SOME REMARKS ON STABILITY IN PERIODIC MULTI-WAVELET DECOMPOSITIONS

DINH DUNG AND VU CONG BANG

Abstract. In the present paper, we established some necessary and sufficient conditions for *Lp*-stability of periodic multi-wavelet decompositions.

1. The problem of the stability of non-periodic multi-wavelet decomposition was studied by Jia and Micchelli [2]. The necessary and sufficient conditions for the problem of L_2 -stability of periodic wavelet decompositions was given by Goh and Yeo [3]. Dinh Dung [1] established sufficient conditions of L_p -stability of multwavelet decompositions with the scaling functions periodized from non-periodic functions, where $1 \leq p \leq \infty$. The present paper extends some results of [1]. We will establish some necessary and sufficient conditions for L_p -stability of periodic multi-wavelet decompositions.

2. Given a function ψ on $\mathbb R$ and $u > 0$, the functions $\psi(\cdot - us)$, $s \in \mathbb Z$, are called u-step integer translates of ψ . If we set

$$
\psi_u = \sum_{s \in \mathbb{Z}} |\psi(\cdot - us)|,
$$

then ψ_u is *u*-periodic. For $1 \leq p \leq \infty$, define the norm

$$
|\psi|_{p,u} := ||\psi_u||_{L_p([0,u))}.
$$

Let $\mathcal{L}_{p,u}(\mathbb{R})$ be the normed space of all functions ψ for which $|\psi|_{p,u} < \infty$. Notice that $|\psi|_{p,u} \leqslant |\psi|_{q,u}$ for $p \leqslant q$.

For a family $\{\psi^i\}_{i=1}^n$ of functions on \mathbb{R} , denote by $S_{p,u}(\psi^1,\ldots,\psi^n)$ the space of all linear combinations

(1)
$$
f = \sum_{i=1}^{n} \psi^i * a^i,
$$

with $a^i, \ldots, a^n \in \ell_p(\mathbb{Z})$, where

$$
\psi * a := \sum_{s \in \mathbb{Z}} a(s)\psi(\cdot - us)
$$

Received March 30, 2005.

is semi-discrete convolution of ψ and a. Here, for $1 \leq p < \infty$,

$$
\ell_p(\mathbb{Z}) := \{ a = \{ a(s) \}_{s \in \mathbb{Z}} : ||a||_p := (\sum_{s \in \mathbb{Z}} |a(s)|^p)^{1/p} < \infty \},
$$

and for $p = \infty$

$$
\ell_{\infty}(\mathbb{Z}) := \{ a = \{ a(s) \}_{s \in \mathbb{Z}} : ||a||_{\infty} := \sup_{s \in \mathbb{Z}} |a(s)| < \infty \}.
$$

We say that the u-step integer translates of ψ^1, \ldots, ψ^n , are L_p -stable if there exist positive constants C, C' depending on $p, u, \psi^1, \ldots, \psi^n$ such that

$$
C\sum_{i=1}^{n}||a^i||_p \le ||f||_p \le C'\sum_{i=1}^{n}||a^i||_p,
$$

for all $f \in S_{p,u}(\psi^1,\ldots,\psi^n)$ represented as in (1). If $\psi^1,\ldots,\psi^n \in \mathcal{L}_{p,u}(\mathbb{R})$, the inequality on the right hand side holds by the inequality

$$
\|\psi \ast a\|_p \leqslant |\psi|_{p,u} \|a\|_p
$$

proved in [2]. The following theorem was proved in [2].

