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CONVERGENCE OF TWO-PARAMETER
MULTIVALUED MARTINGALES IN THE LIMIT

VU VIET YEN

Abstract. In this paper, some convergence results of two-parameter multi-
valued martingales in the limit are presented.

1. Introduction

Multivalued martingales were introduced at the end of the sixties by Van
Custem and were studied by several authors. There are several extensions of
the notion of martingale such as quasi-martingales, asymptotic martingales, etc.
The notion of an one-parameter multivalued martingale in the limit (mil) has
been introduced by Castaing and Ezzaki [1]. Recently, Krupa [8] presents new
convergence results on one-parameter multivalued mils in the case when the Ba-
nach space without the Radon-Nikodym property.

The purpose of the present paper is to go on with the study of two-parameter
multivalued mils in a Banach space.

2. Notations and definitions

Let (Ω,F, P) be a complete probability space. We shall denote by X a separable
(real) Banach space and wkc(X) the collection of all nonempty, weakly compact
and convex subsets of X. Further, let us denote by N the set of all nonnegative
integers and J = N×N. Being endowed with the order “�” given by s = (s1, s2) �
t = (t1, t2) iff s1 � t1 and s2 � t2, J is a directed set. Let (Ft)t∈J be a complete
stochastic basis of (Ω,F, P), i.e., a nondecreasing family of complete sub-fields of
F with F =

∨
t∈J

Ft.

Given subsets A,B and C of X, the distance function d(., C), the support
function s(., C), the Hausdorff distance and measurable multifunction are defined
as in Hiai-Umegaki [7], Hess [6] and Krupa [8]. We say that (Ct)t∈J is weakly
convergent to C and write Ct

w→ C, t ∈ J , if for each x∗ ∈ X∗ we have

s(x∗, Ct) → s(x∗, C),
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for every t ∈ J . Now, let us set

s- lim inf
t∈J

Ct := {x ∈ X : lim d(x,Ct) = 0},
w- lim sup

t∈J
Ct := {x ∈ X : ∃ (tk)k∈N, xk → x, xk ∈ Ctk},

where (tk)k∈N is a cofinal subsequence of J .
Finally, (Ct) is said to be convergent to C in the Mosco sense, write M - lim

t∈J
Ct =

C, if w- lim sup
t∈J

Ct = C = s- lim inf
t∈J

Ct. For each t = (t1, t2) ∈ J , we put F1
t =∨

u∈N
F(t1,u). A map τ : Ω → J is called an 1-stopping time if [τ = t] ∈ F1

t , t ∈ J .

The set of all simple 1-stopping times is denoted by T 1. It is well known that
equipped with the a.s. order “�” given by σ � τ iff σ(ω) � τ(ω) a.s., T 1 is
a directed set. Moreover, N := {(n, n), n ∈ N} and J can be regarded as two
special cofinal subsets of T 1.

3. Main results

From now on, let L1
wkc(X) denote the complete metric space of all integrable

bounded multifunctions F : Ω → wkc(X).
Unless otherwise stated, we shall consider only processes (Ft)t∈J in L1

wkc(X)

such that each Ft is Ft-measurable. Related to the constructive results of Tala-
grand [11] for vector-valued mils, the following definition has been proposed in
[13].

Definition 3.1. Let (Ft)t∈J be an adapted sequence of integrably bounded
wkc(X)-valued multifunctions. We say that (Ft)t∈J is an optional-mil, if (Ft,F

1
t )t∈J

is a mil, i.e., for every ε > 0, there exists p ∈ N such that for any n ∈ N, τ ∈ T 1,
p � τ � n we have

P(h(Fτ , E(Fn|F1
t )) > ε) < ε.

For multivalued optional-mils, we get the following convergence result, which is
better than Theorem 3.2 in [13].

Theorem 3.1. Let (Ft)t∈J be an uniformly integrable wkc(X)-valued optional-
mil. Suppose that

co
⋃
t∈J

Ft(ω) ∈ wkc(X), ω ∈ Ω.

Then
a) there exists F ∈ L1

wkc(X) such that

w- lim Ft = F, a.s.,

b)
lim
t∈J

h(Ft, E(F |F1
t )) = 0, a.s.,

and
M - lim

t∈J
Ft = F, a.s.
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Proof. We denote by D (D∗) a countable dense subset of the unit ball B (B∗) of
X (X∗) in the norm topology of X (the Mackey topology of X∗). Let D∗

1 denote
the set of all rational linear combinations of members of D∗. Let (Ft)t∈J be given
as in the theorem.

a) For any x∗ ∈ D∗
1, (s(x∗, Ft),F1

t )t∈J is a two-parameter R-valued uniformly
integrable mil and the net (s(x∗, Fτ ))τ∈T 1 converges in probability (cf. [13]).
Hence, there are a negligible set N ⊂ Ω and a wkc(X)-valued multifunction F such
that for each x∗ ∈ D1 and any ω ∈ N c such that lim

t∈J
s(x∗, Ft(ω)) = s(x∗, F (ω)).

