SOLVABLE SUBGROUPS IN THE DIVISION RING OF REAL QUATERNIONS

BUI XUAN HAI AND LE KHAC HUYNH

ABSTRACT. Maximal solvable subgroups of the multiplicative group H^* of the division ring H of real quaternions were described in [2]. In this paper we study the structure of the solvable subgroups of H^* .

1. INTRODUCTION

Let H be the division ring of real quaternions. Then the center of H is the field \mathbb{R} of real numbers. If we consider H as the vector space over \mathbb{R} , then the set $\{1, i, j, k\}$ is the basis of H. Note that, all other symbols and notations in this paper are standard.

In [1] the authors conjectured that there are no maximal solvable subgroups of the multiplicative group of a division ring, provided it is non-commutative. However, M. Mahdavi-Hezavehi [5] successfully constructed the solvable maximal subgroup $M_H := \mathbb{C}^* \cup \mathbb{C}^* j$ of the multiplicative group of the division ring of real quaternions H, so he gave a negative answer to the conjecture mentioned above. In [2], we have proved that every solvable maximal subgroup of H^* is conjugate with M_H in H^* . So, all solvable maximal subgroups of H^* are described. In this paper, we are interested in the problem of describing all the solvable subgroups of H^* .

2. Solvable subgroups containing a non-central Abelian normal subgroup

Theorem 2.1. Let S be a solvable subgroup of H^* . If there exists in S a noncentral abelian normal subgroup, then either S is abelian or it is contained in some maximal solvable subgroup of H^* .

Proof. Let N be a non-central abelian normal subgroup of S. Then there exists a non-central element $u \in N$. Clearly, $K := \mathbb{R}(u)$ is a maximal subfield of H. Since N is abelian, $N \subseteq C_H(K) = K$, where $C_H(K)$ denotes the centralizer of K in H. Moreover, since $N \trianglelefteq S$, it follows that $S \subseteq N_{H^*}(K^*)$. For any element $a \in S$, define the map $\Phi_a : K \longrightarrow K$ by $\Phi_a(x) = axa^{-1}, \forall x \in K$. Clearly, $\Phi_a \in Gal(K/\mathbb{R})$. Now, let us consider the group homomorphism $f: S \longrightarrow Gal(K/\mathbb{R})$, defined by $a \mapsto \Phi_a$. Since $Kerf = C_S(K), S/C_S(K) \simeq Imf \leq Gal(K/\mathbb{R})$.

Received September 20, 2005.

Clearly, $[K : \mathbb{R}] = 2$ and it follows that K is a Galois extension over \mathbb{R} . Therefore $|Gal(K/\mathbb{R})| = [K : \mathbb{R}] = 2$. It follows, either $S = C_S(K)$ or $[S : C_S(K)] = 2$.

If $S = C_S(K)$, then $S \subseteq C_H(K)$. Since K is a field, $K \subseteq C_H(K)$, so either $C_H(K) = K$ or $C_H(K) = H$. Since $K \neq \mathbb{R}, C_H(K) \neq H$. Hence $C_H(K) = K$. So $S \subseteq K$ and, as a consequence, S is abelian.

Now, suppose that $[S : C_S(K)] = 2$. Then, there exists some element $b \in S$ such that $S = C_S(K) \cup C_S(K)b$. We claim that $b^2 \in \mathbb{R}$. Since $[K : \mathbb{R}] = 2$, we can write $K = \mathbb{R}(w)$ with $w^2 = -1$. Then

$$b^2 \in C_S(K) = C_S(\mathbb{R}(w)) = C_S(w) \subseteq C_H(w) = \mathbb{R}(w).$$

Since w is a root of the minimal polynomial $p(X) := min(\mathbb{R}, w)$ of the element w over \mathbb{R} and $\Phi_b \in Gal(K/\mathbb{R}), \Phi_b(w) = bwb^{-1}$ is a root of p(X) too. Hence $bwb^{-1} = -w$ or bw = -wb. In particular, $bw \neq wb$ and it follows that $b^2 \in \mathbb{R}(b) \cap \mathbb{R}(w) = \mathbb{R}$. Since $b \notin \mathbb{R}, b^2 < 0$. Therefore, there exists an element $s \in \mathbb{R}$ such that $s^2 = -b^2$. By setting $\theta := bs^{-1}$, we have

$$\theta^2 = w^2 = -1, \theta w = -w\theta, K^* \cup K^*b = \mathbb{R}(w)^* \cup \mathbb{R}(w)^*\theta.$$

