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MIXED MULTIPLICITIES OF IDEALS AND
OF REES ALGEBRAS ASSOCIATED WITH

RATIONAL NORMAL CURVES

NGUYEN DUC HOANG

Introduction

Let c, d be positive integers with c � d, and let X1, . . . ,Xc+d be indeterminates
over a field k. Let R := k[X1, . . . ,Xc+d] be a polynomial ring over a field k.
Consider the matrix (

X1 X2 . . . Xc

X1+d X2+d . . . Xc+d

)
.

Let I be the ideal generated by the 2 × 2 minors of this matrix. Then I is the
defining ideal of a rational normal scroll of dimension d in P

c+d−1. Consider the
Rees algebra of I:

R[It] := ⊕
v 0

Ivtv.

This Rees algebra has a natural bigraded structure whose Proj is the blow-up of
P

c+d−1 along the rational normal scroll.
Conca, Herzog and Valla [4] applied the Sagbi basic theory to study the Rees

algebra and the fibre ring of I. They showed that the natural generators of these
algebras form Sagbi-bases and computed their relations. In particular, they used
this information to compute the Hilbert function and the multiplicity of the fibre
ring. They did not compute the Hilbert function and the multiplicity of the Rees
algebra R[It], perhaps due to the more complicated structure of the Rees algebra.
Recall that the fibre ring of I is the quotient ring of R[It] by the maximal graded
ideal of R, which has a simpler presentation than R[It]. Conca [3] computed
the Hilbert function of the powers of I in the case I is the ideal of the rational
normal curve (i.e. d = 1). Using this result one can compute the Hilbert function
of R[It] and the mixed multiplicities of I. The computation of Conca is based on
information on the minimal free resolutions of In, which is not available in the
general case (d > 1).

In this paper, we will use the Gröbner technique to compute the mixed multi-
plicities of the ideal I in the case of a rational normal curve. This technique can
be used in the general case. It transfers the computation into a combinatorical
problem. We will introduce a filtration of the Rees algebra R[It] and associate
a simplicial complex with this filtration. Furthermore, we will also compute the
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mixed multiplicities of the naturally bigraded algebra R[It]. This allows us to
compute the degree of certain embeddings of the blowup of the space P

c along
the ideal sheaf of I.

1. Mixed multiplicities of ideals of rational normal curves

Let R[It] be the Rees algebra associated with a rational normal curve in P
c. Let

M = (m, It) be the maximal graded ideal of R[It], where m := (X1, . . . ,Xc+1).
The associated graded ring grMR[It] := ⊕

n 0
Mn/Mn+1 has a natural bigrading

with

(grMR[It])(u,v) = muIv/mu+1Iv.

By Bhattacharya [1], the numerical function dimk muIv/mu+1Iv is given by a
polynomial in u and v for all large values of u and v. Let s be the degree of this
polynomial and write the terms of the bigzest total degree as∑

i+j=s

aij

i!j!
uivj ,

where aij are non negative integers. Following [9] we call the number ais−i a
mixed multiplicity of the pair (m, I) and denoted it by ei(m|I).

Now we will present a method for the computation of ei(m|I).
Let S = k[X,T ] := k[X1, . . . ,Xc+1, T12, . . . , T1c . . . , Tc−1c] be a polynomial

ring over k. Mapping Xh to Xh, 1 � h � c + 1 and Tij to XiXj+1 − XjXi+1,
1 � i < j � c, we obtain a representation of the Rees algebra

R[It] ∼= S

J
,

where J is the ideal of S generated by the forms vanishing at 2× 2-minors of the
matrix (

X1 X2 . . . Xc

X2 X3 . . . Xc+1

)
.

We set

bideg Xh = (1, 0), 1 � h � c + 1,

bideg Tij = (0, 1), 1 � i < j � c.

Then S is a standard bigraded algebra and the above isomorphism is a bigraded
isomorphism.

Set s :=
c(c − 1)

2
. For every h = (α1, . . . , αc+1, β12, . . . , β1c, . . . , βc−1c) ∈

N
c+1+s, put

Sh := kX1
α1 . . . Xc+1

αc+1T12
β12 . . . T1c

β1c . . . Tc−1c
βc−1c .
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Then S = ⊕
h∈Nc+1+s

Sh is an N
c+1+s-graded algebra. This N

c+1+s-grading is finer

than the above bigrading because

S(u,v) =
⊕

α1+...+αc+1=u
β12+...+βc−1c=v

S(α1,... ,αc+1,β12,... ,β1c,... ,βc−1c),

for all (u, v) ∈ N
2.

