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SOME ALGORITHMS FOR SOLVING MIXED
VARIATIONAL INEQUALITIES

TRUONG QUANG BAO AND PHAN QUOC KHANH

Abstract. We propose some algorithms for solving mixed variational in-
equalities. The global convergence of these algorithms is established under
pseudomonotonicity and continuity assumptions without Lipschitz conditions.
The implementation is illustrated on a nonsmooth optimization test problem.

1. Introduction

We consider the mixed variational inequality problem, in short (MVI), of find-
ing x∗ ∈ R

n such that

〈F (x∗), x − x∗〉 + ϕ(x) − ϕ(x∗) � 0, ∀x ∈ R
n,(1)

where F : R
n → R

n is a single-valued mapping and ϕ : R
n → R ∪ {+∞} is

a proper, lower semicontinuous and convex functional. (MV I) is also called a
general variational inequality of second type since if ϕ is the indicator function
of a closed convex subset K in R

n, that is,

ϕ(x) = IK(x) =
{

0 if x ∈ K,
+∞ otherwise,

(MV I) is equivalent to the usual variational inequality problem (VI): finding
x∗ ∈ K such that

〈F (x∗), x − x∗〉 � 0, ∀x ∈ K,(2)

and if F is identically zero, (MV I) becomes a minimization problem.
Observe that the mixed variational inequality problem is equivalent to the

problem of finding a zero of the sum of two operators (ZP): finding x∗ ∈ R
n such

that

0 ∈ F (x∗) + ∂ϕ(x∗),(3)

where ∂ϕ(.) is the subdifferential of the functional ϕ.
For solving the class of (V I) problem, there are many numerical methods:

projection, Weiner-Hoff equation, decomposition and auxiliary principle. Among
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these methods, projection algorithms appeared first and are experiencing an ex-
plosive development due to their natural arguments, global convergence and sim-
plicity of implementation. The first works were by Goldstein in [9], Levitin et al in
[17], and Sibony in [29], where the authors proposed an extension of the projected
gradient algorithm for convex minimization problems based on the iteration:

xk+1 = PK

(
xk − ρF (xk)

)
,(4)

where ρ > 0 is a parameter and PK(.) stands for the projection on K. If F is
strongly monotone with modulus α > 0, i.e.,

〈F (y) − F (x), y − x〉 � α‖y − x‖2 for all x, y ∈ R
n,

and Lipschitz continuous with constant L, the classical projection algorithm (4)

globally converges to a solution for any ρ ∈
(
0,

2α
L2

)
. Moreover, a general scheme

for solving (V I) is the auxiliary problem principle which contains the projection
method as a special case. In order to guarantee the convergence, this general
scheme needs some additional assumptions such as strong monotonicity or co-
coercivity, see Cohen [6], Martinet [19], Renaud and Cohen [27] and the recent
papers of Anh et al [1], [2] in which the assumptions were weakened and the exact
value of the Lipschitz constant is not required to be given.

It is well known that the projection method and its generalizations cannot be
used to solve (MV I) due to the presence of the nonlinear term ϕ(x) − ϕ(x∗).
But based on the facts that the subdifferential of a proper, lower semicontinuous,
convex functional is maximal monotone and that the resolvent of a maximal
monotone operator is single-valued, well-defined everywhere and nonexpensive,
several methods for (MV I) have been proposed, see e.g. [3], [6], [8], [11], [20]-[22].
Recall that a mapping T : R

n → R
n is said to be monotone if

〈tx − ty, x − y〉 � 0, ∀x, y ∈ R
n,∀tx ∈ T (x), ty ∈ T (y),

and to be maximal monotone if the graph of any monotone mapping from R
n

into itself cannot properly include the graph of T . The resolvent of operator T ,
JT : R

n → R
n, is defined by JT (x) := (I + ρT )−1(x) for a fixed constant ρ > 0

where I is the identity mapping. Resolvents of maximal monotone operators play
a crucial role in methods of finding a zero of maximal monotone operator such
as the proximal-point algorithms and the operator splitting methods.

The proximal point algorithm for solving 0 ∈ T (x) produces, for any starting
point x0, a sequence {xk} by the iterative scheme

xk+1 = (I + ρkT )−1(xk).

In the splitting methods, the given operator is decomposed into a sum of
two operators, whose resolvents are easier to calculate and can be dealt with
independently. These methods have been studied by many authors, see e.g. [5]-
[8], [11], [15], [16]. In [15], a splitting method was developed by Korpelevich in
the spirit of the extragradient method to solve (MV I).
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In case of T = A+B, where A and B are maximal monotone mappings on R
n

with A being single valued on domA ⊃ dom B, the forward-backward splitting
method

xk+1 = (I + αkB)−1(I − αkA)(xk),
where αk > 0, was proposed by Lions and Mercier in [18]. In the case where
B = NK , the normal cone of a nonempty closed convex subset K in R

n, this
method reduces to a projection method proposed by Sibony in [29] for monotone
variational inequalities. In another case, where A is the gradient of a differentiable
convex function, it becomes a gradient projection method of Goldstein in [9], and
of Levitin and Polyak in [17].

A nice feature of forward-backward method is that the backward (i.e. proxi-
mal) step involves B only. However, the forward-backward method has a draw-
back: it requires A to be Lipschitz continuous on domA (see [27], [28], [33]).
Furthermore, choosing a good step size may be difficult since it entails estimat-
ing the Lipschitz constant of A. The Extragradient method of Korperlevich for
nonsmooth variational inequalities in [13] modifies the projection method of Si-
bony by performing an additional forward step at each iteration. By adaptively
choosing the stepsize, the method has been shown to converge for monotone
continuous mappings in [12], [31].