Theorem 1. Let $1 \leq p, p' \leq \infty, 1/p + 1/p' = 1, and $\psi^1, \ldots, \psi^n \in \mathcal{L}_{\infty, u}(\mathbb{R})$.$ *Then the u-step integer translates of* ψ^1, \ldots, ψ^n , are L_p -stable if and only if one *of the following conditions holds:*

- (i) *For any* $y \in [0, 2\pi/u)$ *the sequences* $\{\hat{\psi}^i(y + 2\pi s/u)\}_{s \in \mathbb{Z}}$, $i = 1, \ldots, n$, are *linearly independent, where* $\hat{\psi}^i$ *denotes the Fourier transform of* ψ^i *, i* = 1,...,n*.*
- (ii) *There exist* $g^1, \ldots, g^n \in S_{1,u}(\psi^1, \ldots, \psi^n)$ *such that*

$$
\langle g^i, \psi^j(\cdot - us) \rangle = \delta_{ij} \delta_{0s} \quad \text{for } i, j = 1, \dots, n \quad \text{and } s \in \mathbb{Z}.
$$

Moreover, if the u-step integer translates of ψ^1, \ldots, ψ^n *, are* L_p *-stable, then*

$$
\sum_{i=1}^{n} \|a^{i}\|_{\ell_{p}(\mathbb{Z})} \leq \|f\|_{p} \sum_{i=1}^{n} |g^{i}|_{p',u},
$$

for all linear combinations (1)*.*

A 2π-periodic function is represented as a function defined on $\mathbb{T} := [-\pi, \pi]$. Let φ be a function on \mathbb{T} , and for $m \in \mathbb{N}$, $h = 2\pi/m$. We set

$$
\varphi_h := \sum_{s=0}^{m-1} |\varphi(\cdot - hs)|.
$$

Then φ_h is a h-periodic function. Similarly to non-periodic functions, for $1 \leq$ $p \leqslant \infty$, we defined the norm

$$
\|\varphi\|_{p,h} := \|\varphi_h\|_{L_p([0,h))}.
$$

Denote by $\mathcal{L}_{p,h}(\mathbb{T})$ the normed space of all functions φ for which $|\varphi|_{p,h} < \infty$.

Let $\{\varphi_k^j\}_{k\in\mathbb{Z}_+}$, $j=1,\ldots,n$, be a finite family of sequences of functions defined on T. Fix $\gamma \in \mathbb{N}$, and for $k \in \mathbb{Z}_+$, $s = 0, \ldots, \gamma 2^k - 1$, put

$$
\varphi_{k,s}^j(x) := \varphi_k^j(x - 2\pi s/\gamma 2^k), \quad x \in \mathbb{T}.
$$

The functions $\varphi_{k,s}^j$, $s = 0, \ldots, \gamma 2^k - 1$, are called $2\pi/\gamma 2^k$ -step integer translates of φ_k^j . Suppose that every function $f \in L_p(\mathbb{T})$, $1 \leqslant p \leqslant \infty$, can be decomposed into a series:

(2)
$$
f = \sum_{k=0}^{\infty} \sum_{j=1}^{n} \sum_{s=0}^{\gamma 2^{k}-1} f_{k,s}^{j} \varphi_{k,s}^{j},
$$

converging in the norm of $L_p(\mathbb{T})$, where $f_{k,s}^j = f_{k,s}^j(f)$ are certain coefficient functional of f . This decomposition is called a periodic multi-wavelet decomposition of f. For $k \in \mathbb{Z}_+$, the functions φ_k^j , $j = 1, \ldots, n$, are called k^{th} scaling functions and $\varphi_{k,s}^j$ wavelets. The periodic multi-wavelet decomposition (2) is called L_p stable if there exist positive constants C, C' depending on p, γ and n only such that for each linear combination of the wavelets at any dyadic level

$$
g:=\sum_{j=1}^n\sum_{s=0}^{\gamma2^k-1}a^j(s)\varphi^j_{k,s},
$$

there hold the inequalities

$$
C2^{-k/p} \sum_{j=0}^{n} \Big(\sum_{s=0}^{\gamma 2^{k}-1} |a^{j}(s)|^{p} \Big)^{1/p} \leqslant ||g||_{p} \leqslant C' 2^{-k/p} \sum_{j=0}^{n} \Big(\sum_{s=0}^{\gamma 2^{k}-1} |a^{j}(s)|^{p} \Big)^{1/p}
$$

(the sum is changed to max when $p = \infty$), where $\|\cdot\|_p$ is the usual p-integral norm in $L_p(\mathbb{T})$.

