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SOLVABLE SUBGROUPS IN THE DIVISION RING OF
REAL QUATERNIONS

BUI XUAN HAI AND LE KHAC HUYNH

Abstract. Maximal solvable subgroups of the multiplicative group H∗ of
the division ring H of real quaternions were described in [2]. In this paper we
study the structure of the solvable subgroups of H∗.

1. Introduction

Let H be the division ring of real quaternions. Then the center of H is the
field R of real numbers. If we consider H as the vector space over R, then the set
{1, i, j, k} is the basis of H . Note that, all other symbols and notations in this
paper are standard.

In [1] the authors conjectured that there are no maximal solvable subgroups
of the multiplicative group of a division ring, provided it is non-commutative.
However, M. Mahdavi-Hezavehi [5] successfuly constructed the solvable maximal
subgroup MH := C∗ ∪C∗j of the multiplicative group of the division ring of real
quaternions H , so he gave a negative answer to the conjecture mentioned above.
In [2], we have proved that every solvable maximal subgroup of H∗ is conjugate
with MH in H∗. So, all solvable maximal subgroups of H∗ are described. In this
paper, we are interested in the problem of describing all the solvable subgroups
of H∗.

2. Solvable subgroups containing a non-central
abelian normal subgroup

Theorem 2.1. Let S be a solvable subgroup of H∗. If there exists in S a non-
central abelian normal subgroup, then either S is abelian or it is contained in
some maximal solvable subgroup of H∗.

Proof. Let N be a non-central abelian normal subgroup of S. Then there exists
a non-central element u ∈ N . Clearly, K := R(u) is a maximal subfield of H .
Since N is abelian, N ⊆ CH(K) = K, where CH(K) denotes the centralizer of
K in H . Moreover, since NES, it follows that S ⊆ NH∗(K∗). For any element
a ∈ S, define the map Φa : K −→ K by Φa(x) = axa−1, ∀x ∈ K. Clearly, Φa ∈
Gal(K/R). Now, let us consider the group homomorphism f : S −→ Gal(K/R),
defined by a 7→ Φa. Since Kerf = CS(K), S/CS(K) ' Imf ≤ Gal(K/R).
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Clearly, [K : R] = 2 and it follows that K is a Galois extension over R. Therefore
|Gal(K/R)| = [K : R] = 2. It follows, either S = CS(K) or [S : CS(K)] = 2.

If S = CS(K), then S ⊆ CH(K). Since K is a field, K ⊆ CH(K), so either
CH(K) = K or CH(K) = H . Since K 6= R, CH(K) 6= H . Hence CH(K) = K.
So S ⊆ K and, as a consequence, S is abelian.

Now, suppose that [S : CS(K)] = 2. Then, there exists some element b ∈ S
such that S = CS(K) ∪ CS(K)b. We claim that b2 ∈ R. Since [K : R] = 2, we
can write K = R(w) with w2 = −1. Then

b2 ∈ CS(K) = CS(R(w)) = CS(w) ⊆ CH(w) = R(w).

Since w is a root of the minimal polynomial p(X) := min(R, w) of the element
w over R and Φb ∈ Gal(K/R), Φb(w) = bwb−1 is a root of p(X) too. Hence
bwb−1 = −w or bw = −wb. In particular, bw 6= wb and it follows that b2 ∈
R(b)∩ R(w) = R. Since b 6∈ R, b2 < 0. Therefore, there exists an element s ∈ R
such that s2 = −b2. By setting θ := bs−1, we have

θ2 = w2 = −1, θw = −wθ, K∗ ∪ K∗b = R(w)∗ ∪ R(w)∗θ.

In [2, Proposition 3] it was proven that R(w)∗ ∪ R(w)∗θ is a solvable maximal
subgroup of H∗. Therefore, S = CS(K) ∪ CS(K)b is contained in a solvable
maximal subgroup of H∗. �

Definition 2.1. Suppose that S is a solvable subgroup of H∗. We say that S is a
solvable subgroup of type 1 if it contains an abelian non-central normal subgroup
(i.e. if S satisfies the condition in Theorem 2.1). Otherwise, we say that S is a
solvable subgroup of type 2.

