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SOLVABLE SUBGROUPS IN THE DIVISION RING OF
REAL QUATERNIONS

BUI XUAN HAI AND LE KHAC HUYNH

ABSTRACT. Maximal solvable subgroups of the multiplicative group H* of
the division ring H of real quaternions were described in [2]. In this paper we
study the structure of the solvable subgroups of H™.

1. INTRODUCTION

Let H be the division ring of real quaternions. Then the center of H is the
field R of real numbers. If we consider H as the vector space over R, then the set
{1,14,7,k} is the basis of H. Note that, all other symbols and notations in this
paper are standard.

In [1] the authors conjectured that there are no maximal solvable subgroups
of the multiplicative group of a division ring, provided it is non-commutative.
However, M. Mahdavi-Hezavehi [5] successfuly constructed the solvable maximal
subgroup Mg := C* UC*j of the multiplicative group of the division ring of real
quaternions H, so he gave a negative answer to the conjecture mentioned above.
In [2], we have proved that every solvable maximal subgroup of H* is conjugate
with Mg in H*. So, all solvable maximal subgroups of H* are described. In this
paper, we are interested in the problem of describing all the solvable subgroups
of H*.

2. SOLVABLE SUBGROUPS CONTAINING A NON-CENTRAL
ABELIAN NORMAL SUBGROUP

Theorem 2.1. Let S be a solvable subgroup of H*. If there exists in S a non-
central abelian normal subgroup, then either S is abelian or it is contained in
some mazximal solvable subgroup of H*.

Proof. Let N be a non-central abelian normal subgroup of S. Then there exists
a non-central element u € N. Clearly, K := R(u) is a maximal subfield of H.
Since N is abelian, N C Cy(K) = K, where Cy(K) denotes the centralizer of
K in H. Moreover, since NS, it follows that S C Ngy«(K™*). For any element
a € S, define the map ®, : K — K by ®,(z) = ara™!,Vz € K. Clearly, ®, €
Gal(K/R). Now, let us consider the group homomorphism f : S — Gal(K/R),
defined by a — ®,. Since Kerf = Cg(K),S/Cs(K) ~ Imf < Gal(K/R).
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Clearly, [K : R] = 2 and it follows that K is a Galois extension over R. Therefore
|Gal(K/R)| = [K : R] = 2. It follows, either S = Cg(K) or [S: Cs(K)] = 2.

If S=Cg(K), then S C Cy(K). Since K is a field, K C Cy(K), so either
Cy(K)=Kor Cy(K)=H. Since K # R,Cy(K) # H. Hence Cy(K) = K.
So S C K and, as a consequence, S is abelian.

Now, suppose that [S : Cg(K)] = 2. Then, there exists some element b € S
such that S = Cs(K) U Cg(K)b. We claim that b*> € R. Since [K : R] = 2, we
can write K = R(w) with w? = —1. Then

b? € Cs(K) = Cs(R(w)) = Cs(w) € Cpr(w) = R(w).

Since w is a root of the minimal polynomial p(X) := min(R, w) of the element
w over R and ®, € Gal(K/R),®y(w) = bwb~! is a root of p(X) too. Hence
bwb™' = —w or bw = —wb. In particular, bw # wb and it follows that b? €
R(b) NR(w) = R. Since b ¢ R, b? < 0. Therefore, there exists an element s € R
such that s> = —b2. By setting 6 := bs~!, we have

62 = w? = —1,0w = —wh, K* U K*b = R(w)* UR(w)*6.

In [2, Proposition 3] it was proven that R(w)* UR(w)*@ is a solvable maximal
subgroup of H*. Therefore, S = Cg(K) U Cg(K)b is contained in a solvable
maximal subgroup of H*. U

Definition 2.1. Suppose that S is a solvable subgroup of H*. We say that S'is a
solvable subgroup of type 1 if it contains an abelian non-central normal subgroup
(i.e. if S satisfies the condition in Theorem 2.1). Otherwise, we say that S is a
solvable subgroup of type 2.

Lemma 2.1. Non-central subgroup S of H* is solvable of type 1 if and only if
R*S is solvable of type 1.

Proof. Suppose S is a non-central solvable subgroup of type 1. Then, there exists
some non-central abelian normal subgroup N of S. Clearly, R*N is a non-central
abelian normal subgroup of R*S. Hence R*S is a solvable subgroup of type 1.
Conversely, suppose that R*S is a non-central solvable subgroup of type 1.
Then, there exists some non-central abelian normal subgroup M of R*S. Clearly,
so is R*M. Put N := R*M N S. Since R*M is non-central, there exists some
non-central element ¢ € S and o € R* such that aa € R*M. It follows that
a = a'(aa) € R*M. Therefore a € R*M NS = N. So N is a non-central
abelian normal subgroup of S. O

Definition 2.2. We say that a subgroup @ of H* is a quaternion subgroup if
there are exist some elements a and b in H* with a®> = b%> = —1,ab = —ba and
Q@ = (a,b) (a subgroup of H* generated by a and b).

It is easy to check that
Q=1{1,a,b,ab,—1,—a,—b,—ab}.
Clearly, @ is a solvable subgroup of type 1.