It follows from this and the equicontinuity of the sequence of functions s(., Ft(ω))
that lim

t∈J
s(x∗, Ft(ω)) = s(x∗, F (ω)) for any ω ∈ N c and x∗ ∈ X∗.

b) First, we note that the weak convergence of (Ft) to F yields that ‖F (ω)‖ �
lim inf

t∈J
‖Ft(ω)‖, a.s.. Fatou’s lemma implies E‖F‖ � lim inf

t∈J
E‖Ft‖ < ∞. Next,

we show that

lim
t∈J

h(Ft, E(F |F1
t )) = 0, a.s.(1)

To do this, we put

Xt(x∗) = s(x∗, Ft) − s(x∗, E(F |F1
t )), x∗ ∈ X∗.

By (a), there exists a negligible set N1 ⊂ Ω such that for any ω �∈ N1 and any
x∗ ∈ X∗ it holds

lim
t∈J

s(x∗, Ft(ω)) = s(x∗, F (ω)).(2)

Since (s(x∗, E(F |F1
t ))t∈J is a real-valued martingale and the stochastic basis (F1

t )
satisfies the condition Vitali (V) (see [10]), for any x∗ ∈ X∗ by Theorem 4.4.6 in
[5] we have

lim
t∈J

s(x∗, E(F |F1
t )) = s(x∗, F ), a.s.

In view of the properties of the support functions it easy to see that there exists
a negligible set N2 ⊂ Ω such that

lim
t∈J

s(x∗, E(F |F1
t )(ω)) = s(x∗, F (ω))

for any x∗ ∈ X∗. Therefore,

lim
t∈J

Xt(x∗)(ω) = 0

for any ω �∈ N = N1 ∪ N2, x∗ ∈ X∗. Thus, for any x∗ ∈ X∗, the real-valued
optional-mil (Xt(x∗))t∈J goes a.s. to zero.

Furthermore, it is easy to show that the process (Xt(.))t∈J with values in
the Banach space BR(B∗) of all bounded real functions defined in B∗ is also a
optional-mil.

Put
‖Xt‖∞ = sup

x∗∈B∗
‖Xt(x∗)‖.

Then ‖Xt‖∞ is measurable and integrable. It is clear that ‖Xt‖∞ = h(Ft, E(F |F1
t )).

We claim that lim
t∈J

E‖Xt‖∞ = ∞ if (Xt(x∗))t∈J does not converge a.s. to zero
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in the norm ‖.‖∞. Indeed, there exist a > 0 and a set A ∈ F with P(A) > 0
such that lim sup

t∈J
‖Xt‖∞(ω) > a for any ω ∈ A. Applying techniques similar to

those used in the proof of Talagrand [11, Theorem 6], we have: for every n1 ∈ N

and 0 < ε < P(A)/4 there exists n2 ∈ N such that, for each D ∈ F1
n1

with
P(D) < P(A)/4 and each n � n2, there exists a set E ∈ F1

n2
with E ∩D = ∅ and

P(E) < ε such that
∫
E ‖Xn‖∞dP � aP(A)/16.

Now we construct by induction an increasing sequence (np) ⊂ N and a se-
quence (Di) of joint sets such that Di ∈ F1

n with D1 = ∅, P(Di) < 2−i
P(A) and∫

Di
‖Xn‖∞dP � aP(A)/16 for every i � p and n � np. Then∫

D
‖Xn‖∞dP � (p − 1)aP(A)/16,

where D =
⋃
i p

Di. Thus lim
n

E‖Xn‖∞ = ∞.

Next, since F is an integrably bounded multifunction, there exists a sequence
(f i, i � 1) ⊂ S1

F (F) (see [2]) such that F (ω) = cl{f i(ω), i � 1} for all ω ∈ Ω
and F̂t = cl{E(f i|F1

t ), i � 1}, a.s. for all t ∈ J , where F̂t = E(F |F1
t ). By the

convergence of vector-valued martingale [10, Theorem 12.4],

lim
t∈J

‖E(f i|F1
t ) − f i‖ = 0, a.s.