Let δ be a monomial order on S. For any f ∈ S we define the initial term of
f , written f∗, to be the greatest term of f with respect to the order δ. Let J∗
denote the ideal of S generated by the elements f∗, f ∈ J . A set of elements
f1, . . . , fk ∈ J is called a Gröbner basic for J if J∗ = ((f1)∗, . . . , (fk)∗). Conca,
Herzog and Valla [4] introduced a monomial order on S which is the product
of term orders on k[X] and on k[T ] and computed a Gröbner basic for J with
respect to this order.

Lemma 1.1. [4, Lemma 3.4] There exists a term order δ for the monomials in
S such that the folowing polynomials form a Gröbner basic of J :

• XhTij − XiThj + XjThi, 1 � h < i < j � c,
• XhTij − Xj+1Ti,h−1 + Xi+1Th−1,j, 1 � i < h − 1 < j � c,
• TijThk − TikThj + TihTkj, 1 � i < h < k < j � c,
• TijThk − Ti,h−1Tj+1,k − Ti,j+1Th,k−1 − Ti+1,jTh−1,k + Ti+1,j+1Th−1,k−1+

TihTj+1,k−1 + Ti+1,h−1Tjk − Ti+1,hTj,k−1, 1 � i < j < h < k � c, h − j > 1.

In particular, J∗ is generated by the monomials

• XhTij , 1 � h < i < j � c,
• XhTij , 1 � i < h − 1 < j � c,
• TijThk, 1 � i < h < k < j � c,
• TijThk, 1 � i < j < h < k � c, h − j > 1.

We use δ to define a term order τ for the monomials of S in the following way:
Let u1f1 and u2f2 be monomials of S, where u1, u2 are monomials in the Xh and
f1, f2 are monomials in the Tij. Then we set u1f1 <

τ
u2f2 if deg u1f1 < deg u2f2, or

deg u1f1 = deg u2f2 and deg u1 < deg u2, or deg u1f1 = deg u2f2, deg u1 = deg u2

and u1f1 >
δ

u2f2. The term order τ induces an order < on N
c+1+s as follows. Let

h = (α1, . . . , αc+1, β12, . . . , β1c, . . . , βc−1c)

and
h

′
= (α

′
1, . . . , α

′
c+1, β

′
12, . . . , β

′
1c, . . . , β

′
c−1c).

Then h < h
′
if (XT )h <

τ
(XT )h

′
. Set

FhS := ⊕
h′ h

Sh′ .

It is clear that F = {FhS}h∈Nc+1+s is a filtration of S. The filtration F imposes
a filtration on S/J which we also denote by F .
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For every polynomial f ∈ S, let f∗ denote the initial term of f , i.e f∗ := fh

if f =
∑

h′∈Nc+1+s

fh′ and h = min{h′ | fh′ �= 0}. Let J∗ denote the ideal of S

generated by the elements f∗, f ∈ J . Then

grF (S/J) ∼= S/J∗.

Since J∗ is an N
c+1+s-graded ideal of S, J∗ is also a bigraded ideal of S. Hence

S/J∗ is a bigraded algebra over k with respect to the bigrading induced from S.
We shall see that the Bhattacharya function of (m, I) coincides with the Hilbert

function of S/J∗.

Lemma 1.2. For all (u, v) ∈ N
2 we have

dimk(muIv/mu+1Iv) = dimk(S/J∗)(u,v).

Proof. We know that

muIv/mu+1Iv = (grMR[It])(u,v).

Let M = (X1, . . . ,Xc+1, T12, . . . , Tc−1c) be the maximal graded ideal of S. Then

grMR[It] ∼= grM(S/J).

The bigrading on grMR[It] imposes a bigrading on grM(S/J) with

grM(S/J)(u,v) =
( ⊕

α1+...+αc+1 u
β12+...+βc−1c v

S(α1,... ,αc+1,β12,... ,βc−1c) + J
)/

( ⊕
α1+...+αc+1 u

β12+...+βc−1c v+1

S(α1,... ,αc+1,β12,... ,βc−1c)

+
⊕

α1+...+αc+1 u+1
β12+...+βc−1c v

S(α1,... ,αc+1,β12,... ,βc−1c) + J
)

∼=
⊕

α1+...+αc+1=u
β12+...+βc−1c=v

S(α1,... ,αc+1,β12,... ,βc−1c) + J/J.