In [2, Proposition 3] it was proven that $\mathbb{R}(w)^* \cup \mathbb{R}(w)^* \theta$ is a solvable maximal subgroup of H^* . Therefore, $S = C_S(K) \cup C_S(K)b$ is contained in a solvable maximal subgroup of H^* .

Definition 2.1. Suppose that S is a solvable subgroup of H^* . We say that S is a solvable subgroup of type 1 if it contains an abelian non-central normal subgroup (i.e. if S satisfies the condition in Theorem 2.1). Otherwise, we say that S is a solvable subgroup of type 2.

Lemma 2.1. Non-central subgroup S of H^* is solvable of type 1 if and only if \mathbb{R}^*S is solvable of type 1.

Proof. Suppose S is a non-central solvable subgroup of type 1. Then, there exists some non-central abelian normal subgroup N of S. Clearly, \mathbb{R}^*N is a non-central abelian normal subgroup of \mathbb{R}^*S . Hence \mathbb{R}^*S is a solvable subgroup of type 1.

Conversely, suppose that \mathbb{R}^*S is a non-central solvable subgroup of type 1. Then, there exists some non-central abelian normal subgroup M of \mathbb{R}^*S . Clearly, so is \mathbb{R}^*M . Put $N := \mathbb{R}^*M \cap S$. Since \mathbb{R}^*M is non-central, there exists some non-central element $a \in S$ and $\alpha \in \mathbb{R}^*$ such that $\alpha a \in \mathbb{R}^*M$. It follows that $a = \alpha^{-1}(\alpha a) \in \mathbb{R}^*M$. Therefore $a \in \mathbb{R}^*M \cap S = N$. So N is a non-central abelian normal subgroup of S.

Definition 2.2. We say that a subgroup Q of H^* is a quaternion subgroup if there are exist some elements a and b in H^* with $a^2 = b^2 = -1$, ab = -ba and $Q = \langle a, b \rangle$ (a subgroup of H^* generated by a and b).

It is easy to check that

$$Q = \{1, a, b, ab, -1, -a, -b, -ab\}.$$

Clearly, Q is a solvable subgroup of type 1.

As an example, we note that the set

$$Q_H := \{1, i, j, k, -1, -i, -j, -k\}$$

is one of quaternion subgroups of H^* .

From the definition it is obvious that if Q is a quaternion subgroup of H^* , then every subgroup of H^* which is conjugate with Q is a quaternion subgroup too. The following result shows that by conjugation we can obtain all quaternion subgroups.

Proposition 2.1. Every quaternion subgroup of H^* is conjugate with Q_H .

Proof. Let $Q = \langle a, b \rangle$ be an arbitrary quaternion subgroup of H^* . Consider the \mathbb{R} -algebra homomorphism $f : H \longrightarrow H$ which is defined by f(1) = 1, f(i) = a, f(j) = b, f(k) = ab. It can be shown that, the set $\{1, a, b, ab\}$ is a basis of H over \mathbb{R} . Hence f is an \mathbb{R} -automorphism of H. So, by Skolem-Noether Theorem (see, for example, [3, p.39]), f is an inner automorphism. Hence, there exists some element $u \in H^*$ such that $f(x) = uxu^{-1}, \forall x \in H^*$. On the other hand, $f(Q_H) = Q$, so $Q = uQ_Hu^{-1}$.

Lemma 2.2. Assume that $a, b \in H$ with $[a, b] := aba^{-1}b^{-1} \in \mathbb{R}$. If a and b don't commute with each other, then ab = -ba. Moreover, $a^2, b^2 \in \mathbb{R}$.