Choosing αk requires some care, for it cannot be too large nor can it be too
small. If A is Lipschitz continuous, αk can be chosen to be constant for all
iterations. However, it is more practical to choose αk dynamically using an
Armijo-Goldstein stepsize. Specifically, we will choose αk to be the largest α ∈
{α,αβ, αβ2, . . . } satisfying

α
∥∥A(J(xk, α)) − A(xk)

∥∥ � θ
∥∥J(xk, α) − xk

∥∥,
where β ∈ (0, 1] and θ ∈ (0, 1) are constants, and J(x, α) = (I+αB)−1(I−αA)(x).
Observe that this type of linesearch leads to computing many J(xk, α) and costs
expensively. In [30], [31], [33], [34], another type of linesearch is used: finding a
point yk ∈ [xk, J(xk, α)] such that a Lipschitz condition is fulfilled.

The paper is organized as follows. The remaining part of this Section contains
some preliminaries. In Sections 2-4, we present the proposed algorithms and
some modified versions, then establish their global convergence. Finally, Section
5 provides some numerical examples.

In the sequel we need the following well known and basic facts (see, e.g., [21]-
[23]).

Lemma 1.1. Let ϕ : R
n → R ∪ {+∞}, z ∈ R

n and ρ > 0. Then

x = (I + ρ∂ϕ)−1(z)

if and only if, for any y ∈ R
n,

〈x − z, y − x〉 + ρϕ(y) − ρϕ(x) � 0.(5)

In particular, if ϕ is the indicator function of a closed convex subset K in
R

n, then (I + ρ∂ϕ)−1 ≡ PK , the projection onto K, and Lemma 1.1 reduces
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to the well known characterization of the projections: x = PK(z) if and only if
〈x − z, y − x〉 � 0, ∀y ∈ K.

Lemma 1.2. x∗ ∈ R
n is a solution of (MV I) if and only if x∗ satisfies the

following fixed point formulation

x∗ = (I + ρ∂ϕ)−1(I − ρF )(x∗).(6)

Note that if ϕ is the indicator function of a closed convex subset K in R
n,

Lemma 1.2 reduces to the well known characterization of the solutions to (V I):
x∗ is a solution to (V I) if and only if x∗ = PK

(
x∗ − ρF (x∗)

)
for any ρ > 0.

2. The first algorithm

In the sequel we will use the notations

x̄(ρ) := (I + ρ∂ϕ)−1(I − ρF )x := Pρ(x),

r(x, ρ) := x − x̄(ρ),

�F (x, ρ) := F (x) − F (x̄(ρ)).

By Lemma 1.2, x∗ is a solution of (MV I) if and only if r(x∗, ρ) = 0. This is used
as the stopping criteria for our algorithms.

Algorithm 2.1. We require two exogenous parameters ρ > 0, L > 0 such that
ρL < 1.

1. Initialization. x0 ∈ dom ϕ.

2. Iteration. If r(xk, ρk) = 0, then stop. Otherwise go to
Linesearch. Choose the smallest nonnegative integer mk satisfying∥∥�F (xk, 2−mkρ)

∥∥ � 2mkL
∥∥r(xk, 2−mkρ)

∥∥.(7)

Set ρk = 2−mkρ.
Compute

γk :=

∥∥r(xk, ρk)
∥∥2 − ρk

〈�F (xk, ρk), r(xk, ρk)
〉

∥∥ρk�F (xk, ρk) − r(xk, ρk)
∥∥2 ·

Update
xk+1 := xk + γk[ρk�F (xk, ρk) − r(xk, ρk)].

Geometric interpretation. Let us compare our algorithm to the well-known
hyperplane projection algorithms and its modified versions. The main idea of the
hyperplane projection algorithm for the variational inequality, i.e., the problem
(1) with ϕ(x) = IK(x), is as follows. Suppose xk is the current approximation to
the solution of (V I). First, we compute the point PK [xk−F (xk)]. Next, we search
the line segment between xk and PK [xk − F (xk)] for a point zk such that the
hyperplane Hk := {x ∈ R

n | 〈F (zk), x − xk〉 = 0} strictly separates xk from any
solution x∗ of the problem. In Algorithm 2.1 for the mixed variational inequality
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problem, the projection is replaced by the proximal operator (I + ρ∂ϕ)−1 which
becomes the projection in the case ϕ(x) = IK(x). Moreover, since we do not have
nice properties of projections, we use the following set, instead of Hk,

{x ∈ R
n | 〈ρ�F (x, ρ) − r(x, ρ), x − xk〉 = 0}

so that the solution set is “sufficient” close to x̄k(ρ) = (I +ρ∂ϕ)−1(I−ρF )xk (see
Proposition 2.2) and the next iteration is “better” than the current one. In our
Algorithm, the exact stepsize is chosen as in the proof of Proposition 2.3. Note
that xk+1 can be infeasible, i.e., Algorithm 2.1 is an infeasible one. So it seems
to be incomparable to the Extragradient Method. However, Algorithm 3.1 for
(MV I) collapses to Proximal - Extragradient Method for (MV I) or Extragra-
dient Method for (V I) (see Remark 3.4). Also note that the proposed method
differs from the one using the auxiliary problem principle, see [1], [2], [6], [27] be-
cause we use the projection to a cutting plane separating the solution set and the
current iterative as in [30], [31], [34] to obtain an approximate solution instead of
using a regularization parameter to get the unique solution of each subproblem.

Remark 2.1. If F is locally Lipschitz with constant l and L = l, then mk = 0
for all k.

Given ϕ : R
n → R ∪ {+∞}, recall that a mapping F : R

n → R
n is said to be

ϕ-pseudomonotone at x if, ∀y ∈ R
n,[ 〈F (x), y − x〉 + ϕ(y) − ϕ(x) � 0
]⇒ [ 〈F (y), y − x〉 + ϕ(y) − ϕ(x) � 0

]
.

Hypothesis A. There exists l > 0 such that for any convergent sequence xk and
any ρk → 0 we have subsequence ki such that∥∥F (xki) − F (Pρki

(xki))
∥∥ � l

∥∥xki − Pρki
(xki)

∥∥(8)

for all i large enough.
To establish a global convergence of Algorithm 2.1 we need the following three

propositions.

Proposition 2.1. Assume that F is continuous and (MV I) has a solution x̂.
Assume further that xk → x and ρk → ρ, ρk > 0. Then, x̄k(ρk) ≡ Pρk

(xk)
contains a subsequence converging to x̄(ρ).