Using the filtration F on S/J we can decompose the latter module into a series
of graded pieces of the associated ring grF (S/J) ∼= S/J∗ and we obtain
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dimk grM(S/J)(u,v) =
∑

α1+...+αc+1=u
β12+...+βc−1c=v

dimk (S/J∗)(α1,... ,αc+1,β12,... ,βc−1c)

= dimk

⊕
α1+...+αc+1=u
β12+...+βc−1c=v

(S/J∗)(α1,... ,αc+1,β12,... ,βc−1c)

= dimk (S/J∗)(u,v).

According to Lemma 1.2 we can use the Hilbert function of S/J∗ to compute
the mixed multiplicities ei(m|I).

Now we will compute the ideal J∗. Let ≺ be the term order on N
c+1+s induced

from the term order δ. The order ≺ is also artinian, that is, every non-ascending
sequence of elements of N

c+1+s with respect to ≺ becomes stationary. Clearly, if
f is a generator of J as in Lemma 1.1, then f∗ = f∗. We can pass from J∗ to J∗
by the following result.

Lemma 1.3. [6, Lemma 1.3] Let B be an N
r-graded algebra over k and J a

homogeneous ideal of B. Let J∗ and J∗ be the ideals generated by the initial
forms f∗ and f∗ of the elements f ∈ J with respect to the term orders < and ≺ of
N

r respectively. Suppose that every bounded non-ascending sequence of elements
of N

r with respect to ≺ becomes stationary, and that there exists a set Z of
generators of J such that

(i) f∗ = f∗ for all f ∈ Z,
(ii) J∗ is generated by the elements f∗, f ∈ Z.

Then J∗ = J∗.

The ideal J∗ is generated by square-free monomials. Therefore we can associate
with J∗ a simplicial complex ∆ as follows. Setting

T := {Tij | 1 � i � j � c} ∪ {T(0,0)}.
For convenience, we identify Xj with Tj−1j−1 for 1 � j � c + 1. Then J∗ is
generated by the following monomials:

(1) ThhTij , 1 � h + 1 < i < j � c,
(2) ThhTij , 1 � i < h < j � c,
(3) TijThk, 1 � i < h < k < j � c,
(4) TijThk, 1 � i < j < h < k � c, h − j > 1.
Let

A := {(i, j) ∈ N
2| 1 � i � j � c} ∪ {(0, 0)}.

For any subset H of A we define

TH :=
∏

(i,j)∈H

Tij .
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Then
∆ = {H ⊆ A| TH /∈ J∗}.

The ring k[T ]/J∗ = k[∆] is called the Stanley-Reisner ring associated with ∆.
We equip A with the partial order: (i, j) � (h, k) if i � h and j � k. Using this
partial order we can describe the facets F of ∆ with

dim F = dim k[∆] − 1 = dim R[It] − 1 = c + 1.

Remark. Since monomials ThhTij and TijThk in (2) and (3) correspond to all pairs
of incomparable elements of A, F is a chain of ∆.

Lemma 1.4. Let F be a facet of ∆. Let

(i0, j0) := max{(i, j) ∈ F | i < j}.
Then dim F = c + 1 if and only if i0 = 1 and

F = {(0, 0), (1, 1), (1, 2), . . . , (1, j0), (j0, j0), (j0 + 1, j0 + 1), . . . , (c, c)},
or i0 � 2 and

F = m ∪ {(j0, j0), (j0 + 1, j0 + 1), . . . , (c, c)},
where m is a maximal chain from (1, i0 − 1) to (i0, j0).

Proof. By (1), (2), (3), and (4) we have (h, h) /∈ F for h < i0 − 1 or i0 < h < j0,
(h, k) /∈ F for i0 < h < k < j0 or h < i0 and k > j0 or j0 + 1 < h < k � c or
k < i0 − 1.