For a sequence $a = \{a(s)\}_{s=0}^{m-1}$, we put

$$
||a||_p := \Big(\sum_{s=0}^{m-1} |a(s)|^p\Big)^{1/p}.
$$

For a function ψ on R, we define the function $\pi_m(\psi)$ on T, periodized from ψ by

$$
\pi_m(\psi, x) := \sum_{k \in \mathbb{Z}} \psi(m(x + 2k\pi)).
$$

The following theorem was proved in [1].

Theorem 2. Let $1 \leq p, p' \leq \infty$, $1/p + 1/p' = 1$ and $\psi^j \in \mathcal{L}_{\infty, 2\pi/\gamma}(\mathbb{R})$, $j =$ 1,...,n. Assume that every function $f \in L_p(\mathbb{T})$ has a periodic multi-wavelet *decompostion* (2) *with the sequences of scaling functions* $\{\varphi_k^j\}_{k \in \mathbb{Z}_+}, j = 1, \ldots, n$, *defined by*

$$
\varphi^j_k(x):=\pi_{2^k}(\psi^j,x).
$$

If ψ^j , $j = 1, \ldots, n$, have L_p -stable $2\pi/\gamma$ -step integer translates, then this decom*position is* Lp*-stable, that is, for all linear combinations of the wavelets at any dyadic level*

$$
g = \sum_{j=1}^{n} \sum_{s=0}^{\gamma 2^{k}-1} a^{j}(s) \varphi_{k,s}^{j},
$$

there hold the inequalities

$$
C2^{-k/p} \sum_{j=1}^{n} \|a^j\|_p \leq \|g\|_p \leq C' 2^{-k/p} \sum_{j=1}^{n} \|a^j\|_p,
$$

where

$$
C = \max_{1 \le j \le n} |\psi^j|_{p, 2\pi/\gamma}, \quad C' = (n \max_{1 \le j \le n} |g^j|_{p', 2\pi/\gamma})^{-1},
$$

$$
g^{i} \in S_{1,2\pi/\gamma}(\psi^{1}, \dots, \psi^{n}), i = 1, \dots, n, \text{ are functions such that}
$$

$$
\langle g^{i}, \psi^{j}(\cdot - 2\pi s/\gamma) \rangle = \delta_{ij}\delta_{0s} \text{ for } i, j = 1, \dots, n \text{ and } s \in \mathbb{Z}.
$$

In the present paper we shall show that the $2\pi/\gamma$ -step integer translates of the compactly supported functions ψ^1, \ldots, ψ^n , are L_p -stable if the multi-wavelet decomposition (2) with the scaling functions periodized from these functions is L_p -stable. Furthermore, we give the necessary and suficient conditions of L_p stability of multi-wavelet decomposition (2) in the case when

$$
\{\varphi_k^i(\cdot - 2\pi s/2^k) : s = 0, \dots, 2^k - 1, \ i = 1, \dots, n\}
$$

are orthogonal set for all $k \in \mathbb{Z}_+$. We will treat with univariate functions. However, all our results can be easily extended to multivariate functions.

For $f \in L_p(\mathbb{T})$ and $g \in \mathcal{L}_{p',h}(\mathbb{T})$, $1/p + 1/p' = 1$, $h = 2\pi/m$, we define the sequence $c(f,g)_h = \{c(f,g)_h(s)\}_{s=0}^{m-1}$ by

$$
c(f,g)_h(s) := \int_{\mathbb{T}} f(x) \overline{g(x - hs)} dx.
$$

We have

(3)
$$
||c(f,g)_h||_p \le ||f||_p|g|_{p',h}
$$

(4)
$$
||g * a||_{p'} \leqslant |g|_{p',h} ||a||_{p'}
$$

The proof of (3) and (4) is similar to the proof of Theorem 3.1 and Theorem 2.1 in [2], respectively. In particular, using (4) with $a(s) = \delta_{0,s}$, $s = 0, \ldots, m-1$, we have

$$
||g||_p \le |g|_{p,h};
$$
for $1 \le p \le \infty$.