Proof. We show first that {x̄k(ρk)} is bounded. We have∥∥x̄k(ρk) − x̂
∥∥ =

∥∥(I + ρk∂ϕ)−1(I − ρkF )xk − (I + ρk∂ϕ)−1(I − ρkF )x̂
∥∥

�
∥∥(I − ρkF )xk − (I − ρkF )x̂

∥∥
�
∥∥xk − x̂

∥∥+ ρk

∥∥F (xk) − F (x̂)
∥∥.

Since F is continuous, {x̄k(ρk)} is bounded. Therefore, there is a subsequence,
denoted again by {x̄k(ρk)}, converging to a point y. It remains to show that
y = x̄(ρ). We have

xk − ρF (xk) ∈ (I + ρk∂ϕ)
(
x̄k(ρk)

)
,
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or
xk − x̄k(ρk) − ρkF (xk) ∈ ρk∂ϕ

(
x̄k(ρk)

)
.

By the definition of a lower limit of a sequence of sets, this implies that

x − y − ρF (x) ∈ lim inf
k→∞

ρk∂ϕ
(
x̄k(ρk)

) ⊂ ρ∂ϕ(y) = ρ∂ϕ(y).

Therefore, (I − ρF )x ∈ (I + ρ∂ϕ)y, i.e., y = x̄(ρ).

Remark 2.2. (i) If F is locally Lipschitz, i.e., ∃l > 0, ∀x ∈ R
n, ∃U (a neighbor-

hood of x), ∀u, v ∈ U ,
‖F (u) − F (v)‖ � l‖u − v‖,

then F satisfies Hypothesis A. Indeed, if xk → x and ρk → 0, by Proposition
2.1, {Pρk

(xk)} has a convergent subsequence Pρki
(xki) → P0(x̄) = x̄. So for all

i large enough we have (8). Moreover, even for the special case where ϕ is the
indicator function of a closed convex subset K, Hypothesis A is weaker than the
locally Lipschitz property. Thus, Algorithm 2.1 is a new one for non-Lipschitz
variational inequalities.

(ii) (Algorithm 2.1 is well defined) Assume that F satisfies Hypothesis A. Then,
for any x ∈ R

n, there exists a finite positive m such that∥∥�F (x, 2−mρ)
∥∥ � 2mL

∥∥r(x, 2−mρ)
∥∥.

Proposition 2.2. Assume that F is ϕ-pseudomonotone and x̂ is a solution of
(MV I). Then, for each x ∈ R

n and ρ > 0 we have〈
ρ�F (x, ρ) − r(x, ρ), x − x̂ − r(x, ρ)

〉
� 0.

Proof. By the ϕ-pseudomonotonicity one has

〈F (x̄(ρ)), x̄(ρ) − x̂〉 + ϕ(x̄(ρ)) − ϕ(x̂) � 0.(9)

Lemma 1.1 and the definition of x̄(ρ) imply that

〈x̄(ρ) − (x − ρF (x)), x̂ − x̄(ρ)〉 + ρϕ(x̂) − ρϕ(x̄(ρ)) � 0.(10)

Multiplying (9) by ρ and then adding it to (10) one gets〈
x − x̄(ρ) − ρ

(
F (x) − F (x̄(ρ))

)
, x̄(ρ) − x̂

〉
� 0,

that is,
〈ρ�F (x, ρ) − r(x, ρ), x − x̂ − r(x, ρ)〉 � 0.

Proposition 2.3. Assume that F is ϕ-pseudomonotone and x̂ is a solution of
(MV I). Then, for any sequence {xk} generated by Algorithm 2.1, we have

∥∥xk+1 − x̂
∥∥2 �

∥∥xk − x̂
∥∥2 −

(1 − ρL

1 + ρL

)2∥∥r(xk, ρk)
∥∥2

.(11)
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Proof. Observe first, from the definition of mk, that γk � 1 − ρL

(1 + ρL)2
> 0. Next,

applying Proposition 2.2 one obtains

‖xk+1 − x̂‖2 =
∥∥xk − x̂ + γk[ρk�F (xk, ρk) − r(xk, ρk)]

∥∥2

= ‖xk − x̂‖2 + γ2
k

∥∥ρk�F (xk, ρk) − r(xk, ρk)
∥∥2

+ 2γk

〈
ρk�F (xk, ρk) − r(xk, ρk), xk − x̂

〉
� ‖xk − x̂‖2 + γ2

k

∥∥ρk�F (xk, ρk) − r(xk, ρk)
∥∥2

+ 2γk

〈
ρk�F (xk, ρk) − r(xk, ρk), r(xk, ρk)

〉

= ‖xk − x̂‖2 −
(‖r(xk, ρk)‖2 − ρk

〈�F (xk, ρk), r(xk, ρk)
〉 )2

‖ρk�F (xk, ρk) − r(xk, ρk)‖2

� ‖xk − x̂‖2 −
(1 − ρL

1 + ρL

)2‖r(xk, ρk)‖2.

Now we are able to prove a global convergence of Algorithm 2.1.

Theorem 2.1. Assume that F is ϕ-pseudomonotone, continuous and satisfies
Hypothesis A. Assume further that (MV I) has a solution. Then, any sequence
{xk} generated by Algorithm 2.1 converges to a solution of (MV I).

Proof. Adding (11) for k = 0, 1, . . . we see that
∞∑

k=0

‖r(xk, ρk)‖2 < ∞ and hence

lim
k→+∞

r(xk, ρk) = 0. Suppose that there is a subsequence ρki
→ 0+, i.e., mki

→
+∞. By the definition of ρk one has∥∥F (xki) − F (P2ρki

(xki))
∥∥ > 2mki

−1L
∥∥xki − P2ρki

(xki)
∥∥.(12)

From (11), {xki} is bounded. Hence, xki → x∗ for some x∗ (taking subsequence
if necessary). Now (12) contradicts Hypothesis A. Therefore, {ρk} is away from
0. Since {ρki

} is bounded, there is a convergent subsequence, denoted again by
{ρki

}, ρki
→ ρ∗ > 0. By Proposition 2.1,

r(x∗, ρ∗) = lim
i→+∞

r(xki , ρki
) = 0.

