p in (5.19) we again use the Sobolev imbedding

|x̄− ȳ|0,2p 6 C|x̄ − ȳ|τ(1−η)

that holds if p is small enough, and set S = A
1−η
2 and z = x̄ − ȳ in (2.3). We

then obtain

|x̄− ȳ|τ(1−η) = |Sτz| 6 C|Sz|τ |z|1−τ

= C|A
1−η

2 (x̄− ȳ)|τ |x̄− ȳ|1−τ .
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Therefore, plugging above results in (5.19), and estimating further

|x̄|0,q 6 C|x̄|1
we get

1
ε
|b(x̄− ȳ, x̄,A−η(x̄− ȳ))|

6
C

ε
|x̄|1|x̄− ȳ|1−η+2τ

1−η |x̄− ȳ|η−τ
−η |x̄− ȳ|1−τ

which, upon using |x̄− ȳ| 6 C|x̄− ȳ|1−η, yields

1
ε

∣∣b(x̄− ȳ, x̄,A−η(x̄− ȳ))
∣∣

6 C|x̄|1
|x̄− ȳ|1−η√

ε

|x̄− ȳ|η−τ
−η√
ε

|x̄− ȳ|1−η+τ .

(5.20)

We now notice that

(5.21) Φ(x̄, ȳ; ε, δ) ≥ max {Φ(x̄, x̄; ε, δ),Φ(ȳ, ȳ; ε, δ)}.

We use the fact that u and v are locally Lipschitz continuous in |.|−η norm and
|x̄|, |ȳ| 6 Rδ independently of ε, for a fixed δ to deduce from (5.21) that

|x̄− ȳ|2−η

ε
6 Kδ|x̄− ȳ|−η

for some Kδ > 0. This implies that

|x̄− ȳ|
1
2
−η√

ε
6

√
Kδ.

Therefore

|x̄− ȳ|η−τ
−η√
ε

=
|x̄− ȳ|

1
2
−η√

ε
|x̄− ȳ|η−

1
2
−τ

−η 6
√
Kδ|x̄− ȳ|η−

1
2
−τ

−η → 0

as ε↘ 0 (by (5.2) and η − 1
2 + τ > 0). Using this in (5.20) we thus obtain

1
ε
|b(x̄− ȳ, x̄, A−η(x̄− ȳ))| 6 |x̄|1

|x̄− ȳ|1−η√
ε

σ1(ε, δ)

6 δ|x̄|21 +
|x̄− ȳ|21−η

2ε
σ2(ε, δ)

(5.22)

for some local moduli σ1 and σ2. Similarly we obtain

(5.23)
1
ε

∣∣b(ȳ, x̄− ȳ, A−η(x̄− ȳ))
∣∣ 6 δ|ȳ|21 +

|x̄− ȳ|21−η

2ε
σ2(ε, δ).

Having the results in (5.22), (5.23) and returning to (5.18) we get

u(x̄) − v(ȳ) 6 ω
(
|x̄− ȳ|β

(
1 +

|x̄− ȳ|β
ε

))
+

(
σ2(ε, δ)− 1

) |x̄− ȳ|21−η

ε
+ 2ω1(ε, δ).
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Set r = |x̄− ȳ|1−η. By the interpolation inequality (2.4) and the properties of the
modulus, for all µ, σ > 0 there exists Cσ , Kµ > 0 such that

u(x̄) − v(ȳ) 6 µ+
(
σ2(ε, δ)− 1

)r2
ε

+Kµ

(
σ
r2

ε
+ Cσ

|x̄− ȳ|−η

ε
r + r

)
+ 2ω1(ε, δ).

If ε, δ are small enough we will have σ2(ε, δ) − 1 < 0. Thus, for µ fixed, we can
choose σ such that Kµσ + σ2(ε, δ) − 1 < 0. Then, in the right-hand side of the
previous inequality, we have a polynomial of order 2 in r√

ε
which is bounded from

above and we get

(5.24) u(x̄) − v(ȳ) 6 µ +
K2

µ

(√
ε + Cσ|x̄−ȳ|−η√

ε

)2

4(1−Kµσ − σ2(ε, δ))
+ 2ω1(ε, δ).

Applying (5.2), (5.15) and (5.24) yields

lim sup
δ↘0

lim sup
ε↘0

(u(x̄) − v(ȳ)) 6 µ

for all µ > 0. Thus, we have already proved that u 6 v in H. This proves the
uniqueness of continuous viscosity solutions in the class K. �

Remark 5.3. In case Ω ⊂ Rk for k ≥ 3, the verification shows that the proof
above is not applicable. For example, in the case k = 3 the imbedding (2.2)
becomes: for γ ∈ (0, 3

2 ], q ∈ [2, 6
3−2γ ],

(5.25) Vγ ↪→ Lq(Ω)

The imbedding will be used for estimating the absolute value of

b(x̄− ȳ, x̄, A−η(x̄− ȳ)).

In (5.19) we need V ↪→ Lq(Ω), which implies from (5.25) that 2 6 q 6 6. Since
1
p + 1

q = 1, we have p ≥ 6
5 .

On the other hand, the inequality after (5.19) requires Vτ ↪→ L2p(Ω) for 0 <
τ < η − 1

2 . Then it follows from (5.25) that

(5.26) 2p 6
6

3 − 2τ
.

In general we want to have small values of p and the smallest one is 6
5 . So

(5.26) implies τ ≥ 3
2 , this is contrast to the requirement 0 < τ < η − 1

2 .
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