SOLVABLE SUBGROUPS IN THE RING OF QUATERNIONS 133

As an example, we note that the set
QH = {17 Z.vjv ka _17 _iv _j7 _k}
is one of quaternion subgroups of H*.
From the definition it is obvious that if ) is a quaternion subgroup of H*,
then every subgroup of H* which is conjugate with () is a quaternion subgroup

too. The following result shows that by conjugation we can obtain all quaternion
subgroups.

Proposition 2.1. Every quaternion subgroup of H* is conjugate with Q.

Proof. Let @Q = (a,b) be an arbitrary quaternion subgroup of H*. Consider the
R-algebra homomorphism f : H — H which is defined by f(1) = 1, f(i) =
a, f(j) = b, f(k) = ab. It can be shown that, the set {1, a, b, ab} is a basis of H
over R. Hence f is an R-automorphism of H. So, by Skolem-Noether Theorem
(see, for example, [3, p.39]), f is an inner automorphism. Hence, there exists
some element v € H* such that f(z) = uru~!,Vo € H*. On the other hand,

f(Qu)=Q, 50 Q=uQpuu". O
Lemma 2.2. Assume that a,b € H with [a,b] := aba= b~ € R. Ifa and b don’t
commute with each other, then ab = —ba. Moreover, a®,b* € R.

Proof. Let us consider the reduced norm of H/R, denoted by RN. Suppose

aba='b~! = s € R. By taking the reduced norm, from this equality it follows

that s> = 1. Since ab # ba, this implies s = —1. Hence ab = —ba. Now, we have
a’b = a(ab) = a(—ab) = —(ab)a = ba>.

So, a? € Cy(b) N Cy(a) = R. Similarly, it can be shown that b? € R. O

Lemma 2.3. Let G be a non-abelian subgroup of H*, containing R* with |G, G] C
R*. Then, there exists in G a quaternion subgroup Qg such that G = R*Qg. In
particular, G is a solvable subgroup of type 1.

Proof. Since G is non-abelian, there are exist a,b € G with ab # ba. By our
assumption, [a,b] € R*. Then, in view of Lemma 2.2, ab = —ba, a? € R, b? € R.

Since a, b are both non-central, we can find some s,t € R* such that a? = —s?
and b?> = —t2. By setting ag := as~ !, by := bt~', we have ag,by € G and
ag = b} = —1, apby = —bpap. Thus, Qi = (ag, by) is a quaternion subgroup which

is contained in G. Now, we show that G = R*@)g. Thus, suppose there exists an
element ¢ € G\ R*Q¢. There are the following two cases:

a) (S CH((IQ) @] CH(bo) U CH(GObO)'

First, suppose ¢ € Cg(ag). Clearly, Cy(ag) = R(ap). Then ¢ = a + fBag
with «, 8 € R. Since ¢ € R, 3 € R*. On the other hand, since by € Cg(ayp), it
follows that bgc # cby. Hence, by Lemma 2.2, bgc = —cbg. Thus, by(a + Bag) =
—(a+ Bag)by, and it follows that 2aby = 0, so a = 0. Therefore ¢ = fag € R*Qq,
that is a contradiction.

Now, if ¢ € Cg(bg) or ¢ € Ch(apbg) then, similarly as above, we can obtain a
contradiction.

b) ¢ & Cr(ap) U Cr(by) U Cr(agbp).
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Then
apc = —cag, bopc = —cby and (agbg)c = —c(apbp).
From the first and second equalities it follows

(aobo)c = ag(boc) = —ao(cbo) = —(aoc)by = (cag)bo = c(agbo).

But this is a contradiction with the last equality. Thus, the proof is now com-
pleted. O

Theorem 2.2. Let G be a non-abelian subgroup of H* with |G, G] C R*. Then,
G is a solvable subgroup of type 1.

Proof. Clearly, the subgroup R*G satisfies the condition of Lemma 2.3. So, there
exists a quaternion subgroup @ such that R*G = R*Q. By Lemma 2.1, R*Q is
solvable of type 1. Hence, again by Lemma 2.1, G is solvable of type 1. O

Lemma 2.4. If Q) is a quaternion subgroup of H*, then
QC[H", H"| and [Q,Q] = {1}
Proof. Suppose Q = (a,b) with a? = b> = —1,ab = —ba. Clearly,
min(R, a) = min(R, b) = min(R, ab) = X? + 1.

By Dickson Theorem (see [5, Th.(16.8), p.265]), there exist elements u,v € H*
such that
b=wuau"" and ab = vav~.

Therefore,

ab = a(uau™') = —a Y (uau™t) = —[a~ 1, ] € [H*, H*];

b=atvav™! =[a"t,v] € [H*, H*];

a= (ab)b~! € [H*, H*] and

—1=aba"'b~! € [H*, H*].

Hence Q C [H*, H].

Direct calculations show that [Q, Q] = {1}. O

Theorem 2.3. Let QQ be a non-abelian subgroup of H*. Then the following
statements are equivalent:

(i) Q is a quaternion subgroup.