Proof. Let us consider the reduced norm of H/\mathbb{R} , denoted by RN. Suppose $aba^{-1}b^{-1} = s \in \mathbb{R}$. By taking the reduced norm, from this equality it follows that $s^2 = 1$. Since $ab \neq ba$, this implies s = -1. Hence ab = -ba. Now, we have

$$a^{2}b = a(ab) = a(-ab) = -(ab)a = ba^{2}.$$

So, $a^2 \in C_H(b) \cap C_H(a) = \mathbb{R}$. Similarly, it can be shown that $b^2 \in \mathbb{R}$.

Lemma 2.3. Let G be a non-abelian subgroup of H^* , containing \mathbb{R}^* with $[G, G] \subseteq \mathbb{R}^*$. Then, there exists in G a quaternion subgroup Q_G such that $G = \mathbb{R}^*Q_G$. In particular, G is a solvable subgroup of type 1.

Proof. Since G is non-abelian, there are exist $a, b \in G$ with $ab \neq ba$. By our assumption, $[a, b] \in \mathbb{R}^*$. Then, in view of Lemma 2.2, $ab = -ba, a^2 \in \mathbb{R}, b^2 \in \mathbb{R}$. Since a, b are both non-central, we can find some $s, t \in \mathbb{R}^*$ such that $a^2 = -s^2$ and $b^2 = -t^2$. By setting $a_0 := as^{-1}, b_0 := bt^{-1}$, we have $a_0, b_0 \in G$ and $a_0^2 = b_0^2 = -1, a_0b_0 = -b_0a_0$. Thus, $Q_G = \langle a_0, b_0 \rangle$ is a quaternion subgroup which is contained in G. Now, we show that $G = \mathbb{R}^*Q_G$. Thus, suppose there exists an element $c \in G \setminus \mathbb{R}^*Q_G$. There are the following two cases:

a) $c \in C_H(a_0) \cup C_H(b_0) \cup C_H(a_0b_0).$

First, suppose $c \in C_H(a_0)$. Clearly, $C_H(a_0) = \mathbb{R}(a_0)$. Then $c = \alpha + \beta a_0$ with $\alpha, \beta \in \mathbb{R}$. Since $c \notin \mathbb{R}, \beta \in \mathbb{R}^*$. On the other hand, since $b_0 \notin C_H(a_0)$, it follows that $b_0 c \neq c b_0$. Hence, by Lemma 2.2, $b_0 c = -c b_0$. Thus, $b_0(\alpha + \beta a_0) =$ $-(\alpha + \beta a_0)b_0$, and it follows that $2\alpha b_0 = 0$, so $\alpha = 0$. Therefore $c = \beta a_0 \in \mathbb{R}^* Q_G$, that is a contradiction.

Now, if $c \in C_H(b_0)$ or $c \in C_H(a_0b_0)$ then, similarly as above, we can obtain a contradiction.

b) $c \notin C_H(a_0) \cup C_H(b_0) \cup C_H(a_0b_0)$.

Then

$$a_0c = -ca_0, b_0c = -cb_0$$
 and $(a_0b_0)c = -c(a_0b_0).$

From the first and second equalities it follows

 $(a_0b_0)c = a_0(b_0c) = -a_0(cb_0) = -(a_0c)b_0 = (ca_0)b_0 = c(a_0b_0).$

But this is a contradiction with the last equality. Thus, the proof is now completed. $\hfill \Box$

Theorem 2.2. Let G be a non-abelian subgroup of H^* with $[G, G] \subseteq \mathbb{R}^*$. Then, G is a solvable subgroup of type 1.

Proof. Clearly, the subgroup \mathbb{R}^*G satisfies the condition of Lemma 2.3. So, there exists a quaternion subgroup Q such that $\mathbb{R}^*G = \mathbb{R}^*Q$. By Lemma 2.1, \mathbb{R}^*Q is solvable of type 1. Hence, again by Lemma 2.1, G is solvable of type 1. \Box