Let dim F = c + 1. We consider the following cases.
Case 1: i0 = 1. It is easy to check that

F = {(0, 0), (1, 1), (1, 2), . . . , (1, j0), (j0, j0), (j0 + 1, j0 + 1), . . . , (c, c)}.
Case 2: i0 � 2. We set

A(i0, j0) := {(i, j) ∈ A| 1 � i � i0, i0 − 1 � j � j0}.
From the above remark we have (i, j) /∈ F if

(i, j) /∈ A(i0, j0) ∪ {(j0, j0), (j0 + 1, j0 + 1), . . . , (c, c)}.
On the other hand, if F

′
is a chain of A(i0, j0) then |F ′ | � j0 + 1, hence

c + 2 = |F | = |m| + # {(j0, j0), . . . , (c, c)}
� j0 + 1 + c − j0 + 1 = c + 2.

So we get |m| = j0 + 1 and m is a maximal chain from (1, i0 − 1) to (i0, j0) in
A(i0, j0).

Conversely, let F be of the above form. Since TF is non-divisible by any of the
monomials in (1), (2), (3), and (4) we have TF ∈ k[∆]. Hence F is a chain of ∆.
If i0 = 1, it is easy to see that dimF = c+ 1. If i0 � 2, m being a maximal chain
from (1, i0 − 1) to (i0, j0) implies |m| = j0 + 1. Then we get

dim F = |m| + c − j0 + 1 − 1 = c + 1.
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Let F be a facet of ∆ with dim F = c + 1. Put

PF := (Tij | (i, j) /∈ F ).

By [2, Theorem 5.14], PF is a minimal prime ideal of J∗. By [7, Theorem 3.4] we
have

ei(S/J∗) =
∑

F∈∆,dimF=c+1

ei(S/PF ).

Since S/PF
∼= k[F ], this implies ei(S/PF ) = ei(k[F ]). Let

j := #{(h, h) ∈ A| Thh ∈ PF }.
Then

Hk[F ](u, v) =
(

u
j − 1

)(
v

c − j + 1

)
+ terms of degree < c.

Hence we have

ei(k[F ]) =
{

0 if i �= j − 1,
1 if i = j − 1.

Therefore, to compute the ei(S/J∗) we will compute the number of the facets
of ∆ which contain i + 1 vertices of the form (h, h). We set

Mi := {F ∈ ∆| dim F = c + 1 and #{(h, h) ∈ F} = i + 1}.
Then

ei(m|I) = ei(S/J∗) = |Mi|.
To compute |Mi| we shall need the following lemma.

Lemma 1.5. [4, Lemma 4.4] Let a, b, k be positive integers with k � min{a, b}.
Consider the sublattice

L(a, b, k) = {(t, j) ∈ N
2| 1 � t � a, 1 � j � b, j � t − a + k}.

Denote by e(a, b, k) the number of maximal chains of L(a, b, k). Then

e(a, b, k) =
(

a + b − 2
a − 1

)
−

(
a + b − 2
a + b − k

)
.

Using Lemma 1.4 and Lemma 1.5 we can compute the mixed multiplicities
ei(m|I).

Theorem 1.6. Let I be the defining ideal of a rational normal curve in P
c. Then

ei(m|I) =




2c − c2 + c − 2 if i = 0,
2c−1 − c if i = 1,
2c−i if 2 � i � c.

Proof. Let F ∈ Mi. Put

(i0, j0) := max{(t, j) ∈ F | t < j}.
By Lemma 1.3, we have

{(j0, j0), (j0 + 1, j0 + 1), . . . , (c, c)} ⊆ F,
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and

F ∩ {(h, h) ∈ A| h < j0} ⊆ {(i0 − 1, i0 − 1), (i0, i0)}.

Let B be a subset of {(i0 − 1, i0 − 1), (i0, i0)} and q := #B. Then 0 � q � 2 and

i + 1 = c − j0 + 1 + q,

where 2 � j0 � c.
If i0 = 1, there is only one F ∈ Mi which contains two points (i0 − 1, i0 −

1), (i0, i0) (by Lemma 1.3).
If i0 = 2, we set

A(i0, j0) := {(t, j) ∈ A| 1 � t � i0, i0 − 1 � j � j0},
B(i0, j0) := {(t, j) ∈ A(i0, j0)| t < j}.

By Lemma 1.4, the number of maximal chains from (1, i0−1) to (i0, j0) of A(i0, j0)
and of B(i0, j0) is

mi0j0 :=
(

j0

i0 − 1

)
−

(
j0

j0

)
=

(
j0

i0 − 1

)
− 1,

ni0j0 :=
(

j0

i0 − 1

)
−

(
j0

j0 − 1

)
=

(
j0

i0 − 1

)
− j0.