3. In the non-periodic case, the stability of integer translates of functions does not imply their linear independence [2]. Let $\varphi^1, \ldots, \varphi^n$ be functions defined on $\mathbb{T}, m \in \mathbb{N}$. Consider functions of the form

$$
f:=\sum_{i=1}^n\varphi^i\ast a^i,
$$

where $a^i := \{a^i(s)\}_{s=0}^{m-1}$, and

$$
\varphi * a := \sum_{s=0}^{m-1} \varphi(\cdot - 2\pi s/m)a(s)
$$

is semi-discrete convolution of φ and a. Let $1 \leqslant p \leqslant \infty$, $m \in \mathbb{N}$, $h = 2\pi/m$, and $\varphi^i \in L_p(\mathbb{T}), i = 1, \ldots, n$. If there exist a positive constant C such that

$$
\sum_{i=1}^{n} \|a^{i}\|_{p} \leq C \|f\|_{p}, \quad \text{for all } f = \sum_{i=1}^{n} \varphi^{i} * a^{i},
$$

then the h-step integer translates of φ^i , $i=1,\ldots,n$, are linearly independent. From this we can see that if a periodic multi-wavelet decomposition (2) is L_p stable, then the $2\pi/\gamma 2^k$ -step integer translates of φ_k^i , $i=1,\ldots,n$, are linearly independent.

Theorem 2 shows that if the scaling functions of a periodic multi-wavelet decomposition (2) are periodized from non-periodic functions ψ^1, \ldots, ψ^n having stable $2\pi/\gamma$ -step integer translates, then this periodic multi-wavelet decomposition is also L_p -stable. The following theorem shows an inverse assertion for the case when ψ^1, \ldots, ψ^n are compactly supported.

Theorem 3. Let $\gamma \in \mathbb{N}$, and $\psi^1, \ldots, \psi^n \in \mathcal{L}_{\infty, 2\pi/\gamma}(\mathbb{R})$ be compactly supported *functions. If there exists a positive constant* $C = C(p, \psi^1, \dots, \psi^n)$ *such that for each* $k \in \mathbb{N}$ *, and for each*

$$
f = \sum_{i=1}^{n} \pi_{2^{k}}(\psi^{i}) * a^{i} = \sum_{i=1}^{n} \sum_{s=0}^{2^{k}-1} a^{i}(s)\pi_{2^{k}}(\psi^{i}, \cdot - hs)
$$

with $a^i = \{a^i(s)\}_{s=0}^{\gamma 2^k-1}$ and $h = 2\pi/\gamma 2^k$, there holds the following inequality

(5)
$$
2^{-k/p} \sum_{i=1}^{n} ||a^i||_p \leq C ||f||_p,
$$

then the $2\pi/\gamma$ *-step integer translates of* ψ^1, \ldots, ψ^n *, are* L_p *-stable.*

Proof. Without loss the generality, we may assume that there exists $k_0 \in \mathbb{Z}_+$ such that

(6)
$$
\text{supp}(\psi^i) \subset [-2k_0 \pi, 2k_0 \pi], \quad i = 1, ..., n.
$$

From the definition of $\pi_{2^k}(\psi, x)$ and (6), we can see that there exists a positive integer $L = (k_0 + 1)$ not depending on k, such that for all $x \in [0, 2\pi)$, $s =$ $0, \ldots, \gamma 2^k - 1, i = 1, \ldots, n$

$$
\pi_{2^{k}}(\psi^{i}, x - 2\pi s/\gamma 2^{k}) = \sum_{|m| \leq L} \psi^{i}(2^{k}x + 2\pi m 2^{k} - 2\pi s/\gamma).
$$