Consequenly, x∗ is a solution of (MV I) by Lemma 1.2. Since ‖xk+1 − x∗‖ �
‖xk − x∗‖ (by (11)), the whole sequence xk converges to x∗.

Example 2.1. To show that Hypothesis A is essential, i.e., the sequence gener-
ated by Algorithm 2.1 may disconverge without Hypothesis A, consider the case
where K = R, ϕ = IK and F (x) =

√|x|. It is obvious that 0 is the unique
solution of the problem (V I) and that F does not satisfy Hypothesis A. Let xk

be the sequence produced by Algorithm 2.1 with the linesearch condition

‖�F (xk, ρk)‖ =
1
ρk

L‖r(xk, ρk)‖
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instead of choosing the smallest nonnegative integer mk such that 2−mkρ < ρk.
It suffices to show that for any x = a2 sufficiently small, |x·+1| is larger than |x·|.
We have

x = a2,

x̄ = a2 − ρa,

�F (x, ρ) =
√

a2 −
√

|a2 − ρ
√

a2|
= a −

√
ρa − a2,

r(x, ρ) = a2 − (a2 − ρa) = ρa,

provided that we can choose ρ > a, where ρ is the solution of

|a −
√

ρa − a2| =
1
ρ
Lρa.

Furthermore, assume that ρ > 2a, i.e.,
√

ρa − a2 > a, we obtain ρ = a + L + 1.
It is obvious that ρ satisfies all assumptions. Now we have

γ =
r2 − ρ〈1

ρLr, r〉
(ρ1

ρLr − r)2
=

1
1 − L

,

x·+1 = x +
1

1 − L

(
ρ
1
ρ
Lr − r

)

= x − r(x, ρ)
= x − x − x̄

= a2 − ρa

= a2 − (1 + L + a)a

= −(1 + L)a.

It is obvious that |x·+1| > |x·|. The proof is complete.

The following example shows that Algorithm 2.1 may converge to a solution
even in a case where F is non-Lipschitz.

Example 2.2. Consider the problem (1) with ϕ = IR and F is defined by

F (x) =




1
2k

if x =
1
k

1
2(k + 1)

if x =
1

k + 1
2k + 1

2k(k + 1)
if x =

2k + 1
2k(k + 1)

λ
1
2k

+ (1 − λ)
2k + 1

2k(k + 1)
if x = λ

1
k

+ (1 − λ)
2k + 1

2k(k + 1)

λ
1

2(k + 1)
+ (1 − λ)

2k + 1
2k(k + 1)

if x = λ
1

k + 1
+ (1 − λ)

2k + 1
2k(k + 1)

for any k = 1, 2, · · · as in the following figure.
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Figure. Graph of F (s)

Observe that F is non-Lipschitz (but continuous) everywhere since the linear
segments are getting steeper and steeper as they are near zero, which is the
solution of the problem. As in the previous example, instead of the checking the
linesearch condition (7) we compute the exact ρk as the solution of

‖�F (xk, ρk)‖ = ρρ−1
k L‖r(xk, ρk)‖.

Hence, xk+1 = x̄k = xk − ρkF (xk). Since ρk is small for k sufficiently large and
0.5xk < F (xk) < xk, we have 0 < xk+1 < xk. Therefore the sequence generated
by Algorithm 2.1 converges to 0, the unique solution of the problem.

3. The second algorithm

The linesearch in Algorithm 2.1 may lead to performing several proximal
points, J(xk, ρ). To overcome this difficulty, we use the linesearch technique
in [33], [34]. This kind of linesearch is to find a point yk ∈ [xk, J(xk, ρ)] such
that some Lipschitz condition is fulfilled. In this section, we write (MV I) in a
modified form: finding x∗ ∈ K such that〈

F (x∗), x − x∗〉+ ϕ(x) − ϕ(x∗) � 0, for all x in K.

Algorithm 3.1. We require three exogenous positive constants λ, ρ and L such
that λ ∈ (0, 1) and ρL < 1.

1. Initialization. x0 ∈ dom ϕ.

2. Iteration



86 TRUONG QUANG BAO AND PHAN QUOC KHANH

STEP 1. Compute

x̄k = (I + ρ∂ϕ + ρNK)−1(I − ρF )(xk),

or, equivalently, find x̄k satisfying〈
x̄k − xk + ρF (xk), z − x̄k

〉
+ ρϕ(z) − ρϕ(x̄k) � 0, ∀z ∈ K.

If r(xk) := xk − x̄k = 0, then stop; xk is a solution of (MV I). Otherwise, go to
Step 2.
STEP 2 (Linesearch). Find mk being the smallest nonnegative integer such that

〈
F (xk) − F (yk), r(xk)

〉
� L‖xk − x̄k‖2 +

〈
s(yk), xk − x̄k

〉
+ ϕ(x̄k) − ϕ(xk),

(13)

where yk = xk − λmkr(xk) and s(yk) ∈ ∂ϕ(yk) is arbitrary.
STEP 3. Compute the projection of xk onto Hk with

Hk :=
{
z ∈ R

n :
〈
F (yk) + s(yk), z − yk

〉
= 0
}
,

x̃k = PHk
(xk) = xk − γk(F (yk) + s(yk)),

where

γk =

〈
F (yk) + s(yk), xk − yk

〉
‖F (yk) + s(yk)‖2

·

STEP 4. Update the variable

xk+1 = PK(x̃k) or xk+1 = PK∩H−
k

(x̃k),

where H−
k := {z ∈ R

n :
〈
F (yk) + s(yk), z − yk

〉
� 0}.

Proposition 3.1. If F is continuous, Algorithm 3.1 is well defined.