Lemma 2.1. Non-central subgroup S of H∗ is solvable of type 1 if and only if
R∗S is solvable of type 1.

Proof. Suppose S is a non-central solvable subgroup of type 1. Then, there exists
some non-central abelian normal subgroup N of S. Clearly, R∗N is a non-central
abelian normal subgroup of R∗S. Hence R∗S is a solvable subgroup of type 1.

Conversely, suppose that R∗S is a non-central solvable subgroup of type 1.
Then, there exists some non-central abelian normal subgroup M of R∗S. Clearly,
so is R∗M . Put N := R∗M ∩ S. Since R∗M is non-central, there exists some
non-central element a ∈ S and α ∈ R∗ such that αa ∈ R∗M . It follows that
a = α−1(αa) ∈ R∗M . Therefore a ∈ R∗M ∩ S = N . So N is a non-central
abelian normal subgroup of S. �

Definition 2.2. We say that a subgroup Q of H∗ is a quaternion subgroup if
there are exist some elements a and b in H∗ with a2 = b2 = −1, ab = −ba and
Q = 〈a, b〉 (a subgroup of H∗ generated by a and b).

It is easy to check that

Q = {1, a, b, ab,−1,−a,−b,−ab}.

Clearly, Q is a solvable subgroup of type 1.



SOLVABLE SUBGROUPS IN THE RING OF QUATERNIONS 133

As an example, we note that the set

QH := {1, i, j, k,−1,−i,−j,−k}
is one of quaternion subgroups of H∗.

From the definition it is obvious that if Q is a quaternion subgroup of H∗,
then every subgroup of H∗ which is conjugate with Q is a quaternion subgroup
too. The following result shows that by conjugation we can obtain all quaternion
subgroups.

Proposition 2.1. Every quaternion subgroup of H∗ is conjugate with QH.

Proof. Let Q = 〈a, b〉 be an arbitrary quaternion subgroup of H∗. Consider the
R-algebra homomorphism f : H −→ H which is defined by f(1) = 1, f(i) =
a, f(j) = b, f(k) = ab. It can be shown that, the set {1, a, b, ab} is a basis of H
over R. Hence f is an R-automorphism of H . So, by Skolem-Noether Theorem
(see, for example, [3, p.39]), f is an inner automorphism. Hence, there exists
some element u ∈ H∗ such that f(x) = uxu−1, ∀x ∈ H∗. On the other hand,
f(QH) = Q, so Q = uQHu−1. �

Lemma 2.2. Assume that a, b ∈ H with [a, b] := aba−1b−1 ∈ R. If a and b don’t
commute with each other, then ab = −ba. Moreover, a2, b2 ∈ R.

Proof. Let us consider the reduced norm of H/R, denoted by RN . Suppose
aba−1b−1 = s ∈ R. By taking the reduced norm, from this equality it follows
that s2 = 1. Since ab 6= ba, this implies s = −1. Hence ab = −ba. Now, we have

a2b = a(ab) = a(−ab) = −(ab)a = ba2.

So, a2 ∈ CH(b)∩ CH(a) = R. Similarly, it can be shown that b2 ∈ R. �

Lemma 2.3. Let G be a non-abelian subgroup of H∗, containing R∗ with [G, G] ⊆
R∗. Then, there exists in G a quaternion subgroup QG such that G = R∗QG. In
particular, G is a solvable subgroup of type 1.

Proof. Since G is non-abelian, there are exist a, b ∈ G with ab 6= ba. By our
assumption, [a, b] ∈ R∗. Then, in view of Lemma 2.2, ab = −ba, a2 ∈ R, b2 ∈ R.
Since a, b are both non-central, we can find some s, t ∈ R∗ such that a2 = −s2

and b2 = −t2. By setting a0 := as−1, b0 := bt−1, we have a0, b0 ∈ G and
a2

0 = b2
0 = −1, a0b0 = −b0a0. Thus, QG = 〈a0, b0〉 is a quaternion subgroup which

is contained in G. Now, we show that G = R∗QG. Thus, suppose there exists an
element c ∈ G \ R∗QG. There are the following two cases:

a) c ∈ CH(a0) ∪ CH(b0) ∪ CH(a0b0).
First, suppose c ∈ CH(a0). Clearly, CH(a0) = R(a0). Then c = α + βa0

with α, β ∈ R. Since c 6∈ R, β ∈ R∗. On the other hand, since b0 6∈ CH(a0), it
follows that b0c 6= cb0. Hence, by Lemma 2.2, b0c = −cb0. Thus, b0(α + βa0) =
−(α+βa0)b0, and it follows that 2αb0 = 0, so α = 0. Therefore c = βa0 ∈ R∗QG,
that is a contradiction.