On the other hand, the number of maximal chains from (1, i0 − 1) to (i0, j0) of
A(i0, j0) which contain two points (i0 − 1, i0 − 1), (i0, i0) is 1. Hence, the number
of maximal chains from (1, i0 − 1) to (i0, j0) of A(i0, j0) which contain only a
point (i0 − 1, i0 − 1) or (i0, i0) is

mi0j0 − ni0j0 − 1 = j0 − 2.

If i = 0 then q = 0, j = c and 3 � i0 � c − 1. So we get

e0(m|I) =
c−1∑
i0=3

ni0c =
c−1∑
i0=3

[(
c

i0 − 1

)
− c

]

= 2c − c2 + c − 2.

If i = 1 then 0 � q � 1, c− 1 � j0 � c. Hence e1(m|I) can be expressed as the
sum of the numbers of maximal chains with q = 0 and q = 1:

e1(m|I) =
c−2∑
i0=3

[(
c − 1
i0 − 1

)
− (c − 1)

]
+

c−1∑
i0=2

(c − 2) =
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=
c−2∑
i0=3

(
c − 1
i0 − 1

)
−

c−2∑
i0=3

(c − 1) +
c−1∑
i0=2

(c − 2)

=
c−2∑
i0=3

(
c − 1
i0 − 1

)
−

c−2∑
i0=3

1 + 2(c − 2)

= 2c−1 − 2 − 2(c − 1) − (c − 4) + 2(c − 2)

= 2c−1 − c.

If 2 � i � c then 0 � q � 2, j0 = c − i + q. Hence ei(m|I) can be expressed as
the sum of the numbers of maximal chains with q = 0, q = 1 and q = 3

ei(m|I) =
c−i−1∑
i0=3

[(
c − i
i0 − 1

)
− (c − i)

]
+

c−i∑
i0=2

(c − i − 1) +
c−i+1∑
i0=1

1

=
c−i−1∑
i0=3

(
c − i
i0 − 1

)
−

c−i−1∑
i0=3

(c − i) +
c−i∑
i0=2

(c − i − 1) + c − i + 1

= 2c−i − 2 − 2(c − i) −
c−i−1∑
i0=3

1 + 2(c − i − 1) + c − i + 1

= 2c−i − 2 − 2(c − i) − (c − i − 3) + 2(c − i − 1) + c − i + 1

= 2c−i.

Corollary 1.7. e(R[It]) = 2c+1 − c2 − 3.

Proof. By [10, Theorem 3.1] and Theorem 1.4 we have

e(R[It]) =
c∑

i=0

ei(m|I)

= 2c − c2 + c − 2 + 2c−1 − c +
c∑

i=2

2c−i

= 2c+1 − c2 − 3.

2. Mixed multiplicities of Rees algebras
associated with rational normal curves

Let I be the defining ideal of a rational normal curve in P
c. The Rees algebra

R[It] has a natural bigrading by setting

R[It](u,v) := (Iv)utv,
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for all (u, v) ∈ N
2. The Hilbert function of R[It] with respect to this bigrading

is the function
HR[It](u, v) := dimk R[It](u,v).

By [7, Theorem 1.1], there exist integers u0, v0 such that for u � 2v + u0 and
v � v0, the Hilbert function HR[It](u, v) is equal to a polynomial PR[It](u, v) with
total degree c. Moreover, if PR[It](u, v) is written in the form

PR[It](u, v) :=
c∑

i=0

ei(R[It])
i!(c − i)!

uivc−i + lower-degree terms,

then ei(R[It]) is an integer for i = 0, . . . , c. Follwing [9] we call ei(R[It]) the
mixed multiplicities of the bigraded algebra R[It].

Let S := R[Tij , 1 � i < j � c]. We set

bideg Xi = (1, 0), 1 � i � c + 1,

bideg Tij = (2, 1), 1 � i < j � c.

Then S is a bigraded algebra and the isomorphism R[It] ∼= S/J is a bigraded
isomorphism. Hence

HR[It](u, v) = HS/J(u, v).

To compute HS/J(u, v) we introduce a multigraded structure which is finer
than the above bigraded structure.