For $a^i = \{a^i(s)\}_{s \in \mathbb{Z}}$, we consider the function

$$
g = \sum_{i=1}^{n} \psi^i * a^i.
$$

For any $k \in \mathbb{N}$, $i = 1, \ldots, n$, we set

$$
b_k^i(s) := \begin{cases} a^i(s), & \text{if } -\gamma 2^k \leqslant s \leqslant \gamma 2^k - 1; \\ 0, & \text{otherwise,} \end{cases}
$$

$$
g_k := \sum_{i=1}^n \psi^i * b_k^i,
$$

and for $s = 0, \ldots, 2\gamma 2^k - 1$, we define

$$
c_k^i(s) := \begin{cases} b^i(s), & \text{if } 0 \le s < \gamma 2^k; \\ b^i(-j), & \text{if } s = \gamma 2^{k+1} - j. \end{cases}
$$

Then we have $\lim_{k \to \infty} \|g_k\|_p = \|g\|_p$, $\lim_{k \to \infty} \|b_k^i\|_p = \|a^i\|_p$, and

$$
(\pi_{2^{k+1}}(\psi^i)*c_k^i)(x) = \sum_{s=0}^{\gamma 2^{k+1}-1} c_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})
$$

\n
$$
= \sum_{s=0}^{\gamma 2^{k}-1} b_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})
$$

\n
$$
+ \sum_{s=\gamma 2^k}^{\gamma 2^{k+1}-1} c_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})
$$

\n
$$
= \sum_{s=0}^{\gamma 2^k-1} b_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})
$$

\n
$$
+ \sum_{j=1}^{\gamma 2^k} b_k^i(-j)\pi_{2^{k+1}}(\psi^i, x + 2\pi j/\gamma 2^{k+1})
$$

\n
$$
= \sum_{s=0}^{\gamma 2^k-1} b_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})
$$

\n
$$
+ \sum_{s=-\gamma 2^k}^{-1} b_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})
$$

\n
$$
= \sum_{s=-\gamma 2^k}^{\gamma 2^k-1} b_k^i(s)\pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1}).
$$

Hence, by (5) and $||b_k^i||_p = ||c_k^i||_p$, we have

$$
C^{-1}2^{-(k+1)/p} \sum_{i=1}^{n} \|b_k^i\|_p \leqslant \Big(\int_0^{2\pi} |\sum_{i=1}^n \pi_{2^{k+1}}(\psi^i, x) * c_k^i|^p dx\Big)^{1/p}
$$

\n
$$
= \Big(\int_0^{2\pi} |\sum_{i=1}^n \sum_{s=-\gamma 2^k}^{\gamma 2^k - 1} b_k^i(s) \pi_{2^{k+1}}(\psi^i, x - 2\pi s/\gamma 2^{k+1})|^p dx\Big)^{1/p}
$$

\n
$$
= \Big(\int_0^{2\pi} |\sum_{i=1}^n \sum_{s=-\gamma 2^k}^{\gamma 2^k - 1} b_k^i(s) \sum_{|m| \leq L} \psi^i(2^{k+1}x + 2\pi m 2^{k+1} - 2\pi s/\gamma)|^p dx\Big)^{1/p}
$$

\n
$$
= 2^{-(k+1)/p} \Big(\int_0^{2\pi 2^{k+1}} |\sum_{i=1}^n \sum_{s=-\gamma 2^k}^{\gamma 2^k - 1} b_k^i(s) \sum_{|m| \leq L} \psi^i(x + 2\pi m 2^{k+1} - 2\pi s/\gamma)|^p dx\Big)^{1/p}
$$

\n
$$
\leq 2^{-(k+1)/p} \sum_{|m| \leq L} \Big(\int_0^{2\pi 2^{k+1}} |\sum_{i=1}^n \sum_{s=-\gamma 2^k}^{\gamma 2^k - 1} b_k^i(s) \psi^i(x + 2\pi m 2^{k+1} - 2\pi s/\gamma)|^p dx\Big)^{1/p}
$$