Now, if c ∈ CH(b0) or c ∈ CH(a0b0) then, similarly as above, we can obtain a
contradiction.

b) c 6∈ CH(a0) ∪ CH(b0)∪ CH(a0b0).
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Then
a0c = −ca0, b0c = −cb0 and (a0b0)c = −c(a0b0).

From the first and second equalities it follows

(a0b0)c = a0(b0c) = −a0(cb0) = −(a0c)b0 = (ca0)b0 = c(a0b0).

But this is a contradiction with the last equality. Thus, the proof is now com-
pleted. �

Theorem 2.2. Let G be a non-abelian subgroup of H∗ with [G, G] ⊆ R∗. Then,
G is a solvable subgroup of type 1.

Proof. Clearly, the subgroup R∗G satisfies the condition of Lemma 2.3. So, there
exists a quaternion subgroup Q such that R∗G = R∗Q. By Lemma 2.1, R∗Q is
solvable of type 1. Hence, again by Lemma 2.1, G is solvable of type 1. �

Lemma 2.4. If Q is a quaternion subgroup of H∗, then

Q ⊆ [H∗, H∗] and [Q, Q] = {±1}.

Proof. Suppose Q = 〈a, b〉 with a2 = b2 = −1, ab = −ba. Clearly,

min(R, a) = min(R, b) = min(R, ab) = X2 + 1.

By Dickson Theorem (see [5, Th.(16.8), p.265]), there exist elements u, v ∈ H∗

such that
b = uau−1 and ab = vav−1.

Therefore,
ab = a(uau−1) = −a−1(uau−1) = −[a−1, u] ∈ [H∗, H∗];
b = a−1vav−1 = [a−1, v] ∈ [H∗, H∗];
a = (ab)b−1 ∈ [H∗, H∗] and
−1 = aba−1b−1 ∈ [H∗, H∗].
Hence Q ⊆ [H∗, H∗].
Direct calculations show that [Q, Q] = {±1}. �

Theorem 2.3. Let Q be a non-abelian subgroup of H∗. Then the following
statements are equivalent:

(i) Q is a quaternion subgroup.
(ii) Q ⊆ [H∗, H∗] and [Q, Q] ⊆ R∗.

Proof. In view of Lemma 2.4, it remains to prove the implication (ii) =⇒ (i).
Thus, suppose (ii) holds. Since [Q, Q] ⊆ R∗, by Lemma 2.3 there exists some
quaternion subgroup Q0 ≤ R∗Q such that R∗Q = R∗Q0. We now prove that
Q = Q0.

For every x ∈ H , denote by RN(x) its reduced norm of H to R. Now, consider
x ∈ Q. Then, there exist α ∈ R∗ and u ∈ Q0 such that x = αu. Note that
from Lemma 2.4 it follows that the reduced norm of any element of a quaternion
subgroup is 1 . Moreover, since x ∈ Q ⊆ [H∗, H∗], RN(x) = 1. Therefore, by
taking the reduced norm, from the equality x = αu, we obtain α2 = 1. Hence
α = 1 or α = −1. Therefore x = u or x = −u. Recall that −1 ∈ Q0, hence
x = ±u ∈ Q0. Thus, Q ⊆ Q0. Since Q is non-abelian, Q must be equal to Q0. �
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Corollary 2.1. Let Q and Q0 be quaternion subgroups. If R∗Q ⊆ R∗Q0, then
Q = Q0.