Set s :=
c(c − 1)

2
. Then S =

⊕
h∈Nc+1+s

Sh is an N
c+1+s- graded algebra. This

N
c+1+s-grading is finer than the above bigrading because

S(u,v) =
⊕

α1+...+αc+1+2v=u
β12+...+βc−1c=v

S(α1, . . . , αc+1, β12, . . . , β1c, . . . , βc−1c),

for all (u, v) ∈ N
2.

Let δ and τ be the terms order for the monomials in S as in Section 1. Let J∗
be the ideal generated by the initial forms f∗ of the elements f ∈ J with respect
to given term order δ. The term order τ induces an order < on N

c+1+s as follows:
Let

h = (α1, . . . , αc+1, β12, . . . , β1c, . . . , βc−1c)
and

h
′
= (α

′
1, . . . , α

′
c+1, β

′
12, . . . , β

′
1c, . . . , β

′
c−1c).

Then h < h
′
if

c+1∑
i=1

αi + 2
∑

1 i<j c

βij <

c+1∑
i=1

α
′
i + 2

∑
1 i<j c

β
′
ij ,

or
c+1∑
i=1

αi + 2
∑

1 i<j c

βij =
c+1∑
i=1

α
′
i + 2

∑
1 i<j c

β
′
ij
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and ∑
1 i<j c

βij <
∑

1 i<j c

β
′
ij ,

or
c+1∑
i=1

αi + 2
∑

1 i<j c

βij =
c+1∑
i=1

α
′
i + 2

∑
1 i<j c

β
′
ij ,

∑
1 i<j c

βij =
∑

1 i<j c

β
′
ij

and (XT )h <
τ

(XT )h
′
. The order < is a term order on N

c+1+s, i.e. h < h
′
implies

h + g < h
′
+ g for any g ∈ N

c+1+s. Note that this term order is different from
that in Section 1.

For every polynomial f ∈ S, let f∗ denote the initial term of f , i.e f∗ := fh

if f =
∑

h′∈Nc+1+s

fh′ and h = min{h′ | fh′ �= 0}. Let J∗ denote the ideal of S

generated by the elements f∗, f ∈ J . Then S/J∗ is a bigraded algebra. This
algebra has a simpler structure than that of S/J . We can use S/J∗ to compute
the Hilbert function HR[It](u, v) by the following proposition.

Proposition 2.1. HR[It](u, v) = HS/J∗(u, v) for all (u, v) ∈ N
2.

Proof. Fix (u, v) ∈ N
2. Let

D :=
{
(α1, . . . , αc+1, β12, . . . , β1c, . . . , βc−1c) ∈ N

c+1+s
∣∣

c+1∑
i=1

αi + 2
∑

1 i<j c

βij = u,
∑

1 i<j c

βij = v
}

.

Then S(u,v) =
⊕

h∈D

Sh. Hence S(u,v) = 0 if D = ∅. If D �= ∅, we set

hm := min{h| h ∈ D},
hM := max{h| h ∈ D}.

By the definition of the order < we have D = {h ∈ N
c+1+s| hm � h � hM}. For

every h ∈ N
c+1+s let

Fh :=
⊕
h′ h

Sh′ ,

h∗ := min{h′ ∈ N
c+1+s| h′ > h}.

Then J∗
h
∼= J ∩ Fh/J ∩ Fh∗ . Moreover, Fhm =

∑
h∈D

Sh ⊕ F(hM )∗ = S(u,v) ⊕ F(hM )∗ .

This implies J(u,v) = J ∩ Fhm/J ∩ F(hM )∗ . Using the chain

J ∩ Fhm ⊃ J ∩ F(hm)∗ ⊃ . . . ⊃ J ∩ FhM
⊃ J ∩ F(hM )∗
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we get

dimk J(u,v) =
∑

hm h hM

dimk(J ∩ Fh/J ∩ Fh∗)

=
∑
h∈D

dimk J∗
h = dimk

⊕
h∈D

J∗
h

= dimk J∗
(u,v).

Hence dimk(S/J)(u,v) = dimk(S/J∗)(u,v). So we get HR[It](u, v) = HS/J∗(u, v).

Let ≺ be the term order on N
c+1+s induced from the term order δ. Then ≺ is

artinian. Let Z denote the set of generators of J . Clearly, f∗ = f∗ for all f ∈ Z.
By Lemma 1.3, this implies J∗ = J∗.