\n
$$
= 2^{-(k+1)/p} \sum_{|m| \leq L} \Big(\int_{2\pi m 2^{k+1}}^{2\pi 2^{k+1}(m+1)} |\sum_{i=1}^n \sum_{s=-\gamma 2^k}^{\gamma 2^k - 1} b_k^i(s) \psi^i(x - 2\pi s/\gamma)|^p dx\Big)^{1/p}
$$

\n
$$
\leq 2^{-(k+1)/p} (2L+1) \Big(\int_{\mathbb{R}} |\sum_{i=1}^n \sum_{s=-\gamma 2^k}^{\gamma 2^k - 1} b_k^i(s
$$

Therefore,

$$
\sum_{i=1}^{n} ||b_k^i||_p \leq C(2L+1) ||g_k||_p.
$$

Letting $k \to \infty$, we have

$$
\sum_{i=1}^{n} \|a^i\|_p \leq C(2L+1) \|g\|_p.
$$

Theorem 3 shows that if the multi-wavelet decomposition (2) is L_p -stable and the scaling functions are periodized from non-periodic functions ψ^1, \ldots, ψ^n which are compactly supported, then $2\pi/\gamma$ -step integer translates of ψ^1,\ldots,ψ^n , are also L_p -stable. What happens when ψ^1, \ldots, ψ^n are not compactly supported? The following counterexample will give an answer to this question.

Counterexample. We consider the case $p = \gamma = 2$, $n = 1$, we define the function φ by

$$
\hat{\varphi}(\xi) = \begin{cases}\n-\xi/\sqrt{2} + 1 & \text{if } 0 \le \xi \le \sqrt{2}; \\
\xi/(2 - \sqrt{2}) + 1 & \text{if } -2 + \sqrt{2} \le \xi \le 0; \\
0 & \text{otherwise}.\n\end{cases}
$$

Then the $2\pi/\gamma$ -step integer translates of φ are L_2 -unstable. But one can verify that (5) holds. Indeed, we apply the condition (i) of Theorem 1 with $u = \pi$. Since supp $(\hat{\varphi}) = [\sqrt{2} - 2, \sqrt{2}]$, there exists $y = \sqrt{2} \in [0, 2\pi/u) = [0, 2)$ such that Since $\supp(\varphi) = [\sqrt{2}-2, \sqrt{2}]$, there exists $y = \sqrt{2} \in [0, 2\pi/\pi] = [0, 2)$ such that $\varphi(y + 2\pi s/u) = \varphi(\sqrt{2} + 2s) = 0$ for all $s \in \mathbb{Z}$. This means that the sequence $\{\hat{\varphi}(\sqrt{2}+2s)\}_{s\in\mathbb{Z}}$ is linearly dependent. By Theorem 1, π -step integer translates of φ are L_2 -unstable. We verify (5). For all k, we have,

$$
\widehat{\pi_{2^k}(\varphi)}(n) = \frac{1}{\sqrt{2\pi}} 2^{-k} \hat{\varphi}(n/2^k).
$$

Hence, for $\gamma = 2$ and $s = 0, \ldots, 2 \times 2^k - 1$,

$$
\sum_{l\in\mathbb{Z}} |\widehat{\pi_{2^k}(\varphi)}(s+2l2^k)|^2 = \frac{1}{2\pi} 2^{-2k} \sum_{l\in\mathbb{Z}} |\hat{\varphi}(s/2^k+2l)|^2 \geq \frac{1}{2\pi} 2^{-2k}.
$$

Since $\text{supp}(\hat{\varphi}) = [\sqrt{2} - 2, \sqrt{2}]$ and $0 \leq s/2^k < 2$, we have

$$
\frac{1}{2\pi}2^{-2k}\sum_{l\in\mathbb{Z}}|\hat{\varphi}(s/2^k+2l)|^2=\frac{1}{2\pi}2^{-2k}\sum_{p=-1}^1|\hat{\varphi}(s/2^k+2l)|^2\leq \frac{3}{2\pi}2^{-2k}.
$$

Thus,

$$
\frac{1}{2\pi}2^{-2k} \leqslant \sum_{l\in\mathbb{Z}}|\widehat{\pi_{2^k}(\varphi)}(s+2l2^k)|^2 \leqslant \frac{3}{2\pi}2^{-2k}.
$$

By Proposition 3.1 in [3], this is equivalent to (5).