Thus there exists N3 ∈ F, P(N3) = 0, such that for all ω ∈ N c
3 it holds

lim
t∈J

E(f i|F1
t )(ω) = f i(ω) (i � 1)

and F̂t(ω) = cl{E(f i|F1
t ), i � 1}, t ∈ J . Hence, we get

F (ω) ⊂ s- lim inf
t∈J

F̂t(ω), ω �∈ N3.(4)

Finally, by (1) there exists N4 ∈ F, P(N4) = 0 such that for any ω �∈ N4,
lim
t∈J

h(Ft(ω), F̂t(ω)) = 0. It implies that for any ω �∈ N4 and any x ∈ X

lim
t∈J

(d(x, Ft(ω)) − d(x, F̂t(ω)) = 0.(5)

By (4) and (5) we have

F (ω) ⊂ lim inf
t∈J

Ft(ω) for ω �∈ N3 ∪ N4.(6)

It follows from (1) and (6) that M -lim
t∈J

Ft = F , a.s. �

Remark. In Theorem 3.1, the condition (i) plays a crucial role. However, we
can replace it by Uhl’s condition which is weaker.

A sequence (Ft) is said to satisfy Uhl’s condition in the weak topology if for any
ε > 0 there exists a weak compact set Kε such that for any δ > 0 there exists a
set Aδ ∈ F, Aδ ⊂ Ω such that P(Aδ) � 1 − ε and, for any A ∈ Aδ ∩ F,⋃

t∈J

∫
A

Ft ⊂ P(A)Kε + δB.
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A similar condition for the case of one-parameter can be found in [9,10].

Theorem 3.2. Let (Ft) be a uniformly integrable optional-mil with values in
wkc(X). Suppose that (Ft)t∈J satisfies Uhl’s condition in the weak topology. Then
there exists F ∈ L1

wkc(X) such that

M - lim
t∈J

Ft = F a.s.

Proof. Let (Ft)t∈J be given as in the theorem. Since for any x∗ ∈ X∗, the process
(s(x∗, Ft),F1

t )t∈J is a uniformly integrable real-valued mil, Theorem 3.2 in [13]
implies that there are a negligible set N ⊂ Ω and an integrable function ϕx∗ such
that

lim
t∈J

s(x∗, Ft(ω)) = ϕx∗(ω)(7)

for any x∗ ∈ D∗
1 and any ω �∈ N .

Using an argument similar to the one used in the proof of Theorem 2.2. in [9]
(also, in the proof of Proposition 3.1 in [8]), one can show that by Uhl’s condition,
for each ε > 0, there exists a weakly compact convex set Hε and a measurable
set Bε with P(Bε) � 1 − ε such that⋃

t∈J

∫
A

Ft ⊂ P(A)Hε, ∀A ∈ F ∩ Bε(8)

We put Ωn = B1/n and Kn = H1/n. Without loss of generality, we can assume
that Ωn ⊂ Ωn+1 for any n � 1 (if necessary we replace Ωn by Ω1 ∪ . . . ∪ Ωn and
Kn by the absolutely closed convex hull of K1, . . . ,Kn).

By (8),
∫
A Ft ⊂ ∫

A Kn for any A ∈ F ∩ Ωn and any t ∈ J . Therefore, there
exists a negligible set Nn ∈ F ∩ Ωn such that for any ω ∈ Ωn ∩ N c

n and all t ∈ J ,
Ft(ω) ⊂ Kn.

We put M = N ∪
⋃
n 1

Nn. Since for any ω ∈ Ωn ∩ M c, and for any x∗ ∈ D∗
1,

lim
t∈J

s(x∗, Ft(ω)) = ϕx∗(ω) and Ft(ω) ⊂ Kn, by Lemma 5.1 in [6], there exists a

measurable multifunction Gn defined in Ωn∩M c with values in wkc(X) such that
s(x∗, Gn(ω)) = lim

t∈J
s(x∗, Ft(ω)) for any x∗ ∈ X∗ and ω ∈ Ωn ∩ M c.

From (7) we know that for any m,n ∈ N, 1 � m < n, and for any x∗ ∈
D∗

1, ω ∈ Ωm ∩ M c, s(x∗, Gm(ω)) = s(x∗, Gn(ω)) = ϕx∗(ω). Since for any ω ∈
Ωm ∩ M c the functions s(., Gm(ω)) and s(., Gn(ω)) are equicontinuous in the
Mackey topology, s(x∗, Gm(ω)) = s(x∗, Gn(ω)) for all x∗ ∈ X∗. Thus, for any ω ∈
Ωm∩M c, Gm(ω) = Gn(ω). We define a multifunction F such that F (ω) = Gn(ω)

for some n with ω ∈ Ωn∩M c and F (ω) = {0} for any ω ∈ M∪(
∞⋂

n=1

Ωc
n) =: Ñ . It is

clear that F is measurable, bounded integrable and lim
t∈J

s(x∗, Ft(ω)) = s(x∗, F (ω))

for any ω ∈ Ñ c. Thus, since P(Ñ) = 0, we have lim
t∈J

s(x∗, Ft) = s(x∗, F ), a.s.

Finally, applying the argument used in the proof of the part (b) of Theorem 3.1,
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we have
M − lim

t∈J
Ft = F a.s..

The proof is complete. �
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