Now we will compute the mixed multiplicities of S/J∗ and therefore the mixed
multiplicities ei(R[It]). By [7, Theorem 3.4], to compute the mixed multiplicities
of S/J∗ we only need to compute the mixed multiplicities of the facets of ∆ with
the highest dimension.

Lemma 2.2. Let F be a facet of ∆ with the highest dimension. Set

j := # {F ∩ {(h, h)| 0 � h � c}}.
Then

ei(k[F ]) =


 (−1)j−i−1

(
c − i

j − i − 1

)
2j−i−1 if 0 � i < j,

0 if i � j.

Proof. Let A = k[X1, . . . ,Xj , Y1, . . . , Yc+2−j ] be a bigraded polynomial ring with
bideg Xh = (1, 0), h = 1, . . . , j and bideg Yn = (2, 1), n = 1, . . . , c + 2 − j. Then
k[F ] ∼= A, hence ei(k[F ]) = ei(A). By [7, Lemma 1.3] we have

ei(k[F ]) =

{
(−1)j−i−1

∑
j1+...+jc+2−j=j−i−1

2j1 · · · 2jc+2−j if 0 � i < j,

0 if i � j.

It is easy to check that∑
j1+...+jc+2−j=j−i−1

2j1 . . . 2jc+2−j =
(

c − i
j − i − 1

)
2j−i−1,

So we can conclude that

ei(k[F ]) =


 (−1)j−i−1

(
c − i

j − i − 1

)
2j−i−1 if 0 � i < j,

0 if i � j.

Using Theorem 1.6, Lemma 2.1 and Lemma 2.2 we obtain the following result
for the mixed multiplicities of the natural bigration of R[It].
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Theorem 2.3. Let R[It] be the Rees algebra associated with a rational curve in
P

c. Then

ei(R[It]) =




c2 + c − 2 if i = 0,
c if i = 1,
0 if 2 � i � c.

Proof. By [7, Theorem 3.4] we have

ei(R[It]) =
∑

F∈∆,dimF=c+1

ei(k[F ]),

i = 0, 1, . . . , c. For every j = 1, . . . , c + 1 we set

mj := # {F ∈ ∆| dimF = c + 1 and # {(h, h) /∈ F} = j}.
Then

ei(R[It]) =
c+1∑

j=i+1

mjei(k[F ]),

where F is a facet of ∆ such that # {(h, h) /∈ F} = j. By Theorem 1.6 we have

mj =




2c − c2 + c − 2 if j = 1,
2c−1 − c if j = 2,
2c−j+1 if 3 � j � c + 1.

By Lemma 2.2 we can conclude that

e0(R[It]) = 2c − c2 + c − 2 − 2
(

c − 1
c

)
(2c−1 − c)

+
c+1∑
j=3

2c+1−j(−1)j−1

(
c

j − 1

)
2j−1

= 2c − c2 + c − 2 − c2c + 2c2 + 2c
c+1∑
j=3

(−1)j−1

(
c

j − 1

)

= 2c + c2 + c − c2c − 2 + 2c(c − 1)

= c2 + c − 2,

e1(R[It]) = 2c−1 − c +
c+1∑
j=3

2c+1−j(−1)j−2

(
c − 1

c − j + 1

)
2j−2

= 2c−1 − c + 2c−1
c+1∑
j=3

(−1)j−2

(
c − 1
j − 2

)

= 2c−1 + c − 2c−1 = c,
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and

ei(R[It]) =
c+1∑

j=i+1

2c+1−j(−1)j−i−1

(
c − i

j − i − 1

)
2j−i−1

= 2c−i
c+1∑

j=i+1

(−1)j−i−1

(
c − i

j − i − 1

)
= 0,

i = 2, . . . , c.

Let V denote the blow-up of ProjR along the subscheme defined by I. It is
known that V can be embedded into a projective space by the linear system (Ie)d
for any pair of positive integers e, d with d > 2e [5, Lemma 1.1]. Let Vde denote
the embedded variety. By [7, Corollary 4.4] we can compute the degree of Vde by
means of the mixed multiplicities as follows

Corollary 2.4. Assume that d > 2e. Then

deg Vde = (c2 + c − 2)ec + cdec−1.

Proof. By [7, Corollary 4.4] and Theorem 2.3 we get

deg Vde = e0(R[It])ec + e1(R[It])dec−1

= (c2 + c − 2)ec + cdec−1.
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