(i) @ € [H*, H*] and [Q, Q] € R*.

Proof. In view of Lemma 2.4, it remains to prove the implication (ii) = (i).
Thus, suppose (ii) holds. Since [@,Q] C R*, by Lemma 2.3 there exists some
quaternion subgroup @y < R*Q@Q such that R*Q) = R*Qy. We now prove that
Q = Qo-

For every = € H, denote by RN (z) its reduced norm of H to R. Now, consider
x € ). Then, there exist € R* and u € @y such that x = au. Note that
from Lemma 2.4 it follows that the reduced norm of any element of a quaternion
subgroup is 1 . Moreover, since x € Q C [H*, H*], RN(z) = 1. Therefore, by
taking the reduced norm, from the equality # = au, we obtain a® = 1. Hence
a =1or o = —1. Therefore z = u or x+ = —u. Recall that —1 € )y, hence
= tu € Qy. Thus, @ C Q. Since @ is non-abelian, () must be equal to @Qg. [
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Corollary 2.1. Let QQ and Qg be quaternion subgroups. If R*Q C R*Qy, then
Q = Qo.

Proof. Similarly as in the proof of Theorem 2.3, we see that if R*Q) C R*Qg, then
Q C Q. Since @ and Q¢ have the same finite order, it follows @) = Q. O

3. SOLVABLE SUBGROUPS CONTAINING NO NON-CENTRAL
ABELIAN NORMAL SUBGROUPS

Theorem 3.1. Let S be a non-central solvable subgroup of type 2. Then, there
exists some positive integer n such that S™ is a quaternion subgroup.

Proof. Since S is a non-central solvable subgroup of type 2, S is non-abelian. By
Theorem 2.2, S := [S, S]  R*. Since S is solvable, there exists some integer
n > 0 such that S(1 is a non- trivial abelian normal subgroup of S. Since
S is a solvable subgroup of type 2, S("*1) is central. The fact that S™) is non-
central forces n > 1. Therefore St = [§(™) §()] C R*. Moreover, since
S C [H* H*], S™ is a quaternion subgroup by Theorem 2.3. O

Now, we will consider the structure of non-central finite solvable subgroups
of type 2. By Theorem 3.1, if A is such a subgroup, then A is a quaternion
subgroup for some n > 1. If n > 2, then for S = A1) we have S C [H*, H*]
and [S, S| is a quaternion subgroup. The following theorem gives some charac-
terization of such subgroups.

Theorem 3.2. Let S be a finite non-central solvable subgroup of type 2, such
that S C [H*, H*] and [S, S| is a quaternion subgroup. Then, one of the following
cases occurs:

(a) S is a 2-group;

(b) S = QT, where Q is a quaternion subgroup, which is normal in S, T is a
subgroup of odd order of the multiplicative group of some mazximal subfield of H;

(¢) S = PT, where P is a normal 2-Sylow subgroup of S,[P,P] = Q is a
quaternion subgroup, T 1is a finite subgroup of odd order of the multiplicative
group of some maximal subfield of H.

Proof. Let S be such a subgroup. Denote by P some 2-Sylow subgroup of S
n
containing @ := [S,S]. Then, k := m is a Hall divisor of n. By Hall’s Theorem

(see, for example [6]) there exists some subgroup T' of order k of S. If T C R*,
then 7" C {£1}. Since T has a odd order, it follows that 7" = {1}. So, S = P
is a 2-group. Now, suppose that T Z R*. If T' is a solvable subgroup of type 2
then, since T'Z R*, T is non-abelian. By Theorem 3.1, there exists some integer
r > 1 such that T(") is a quaternion subgroup. Therefore {£1} < T() < T
and it follows that the order of T' is even, a contradiction. Thus T is a solvable
subgroup of type 1. Similarly as in the proof of Theorem 2.1, we can find some
maximal subfield K of H such that |T'/Cr(K)| < 2. Since the order of T" is odd,
T = Cp(K). Again, as in the proof of Theorem 2.1, we can conclude that T is a
subgroup of K*. Since P contains [S, S], P is normal in S. Therefore, PT is a
subgroup of S. Moreover, since (|P|,|T]) =1, PNT = {1}. So, it follows that
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PT = S. Now, consider the subgroup [P, P] < [S,S] = Q. The order of [P, P]
may be one of numbers: 1, 2,4, 8. By assumption () < P and () is a quaternion
subgroup (which is non-abelian), so [P, P] # {1}. Suppose that the order of
[P, P] is 4. Then, [P, P] is an abelian non-central subgroup of S. Moreover, for
every z € S, and u,v € P, since P<S, we have

2[u,v]z7t = [zuzt, 20271 € [P, P).

Thus, [P, P] is an abelian non-central normal subgroup of S. But, this contra-
dicts the assumption that S is a solvable subgroup of type 2. Hence, |[P, P]| = 2
or |[P, P]| = 8. If [P, P] is a subgroup of order 2, then [P, P] = {£1}. So, by
Theorem 2.3, P is a quaternion subgroup, and it follows P = ). If the order of
[P, P] is 8, then [P, P] = Q. O
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