Lemma 2.4. If Q is a quaternion subgroup of H^* , then

$$Q \subseteq [H^*, H^*] \text{ and } [Q, Q] = \{\pm 1\}$$

Proof. Suppose $Q = \langle a, b \rangle$ with $a^2 = b^2 = -1, ab = -ba$. Clearly,

$$min(\mathbb{R}, a) = min(\mathbb{R}, b) = min(\mathbb{R}, ab) = X^2 + 1.$$

By Dickson Theorem (see [5, Th.(16.8), p.265]), there exist elements $u, v \in H^*$ such that

$$b = uau^{-1}$$
 and $ab = vav^{-1}$

Therefore, $ab = a(uau^{-1}) = -a^{-1}(uau^{-1}) = -[a^{-1}, u] \in [H^*, H^*];$ $b = a^{-1}vav^{-1} = [a^{-1}, v] \in [H^*, H^*];$ $a = (ab)b^{-1} \in [H^*, H^*]$ and $-1 = aba^{-1}b^{-1} \in [H^*, H^*].$ Hence $Q \subseteq [H^*, H^*].$ Direct calculations show that $[Q, Q] = \{\pm 1\}.$

Theorem 2.3. Let Q be a non-abelian subgroup of H^* . Then the following statements are equivalent:

(i) Q is a quaternion subgroup.

(ii) $Q \subseteq [H^*, H^*]$ and $[Q, Q] \subseteq \mathbb{R}^*$.

Proof. In view of Lemma 2.4, it remains to prove the implication (ii) \implies (i). Thus, suppose (ii) holds. Since $[Q, Q] \subseteq \mathbb{R}^*$, by Lemma 2.3 there exists some quaternion subgroup $Q_0 \leq \mathbb{R}^*Q$ such that $\mathbb{R}^*Q = \mathbb{R}^*Q_0$. We now prove that $Q = Q_0$.

For every $x \in H$, denote by RN(x) its reduced norm of H to \mathbb{R} . Now, consider $x \in Q$. Then, there exist $\alpha \in \mathbb{R}^*$ and $u \in Q_0$ such that $x = \alpha u$. Note that from Lemma 2.4 it follows that the reduced norm of any element of a quaternion subgroup is 1. Moreover, since $x \in Q \subseteq [H^*, H^*]$, RN(x) = 1. Therefore, by taking the reduced norm, from the equality $x = \alpha u$, we obtain $\alpha^2 = 1$. Hence $\alpha = 1$ or $\alpha = -1$. Therefore x = u or x = -u. Recall that $-1 \in Q_0$, hence $x = \pm u \in Q_0$. Thus, $Q \subseteq Q_0$. Since Q is non-abelian, Q must be equal to Q_0 . \Box

134

Corollary 2.1. Let Q and Q_0 be quaternion subgroups. If $\mathbb{R}^*Q \subseteq \mathbb{R}^*Q_0$, then $Q = Q_0$.

Proof. Similarly as in the proof of Theorem 2.3, we see that if $\mathbb{R}^*Q \subseteq \mathbb{R}^*Q_0$, then $Q \subseteq Q_0$. Since Q and Q_0 have the same finite order, it follows $Q = Q_0$.

3. Solvable subgroups containing no non-central Abelian normal subgroups

Theorem 3.1. Let S be a non-central solvable subgroup of type 2. Then, there exists some positive integer n such that $S^{(n)}$ is a quaternion subgroup.

Proof. Since S is a non-central solvable subgroup of type 2, S is non-abelian. By Theorem 2.2, $S^{(1)} := [S, S] \not\subseteq \mathbb{R}^*$. Since S is solvable, there exists some integer $n \ge 0$ such that $S^{(n+1)}$ is a non- trivial abelian normal subgroup of S. Since S is a solvable subgroup of type 2, $S^{(n+1)}$ is central. The fact that $S^{(1)}$ is noncentral forces $n \ge 1$. Therefore $S^{(n+1)} = [S^{(n)}, S^{(n)}] \subseteq \mathbb{R}^*$. Moreover, since $S^{(n)} \subseteq [H^*, H^*], S^{(n)}$ is a quaternion subgroup by Theorem 2.3.

Now, we will consider the structure of non-central finite solvable subgroups of type 2. By Theorem 3.1, if A is such a subgroup, then $A^{(n)}$ is a quaternion subgroup for some $n \ge 1$. If $n \ge 2$, then for $S = A^{(n-1)}$ we have $S \subseteq [H^*, H^*]$ and [S, S] is a quaternion subgroup. The following theorem gives some characterization of such subgroups.