Proof. Suppose that for any yi = xk − λir(xk), there is s(yi) ∈ ∂ϕ(yi) such that〈
F (xk) − F (yi), r(xk)

〉
> L‖r(xk)‖2 +

〈
s(yi), r(xk)

〉
+ ϕ(x̄k) − ϕ(xk).(14)

Since yi → xk, by the maximal monotonicity of ∂ϕ(.), {∂ϕ(yi)} is bounded. So
is {s(yi)}. Hence, there is a convergent subsequence s(yij ) → s∗ ∈ ∂ϕ(xk). By
the definition of subdifferential, ϕ(x̄k) � ϕ(xk)+

〈
s∗, x̄k − xk

〉
. Now passing (14)

to the limit, one obtains

0 � L‖r(xk)‖2 + ϕ(x̄k) − ϕ(xk) +
〈
s∗, xk − x̄k

〉
� L‖r(xk)‖2 > 0.

This impossibility implies that there exists a finite nonnegative integer satisfying
(13) for any s(yk) ∈ ∂ϕ(yk).

Remark 3.1. In Algorithm 3.1, we need only one s(yk) ∈ ∂ϕ(yk) satisfying (13).
So Proposition 3.1 makes the linesearch more easily implementable because we
can take arbitrarily s(yi) ∈ ∂ϕ(yi) for checking the condition (13).

Proposition 3.2. Suppose that yk, xk, x̄k and s(yk) ∈ ∂ϕ(yk) as in Algorithm
3.1 satisfy the condition (13). Then, one has (with tk = λmk)

〈
F (yk) + s(yk), xk − yk

〉
� tk

1 − ρL

ρ
‖r(xk)‖2.
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Proof. Since xk − yk = tkr(xk), by (13) we have the following equivalent inequal-
ities 〈

F (xk) − F (yk), r(xk)
〉

� L‖r(xk)‖2 +
〈
s(yk), r(xk)

〉
+ ϕ(x̄k) − ϕ(xk),

⇔ ρ
〈
F (yk), r(xk)

〉
+ ρ
〈
s(yk), r(xk)

〉
� −ρL‖r(xk)‖2 − ρϕ(x̄k)

+ ρϕ(xk) + ρ
〈
F (xk), r(xk)

〉
,

⇔ ρ

tk

〈
F (yk) + s(yk), xk − yk

〉
� −ρL‖r(xk)‖2 − ρϕ(x̄k)

+ ρϕ(xk) + ρ
〈
F (xk), r(xk)

〉
.(15)

By Lemma 1.1, we have〈
x̄k − xk + ρF (xk), xk − x̄k

〉
+ ρϕ(xk) − ρϕ(x̄k) � 0

or 〈
F (xk), r(xk)

〉
+ ρϕ(xk) − ρϕ(x̄k) � ‖r(xk)‖2.

Substitute this into (15) we have
〈
F (yk) + s(yk), xk − yk

〉
� tk

1 − ρL

ρ
‖r(xk)‖2.

Remark 3.2. If F is Lipschitz continuous with the constant l, then (13) holds
with L = l and mk = 0, or yk = x̄k. Indeed,〈

F (xk) − F (x̄k), r(xk)
〉

� L‖r(xk)‖2 +
〈
s(x̄k), r(xk)

〉
+ ϕ(x̄k) − ϕ(xk)

� L‖r(xk)‖2,

the last inequality holds since s(x̄k) ∈ ∂ϕ(x̄k).

Proposition 3.3. Suppose that x∗ is a solution to (MV I) and F is ϕ-pseudomonotone
at that point. The following holds〈

F (y) + s(y), x∗ − y
〉

� 0, ∀y ∈ R
n, ∀s(y) ∈ ∂ϕ(y).

Proof. Since x∗ is a solution to (MV I) and F is ϕ-pseudomonotone at x∗, we
have 〈

F (y), y − x∗〉+ ϕ(y) − ϕ(x∗) � 0.
Since s(y) ∈ ∂ϕ(y), we have

ϕ(x∗) − ϕ(y) +
〈
s(y), y − x∗〉 � 0.

The required result is obtained by adding the last two inequalities.

Proposition 3.4. Assume that x̂ is a solution to (MV I) and F is ϕ-pseudo-
monotone. Then for any sequence {xk} generated by Algorithm 3.1, one has

∥∥xk+1 − x̂
∥∥2 �

∥∥xk − x̂
∥∥2 − t2k

(1 − ρL)2

ρ2‖F (yk) + s(yk)‖2

∥∥r(xk)
∥∥4

.(16)
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Proof. By Proposition 3.2, γk > 0. One has

‖x̃k − x̂‖2 = ‖xk − x̂ − γk(F (yk) + s(yk))‖2

= ‖xk − x̂‖2 + γ2
k‖F (yk) + s(yk)‖2 − 2γk

〈
F (yk) + s(yk), xk − x̂

〉
= ‖xk − x̂‖2 + γ2

k‖F (yk) + s(yk)‖2 − 2γk

〈
F (yk) + s(yk), xk − yk

〉
− 2γk

〈
F (yk) + s(yk), yk − x̂

〉
� ‖xk − x̂‖2 + γ2

k‖F (yk) + s(yk)‖2 − 2γk

〈
F (yk) + s(yk), xk − yk

〉

= ‖xk − x̂‖2 −
〈
F (yk) + s(yk), xk − yk

〉2
‖F (yk) + s(yk)‖2

� ‖xk − x̂‖2 − t2k
(1 − ρL)2

ρ2‖F (yk) + s(yk)‖2
‖r(xk)‖4.(17)

where the first inequality holds by Proposition 3.3, and the other is due to Propo-
sition 3.2.

Furthermore, ‖xk+1 − x̂‖ � ‖x̃k − x̂‖ if xk+1 = PK(x̃k), since x̂ ∈ K. Next, we
claim that x̂ ∈ K ∩ H−. Indeed, suppose that x̂ �∈ K ∩ H−, i.e.,〈

F (yk) + s(yk), x̂ − yk
〉

> 0.

Hence, 〈
F (yk), x̂ − yk

〉
+ ϕ(x̂) − ϕ(yk) > 0,

and then 〈
F (x̂), x̂ − yk

〉
+ ϕ(x̂) − ϕ(yk) > 0,

i.e. 〈
F (x̂), yk − x̂

〉
+ ϕ(yk) − ϕ(x̂) < 0.