Proof. Similarly as in the proof of Theorem 2.3, we see that if R∗Q ⊆ R∗Q0, then
Q ⊆ Q0. Since Q and Q0 have the same finite order, it follows Q = Q0. �

3. Solvable subgroups containing no non-central
abelian normal subgroups

Theorem 3.1. Let S be a non-central solvable subgroup of type 2. Then, there
exists some positive integer n such that S(n) is a quaternion subgroup.

Proof. Since S is a non-central solvable subgroup of type 2, S is non-abelian. By
Theorem 2.2, S(1) := [S, S] 6⊆ R∗. Since S is solvable, there exists some integer
n ≥ 0 such that S(n+1) is a non- trivial abelian normal subgroup of S. Since
S is a solvable subgroup of type 2, S(n+1) is central. The fact that S(1) is non-
central forces n ≥ 1. Therefore S(n+1) = [S(n), S(n)] ⊆ R∗. Moreover, since
S(n) ⊆ [H∗, H∗], S(n) is a quaternion subgroup by Theorem 2.3. �

Now, we will consider the structure of non-central finite solvable subgroups
of type 2. By Theorem 3.1, if A is such a subgroup, then A(n) is a quaternion
subgroup for some n ≥ 1. If n ≥ 2, then for S = A(n−1) we have S ⊆ [H∗, H∗]
and [S, S] is a quaternion subgroup. The following theorem gives some charac-
terization of such subgroups.

Theorem 3.2. Let S be a finite non-central solvable subgroup of type 2, such
that S ⊆ [H∗, H∗] and [S, S] is a quaternion subgroup. Then, one of the following
cases occurs:

(a) S is a 2-group;
(b) S = QT , where Q is a quaternion subgroup, which is normal in S, T is a

subgroup of odd order of the multiplicative group of some maximal subfield of H;
(c) S = PT , where P is a normal 2-Sylow subgroup of S, [P, P ] = Q is a

quaternion subgroup, T is a finite subgroup of odd order of the multiplicative
group of some maximal subfield of H.

Proof. Let S be such a subgroup. Denote by P some 2-Sylow subgroup of S

containing Q := [S, S]. Then, k :=
n

|P | is a Hall divisor of n. By Hall’s Theorem

(see, for example [6]) there exists some subgroup T of order k of S. If T ⊆ R∗,
then T ⊆ {±1}. Since T has a odd order, it follows that T = {1}. So, S = P
is a 2-group. Now, suppose that T 6⊆ R∗. If T is a solvable subgroup of type 2
then, since T 6⊆ R∗, T is non-abelian. By Theorem 3.1, there exists some integer
r ≥ 1 such that T (r) is a quaternion subgroup. Therefore {±1} ≤ T (r) ≤ T
and it follows that the order of T is even, a contradiction. Thus T is a solvable
subgroup of type 1. Similarly as in the proof of Theorem 2.1, we can find some
maximal subfield K of H such that |T/CT (K)| ≤ 2. Since the order of T is odd,
T = CT (K). Again, as in the proof of Theorem 2.1, we can conclude that T is a
subgroup of K∗. Since P contains [S, S], P is normal in S. Therefore, PT is a
subgroup of S. Moreover, since (|P |, |T |) = 1, P ∩ T = {1}. So, it follows that
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PT = S. Now, consider the subgroup [P, P ] ≤ [S, S] = Q. The order of [P, P ]
may be one of numbers: 1, 2, 4, 8. By assumption Q ≤ P and Q is a quaternion
subgroup (which is non-abelian), so [P, P ] 6= {1}. Suppose that the order of
[P, P ] is 4. Then, [P, P ] is an abelian non-central subgroup of S. Moreover, for
every z ∈ S, and u, v ∈ P , since PES, we have

z[u, v]z−1 = [zuz−1, zvz−1] ∈ [P, P ].

Thus, [P, P ] is an abelian non-central normal subgroup of S. But, this contra-
dicts the assumption that S is a solvable subgroup of type 2. Hence, |[P, P ]| = 2
or |[P, P ]| = 8. If [P, P ] is a subgroup of order 2, then [P, P ] = {±1}. So, by
Theorem 2.3, P is a quaternion subgroup, and it follows P = Q. If the order of
[P, P ] is 8, then [P, P ] = Q. �
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