Theorem 3.2. Let S be a finite non-central solvable subgroup of type 2, such that $S \subseteq [H^*, H^*]$ and [S, S] is a quaternion subgroup. Then, one of the following cases occurs:

(a) S is a 2-group;

(b) S = QT, where Q is a quaternion subgroup, which is normal in S, T is a subgroup of odd order of the multiplicative group of some maximal subfield of H;

(c) S = PT, where P is a normal 2-Sylow subgroup of S, [P, P] = Q is a quaternion subgroup, T is a finite subgroup of odd order of the multiplicative group of some maximal subfield of H.

Proof. Let S be such a subgroup. Denote by P some 2-Sylow subgroup of S containing Q := [S, S]. Then, $k := \frac{n}{|P|}$ is a Hall divisor of n. By Hall's Theorem (see, for example [6]) there exists some subgroup T of order k of S. If $T \subseteq \mathbb{R}^*$, then $T \subseteq \{\pm 1\}$. Since T has a odd order, it follows that $T = \{1\}$. So, S = P is a 2-group. Now, suppose that $T \not\subseteq \mathbb{R}^*$. If T is a solvable subgroup of type 2 then, since $T \not\subseteq \mathbb{R}^*$, T is non-abelian. By Theorem 3.1, there exists some integer $r \geq 1$ such that $T^{(r)}$ is a quaternion subgroup. Therefore $\{\pm 1\} \leq T^{(r)} \leq T$ and it follows that the order of T is even, a contradiction. Thus T is a solvable subgroup of type 1. Similarly as in the proof of Theorem 2.1, we can find some maximal subfield K of H such that $|T/C_T(K)| \leq 2$. Since the order of T is odd, $T = C_T(K)$. Again, as in the proof of Theorem 2.1, we can conclude that T is a subgroup of S. Moreover, since (|P|, |T|) = 1, $P \cap T = \{1\}$. So, it follows that

PT = S. Now, consider the subgroup $[P, P] \leq [S, S] = Q$. The order of [P, P] may be one of numbers: 1, 2, 4, 8. By assumption $Q \leq P$ and Q is a quaternion subgroup (which is non-abelian), so $[P, P] \neq \{1\}$. Suppose that the order of [P, P] is 4. Then, [P, P] is an abelian non-central subgroup of S. Moreover, for every $z \in S$, and $u, v \in P$, since $P \leq S$, we have

$$z[u, v]z^{-1} = [zuz^{-1}, zvz^{-1}] \in [P, P].$$

Thus, [P, P] is an abelian non-central normal subgroup of S. But, this contradicts the assumption that S is a solvable subgroup of type 2. Hence, |[P, P]| = 2 or |[P, P]| = 8. If [P, P] is a subgroup of order 2, then $[P, P] = \{\pm 1\}$. So, by Theorem 2.3, P is a quaternion subgroup, and it follows P = Q. If the order of [P, P] is 8, then [P, P] = Q.

References

- S. Akbari, M. Mahdavi-Hezavehi, M. G. Mahmudi, *Maximal subgroups of GL*₁(D), J. Algebra **217** (1999), 422-433.
- [2] Bui Xuan Hai and Le Khac Huynh, On maximal subgroups in division rings, Acta Math. Vietnam. 30, 1 (2005) 35-43.
- [3] P. Draxl, Skew Fields, London Mathematical Society, Lecture Note Series Vol. 81 (1983), Cambridge University Press.
- [4] T. Y. Lam, A First Course in Non- Commutative Rings, GTM No. 131 (1991), Springer-Verlag.
- [5] M. Mahdavi Hezavehi, Free subgroups in maximal subgroups of GL₁(D), J. Algebra 241 (2001), 720-730.
- [6] J. J. Rotman, An Introduction to the Theory of Groups, 4-th Edition, Springer-Verlag, 1995.

VIETNAM NATIONAL UNIVERSITY OF HO CHI MINH CITY DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCES 227 NGUYEN VAN CU STREET, DIST. 5 HO CHI MINH CITY, VIETNAM *E-mail address*: bxhai@mathdep.hcmuns.edu.vn