This contradicts the fact that x̂ is a solution to (MV I). Hence, we also have
‖xk+1 − x̂‖ � ‖x̃k − x̂‖ if xk+1 = PK∩H−(x̃k).

Now we can establish a global convergence of Algorithm 3.1.

Theorem 3.1. Assume that F is continuous, ϕ-pseudomonotone and there is
a solution x̂ to (MV I). Then any sequence {xk} generated by Algorithm 3.1 is
either finitely terminated or convergent to a solution of (MV I).

Proof. By Proposition 3.4, the sequence {xk} is bounded, so are {x̄k} and {yk}.
Hence {‖F (yk) + s(yk)‖} is bounded above by some M due to the fact that the
subdifferential of ϕ is bounded on any bounded subsets.

Summing (16), we have
∞∑

k=0

t2k
(1 − ρL)2

ρ2‖F (yk) + s(yk)‖2
‖xk − x̄k‖4 � ‖x0 − x̂‖2.

Then ∞∑
k=0

t2k
(1 − ρL)2

ρ2M
‖xk − x̄k‖4 � ‖x0 − x̂‖2,
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and hence

lim
k→∞

tk‖xk − x̄k‖2 = 0.(18)

Since {xk} is bounded, there is a subsequence {xki} converging to x∗. Suppose
x∗ is not a solution of (MV I). Suppose further that lim inf

k→∞
tk = 0. Without loss

of generality, we can assume that lim
i→∞

tki
= 0. Due to the linesearch condition

(13), we have〈
F (xki) − F (xki + tki

λ−1r(xki)), r(xki)
〉

> L‖r(xki)‖2

+
〈
s
(
xki + tki

λ−1r(xki)
)
, r(xki)

〉
+ ϕ(x̄ki) − ϕ(xki).(19)

Since xki + tki
λ−1xki → x∗, {s(xki + tki

λ−1xki)} has a convergent subsequence,
again without loss of generality, we can assume that it converges to s∗ ∈ ∂ϕ(x∗)
by the maximal monotonicity of ∂ϕ. Passing (19) to the limit, we obtain

0 � L‖r(x∗)‖2 + 〈s(x∗), x∗ − x̄∗〉 + ϕ(x̄∗) − ϕ(x∗)

� L‖r(x∗)‖2.

On the other hand, 0 > ‖r(x∗)‖ since x∗ is not a solution. This impossibility
shows that lim inf

k→∞
tk = t∗ > 0.

Now passing (18) to the limit, we have

0 = lim
ki→+∞

‖r(xki)‖ = ‖r(x∗)‖,

i.e., x∗ must be a solution to (MV I). Proposition 3.4 with x∗ in the place of x̂
assures that the whole sequence {xk} converges to x∗.

Remark 3.3. If x̃k = xk + θkγk(F (yk) + s(yk)), where θk ∈ (0, 2) is called the
relaxation parameter, then the estimate in Proposition 3.4 becomes

‖xk+1 − x̂‖2 � ‖xk − x̂‖2 − θk(2 − θk)tk
1 − ρL

ρ2‖F (yk) + s(yk)‖2
‖r(xk)‖2.

It is clear that Theorem 3.1 still holds whenever the sequence {θk} is bounded
away from zero, i.e., there is θ̄ > 0 such that θ̄ � θk for all k.

Remark 3.4. If F is Lipschitz continuous, Algorithm 3.1 reduces to the Proximal-
Extragradient Method

yk = J∂ϕ(xk − ρF (xk)),

xk+1 = J∂ϕ(yk − ρF (yk)),

where J∂ϕ(·) = (I +ρ∂ϕ)−1(·). If, in addition, ϕ = IK where K is a closed convex
subset, Algorithm 3.1 becomes the Extragradient Method.



90 TRUONG QUANG BAO AND PHAN QUOC KHANH

4. A modified algorithm

Observe that 〈
F (x̄k), xk − x̄k

〉
+ ϕ(x̄k) − ϕ(xk) � 0.

Hence, it seems better if we replace the linesearch condition (13) in Algorithm
3.1 by the following condition〈
F (xk) − F (yk), r(xk)

〉
� L‖r(xk)‖2 + (1 − tk)

(〈
s(yk), r(xk)

〉
+ ϕ(x̄k) − ϕ(xk)

)
.

We modify Algorithm 3.1 as follows.

Algorithm 4.1. We require three exogenous positive constants λ, ρ and L such
that λ ∈ (0, 1) and ρL < 1.

1. Initialization. x0 ∈ dom ϕ.

2. Iteration
STEP 1. Compute

x̄k = (I + ρ∂ϕ + ρNK)−1(I − ρF )(xk).

If r(xk) = 0, then stop; xk is a solution of (MV I). Otherwise, go to Step 2.
STEP 2 (Linesearch). Find mk being the smallest nonnegative integer such that

〈
F (xk) − F (yk), r(xk)

〉
� L‖r(xk)‖2 + (1 − tk)

(〈
s(yk), r(xk)

〉
+ ϕ(x̄k) − ϕ(xk)

)
,

(20)

where yk = xk − λmkr(xk), tk = λmk and s(yk) ∈ ∂ϕ(yk) arbitrary.
STEP 3. Update the variable

γk =
tk(1 − ρL)‖r(xk)‖2

‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2
·

xk+1 = PK

[
xk + γk(ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk))

]
.

It is obvious that all Propositions 3.1 - 3.4 and Theorem 3.1 still hold. We just
show that the estimate in Proposition 3.4 becomes
∥∥xk+1 − x̂

∥∥2 �
∥∥xk − x̂

∥∥2 − t2k(1 − ρL)2‖r(xk)‖4

‖ρtkF (xk) − ρF (yk) + ρ(1 − tk)s(yk) + tkr(xk)‖2
·

Proof. Observe that γk > 0. We have

‖xk+1 − x∗‖2

� ‖xk − x∗ + γk(ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk))‖2

= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

+ 2γk

〈
ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk), xk − x∗

〉

= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2
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+ 2γktk

〈
x̄k − xk + ρF (xk), xk − x∗

〉

− 2γkρ
〈
F (yk) + (1 − tk)s(yk), xk − x∗

〉

= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

+ 2γktk

〈
x̄k − xk + ρF (xk), xk − x̄k

〉

− 2γkρ
〈
F (yk) + (1 − tk)s(yk), xk − yk

〉

+ 2γktk

〈
x̄k − xk + ρF (xk), x̄k − x∗

〉

− 2γkρ
〈
F (yk) + (1 − tk)s(yk), yk − x∗

〉

= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

+ 2γktk

〈
x̄k − xk + ρF (xk), xk − x̄k

〉

− 2γkt
kρ
〈
F (yk) + (1 − tk)s(yk), xk − x̄k

〉

+ 2γktk

〈
x̄k − xk + ρF (xk), x̄k − x∗

〉

− 2γkρ
〈
F (yk), yk − x∗

〉
− 2γk(1 − tk)ρ

〈
s(yk), yk − x∗

〉

:= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

+ I1 + I2 + I3 + I4 − 2γkρ(1 − tk)〈s(yk), yk − x∗〉.
We estimate further

I1 + I2

= 2γktk

〈
x̄k − xk + ρF (xk), xk − x̄k

〉

− 2γkt
kρ
〈
F (yk) + (1 − tk)s(yk), xk − x̄k

〉

� −2γktk‖r(xk)‖2 + 2γktkρ
〈
F (xk) − F (yk) − (1 − tk)s(yk), xk − x̄k

〉

� −2γktk(1 − ρL)‖r(xk)‖2 + 2γktk(ϕ(x̄k) − ϕ(yk))

The first inequality holds by (20). The second one is satisfied by the convexity
of ϕ: since

ϕ(yk) = ϕ(tkx̄k + (1 − tk)xk) � tkϕ(x̄k) + (1 − tk)ϕ(xk),

we have
(1 − tk)(ϕ(x̄k) − ϕ(xk)) � ϕ(x̄k) − ϕ(yk).

For I3 we have

I3 = 2γktk

〈
x̄k − xk + ρF (xk), xk − x∗

〉

� 2γktk

(
ρϕ(x∗) − ρϕ(x̄k)

)
.
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This inequality is derived from Lemma 1.1 with x̄k = (I + ρ∂ϕ + ρNK)−1(I −
ρF )(xk). Finally, for I4, since x∗ is a solution of (MV I) we have

I4 = −2γkρ
〈
F (yk), yk − x∗

〉

� 2γkρ
(
ϕ(yk) − ϕ(x∗)

)
.

Substituting the estimates I1 + I2, I3 and I4 to the estimate of ‖xk+1 − x∗‖ we
have

‖xk+1 − x∗‖2

= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

− 2γktk(1 − ρL)‖r(xk)‖2 + 2γkρtk(ϕ(x̄k) − ϕ(yk))

+ 2γktkρ(ϕ(x∗) − ϕ(x̄k)) + 2γkρ(ϕ(yk) − ϕ(x∗))

− 2γk(1 − tk)ρ
〈
s(yk), yk − x∗

〉

= ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

− 2γktk(1 − ρL)‖r(xk)‖2 + 2γk(1 − tk)ρ(ϕ(yk) − ϕ(x∗)

+
〈
s(yk), yk − x∗

〉
)

� ‖xk − x∗‖2 + γ2
k‖ρtkF (xk) − ρF (yk) − ρ(1 − tk)s(yk) + tkr(xk)‖2

− 2γktk(1 − ρL)‖r(xk)‖2

= ‖xk − x̂‖2 − t2k(1 − ρL)2‖r(xk)‖4

‖ρtkF (xk) − ρ(F (yk) + (1 − tk)s(yk)) + tkr(xk)‖2
·

The proof is complete.

5. Implementing Algorithm 2.1

For implementing Algorithm 2.1, the only step of each iteration to be discussed
is, given x, how to define

x̄(ρ) := (I + ρ∂ϕ)−1(I − ρF )(x).(21)

We can apply the bundle method following the technique in [11]. Namely we
solve approximately the following quadratic programming problem, for u0 = x,

min
u∈Rn,v∈R

{ 1
2ρ

‖u‖2 + 〈F (x) − 1
ρ
x, u − x〉 + v

}
,

s.t. v � ϕ(u0) + 〈s(u0), u − u0〉, s(u0) ∈ ∂ϕ(u0),

to obtain u1.
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If ui−1 is not a solution of (21), we continue to solve the similar quadratic
programming problem

min
u∈Rn,v∈R

{ 1
2ρ

‖u‖2 + 〈F (x) − 1
ρ
x, u − x〉 + v

}
,

s.t. v � ϕ(uj) + 〈s(uj), u − uj〉, j = 0, 1, . . . , i − 1,

to obtain ui.
In [11], it is proved that if ∂ϕ is bounded on bounded subsets of R

n, the
sequence {ui} converges to a solution of (21).

Now we consider the same numerical example in [11] but we apply Algorithm
2.1 and use other stopping criteria.

Example 5.1. Consider (MV I), F (x) = Qx for two cases Q = Q1 and Q = Q2,
10 × 10 nonsymmetric matrices, as below and

ϕ(x) = max
1 j 5

ϕj(x) + IK(x)

:= max
1 j 5

{xT Cjx − djTx} + IK(x),

where IK(x) is the indicator function of the subset K.

The data are given as follows

Q1 = diag(P 1, P 2, P 3, P 2, P 3),

Q2 = diag(P 4, P 2, P 5, P 3),

where

P 1 =
(

1.6 −1
1 1.6

)
, P 2 =

(
1.5 1
−1 1.5

)
, P 3 =

(
2 −1
1 2

)
,

P 4 =




1.5 1 2 −1
−1 1.5 1 2
−2 1 1.6 1
−1 −2 −1 1.6


 , P 5 =

(
2 0
0 2

)
,

Cj is 10 × 10 symmetric matrix defined by

Cj
ik = exp

( i

k

)
cos(ik) sin(j), i < k,

Cj
ii =

i

n
| sin(j)| +

∑
k �=i

|Cj
ik|,

dj is the vector in R
n whose components are dj

i = exp
( i

j

)
sin(ij), and the subset

K is

K =
{

x ∈ R10 :
10∑
i=1

xi � 1, −5 � xi � 5, i = 1, . . . , 10
}

.

This example is known as a nonsmooth optimization test problem.
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(a) The case of Q1. We take L = 2.24, ρ = 0.18, x0 = (1, 1, . . . , 1). The
stopping criterion for the bundle method to solve (21) for each outer iteration
is ‖ui+1 − ui‖ < εl, l = 1, 2. Iterations of this bundle method are called inner
iterations. The stopping criterion for Algorithm 2.1 is ‖xk − x̄k‖ < βl. We use
the MATLAB, applying the quadratic - program solver quadprog.m from the
MATLAB Optimization Toolbox. For l = 1, ε1 = 0.001, and β1 = 0.001, the
result is given by the following table.

outer iteration inner iteration r(xk, ρk)
1 14 1.8633
2 15 0.6985
3 17 0.3021
4 16 0.1051
5 18 0.0295
6 18 0.0092
7 18 0.0044
8 18 0.0027
9 18 0.0018
10 18 0.0012
11 18 0.0008

The obtained approximate solution of (MV I) is

x∗ = (−0.00, 0.00, 0.09,−0.00, 1.34, 0.00, 0.43, 0.47, 0.46, 0.25).

For l = 2 and ε2 = β2 = 0.00001, the result is

outer iteration inner iteration r(xk, ρk)
1 14 1.863380
2 15 0.698538
3 17 0.302186
4 16 0.105128
5 18 0.029522
6 18 0.009216
7 18 0.004415
8 18 0.002762
9 18 0.001843
10 18 0.001234
11 18 0.000822
12 18 0.000545
13 18 0.000361
14 18 0.000239
15 18 0.000158
16 18 0.000105
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outer iteration inner iteration r(xk, ρk)
17 18 0.000069
18 18 0.000046
19 18 0.000030
20 18 0.000020
21 18 0.000013
22 18 0.000008

The obtained approximate solution of (MV I) is

x∗ = (0.00, 0.00, 0.09,−0.00, 1.34, 0.00, 0.43, 0.47, 0.46, 0.25).

(b) The case of Q2. We take L = 3.94, ρ = 0.1280, x0 = (1, 1, . . . , 1). The
stopping criteria are the same as in (a). For l = 1, the obtained approximate
solution of (MV I) is

x∗ = (0.00, 0.00, 0.00,−0.00, 1.12, 0.01, 0.40, 0.41, 0.32, 0.17).

outer iteration inner iteration r(xk, ρk)
1 8 1.8797
2 15 0.7664
3 15 0.3309
4 16 0.2190
5 12 0.0909
6 12 0.0430
7 12 0.0252
8 12 0.0173
9 12 0.0141
10 12 0.0118
11 12 0.0095
12 12 0.0077
13 12 0.0062
14 12 0.0049
15 12 0.0039
16 12 0.0029
17 12 0.0021
18 12 0.0015
19 12 0.0011
20 12 0.0008

For l = 2 the result is

outer iteration inner iteration r(xk, ρk)
1 8 1.879768
2 15 0.766487
3 15 0.330983
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outer iteration inner iteration r(xk, ρk)
4 16 0.219021
5 12 0.090969
6 12 0.043078
7 12 0.025216
8 12 0.017342
9 12 0.014188
10 12 0.011811
11 12 0.009585
12 12 0.007717
13 12 0.006248
14 12 0.004995
15 12 0.003933
16 12 0.002941
17 12 0.002137
18 12 0.001556
19 12 0.001152
20 12 0.000862
21 12 0.000639
22 12 0.000462
23 12 0.000326
24 12 0.000362
25 12 0.000226
26 12 0.000115
27 12 0.000086
28 12 0.000065
29 12 0.000048
30 12 0.000035
31 12 0.000024
32 12 0.000017
33 12 0.000012
34 12 0.000009

The obtained approximate solution of (MV I) is

x∗ = (−0.00, 0.00, 0.00, 0.00, 1.12, 0.01, 0.40, 0.41, 0.32, 0.17).
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[16] C. Lemaréchal and R. Mifflin, Nonsmooth Optimization, IIASA Proceedings Series 3 (1978),
Pergamon Press, Oxford.

[17] E. S. Levitin and B. T. Polyak, Constrained minimization problem, USSR Comput. Math.
Math. Phys. 6 (1966), 1-50.

[18] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two monotone operators,
SIAM J. Num. Anal. 16 (1979), 964-979.

[19] B. Martinet, Regularization d’inéquations variationelles par approximations successives,
Revue d’ Automatique Informatique et Recherche Opérationelle 4 (1970), 154-158.

[20] M. A. Noor, A new iterative method for monotone mixed variational inequalities, Math.
Comput. Model. 26 (1997), 29-34.

[21] M. A. Noor, An extraresolvent method for monotone mixed variational inequalities, Math.
Comput. Model. 29 (1999), 95-100.

[22] M. A. Noor, A modified extragradient method for general monotone variational inequalities,
Comput. Math. Appl. 38 (1999), 19-24.

[23] M. A. Noor, New extragradient-type methods for general variational inequalities, J. Math.
Anal. Appl. 277 (2003), 379-394.

[24] M. A. Noor, Pseudomonotone general mixed variational inequalities, Appl. Math. Appl.
141 (2003), 529-540.

[25] M. A. Noor, Extragradient methods for pseudomonotone variational inequalities, J. Optim.
Theory Appl. 117 (2003), 475-488.

[26] M. A. Noor, Y. J. Wang and N. H. Xiu, Projection iterative schemes for general variational
inequalities, J. Ineq. Pure Appl. Math. 3 (2002), 1-8.

[27] A. Renaud and G. Cohen, An extension of the auxiliary problem principle to nonsymmetric
auxiliary operators, ESAIM: Control Optim. Cal. Vari. 2 (1997), 281-306.

[28] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control
Optim. 14 (1976), 877-898.



98 TRUONG QUANG BAO AND PHAN QUOC KHANH
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