4. The following theorem give us a necessary and sufficient condition for the L_p -stability of periodic multi-wavelet decompositions (2) for the case when the scaling functions are an orthogonal set.

Theorem 4. Let $1 \leq p < \infty$ and φ_k^i , $i = 1, \ldots, n$, $k \in \mathbb{Z}_+$, be functions defined *on* \mathbb{T} *,* $h = 2\pi/2^k$ *. Assume that*

- (i) *For each* $k \in \mathbb{Z}_+$, $\{\varphi_k^i(\cdot 2\pi s/2^k), s = 0, \ldots, 2^k 1, i = 1, \ldots, n\}$ are an *orthogonal set.*
- (ii) $|\varphi_k^i|_{\infty,h} \leq C$, for all $k \in \mathbb{Z}_+$.

Then the multi-wavelet decomposition (2) *is* L_p -stable *if and only if*

$$
\|\varphi_k^i\|_2^2 \geq C_1 2^{-k}, \text{for all } i = 1, \dots, n, k \in \mathbb{Z}_+.
$$

Here C *,* C_1 *are positive constants not depending on k.*

Proof. Let
$$
1 \leq p_1 < p_2, 0 \leq \alpha \leq 2\pi
$$
, and $f \in L_{p_2}(\mathbb{T})$. Then\n
$$
\int_0^\alpha |f(x)|^{p_1} dx \leqslant \left(\int_0^\alpha dx\right)^{(p_2 - p_1)/p_2} \left(\int_0^\alpha |f(x)|^{p_2} dx\right)^{p_1/p_2}.
$$

Hence

(7)
$$
\left(\int_0^{\alpha} |f(x)|^{p_1} dx\right)^{1/p_1} \leqslant (\alpha)^{1/p_1-1/p_2} \left(\int_0^{\alpha} |f(x)|^{p_2} dx\right)^{1/p_2}.
$$

We prove the sufficient condition. By the condition (ii) we have (8)

$$
|\varphi_k^i|_{p,h}=\Big(\int_0^h |\varphi_{k,h}^i|^p dx\Big)^{1/p}\leqslant C (2\pi)^{1/p}2^{-k/p}=C_2 2^{-k/p}, \text{ for all } 1\leqslant p\leqslant \infty,
$$

where $C_2 := C(2\pi)^{1/p}$. For any $f = \sum^{n}$ $i=1$ $\varphi_k^i * a^i$, by (4) we have

(9)
$$
||f||_p \leq \sum_{i=1}^n ||\varphi_k^i * a^i||_p \leq \sum_{i=1}^n |\varphi_k^i|_{p,h} ||a^i||_p \leq C_2 2^{-k/p} \sum_{i=1}^n ||a^i||_p
$$

On the other hand, using condition (i) , we have

$$
c(f, \varphi_k^i)_h(s) = a^i(s) \|\varphi_k^i\|_2^2.
$$

Thus

$$
a^{i}(s) = \frac{c(f, \varphi_{k}^{i})_{h}(s)}{\|\varphi_{k}^{i}\|_{2}^{2}}, \quad s = 0, \ldots, 2^{k} - 1, \ i = 1, \ldots, n.
$$

Using (3) and (8), we imply that

$$
\|a^{i}\|_{p} \leq \frac{1}{\|\varphi_{k}^{i}\|_{2}^{2}} \|f\|_{p} |\varphi_{k}^{i}|_{p',h}
$$

$$
\leq \frac{1}{\|\varphi_{k}^{i}\|_{2}^{2}} \|f\|_{p} C_{2} 2^{-k/p'}, \quad i = 1, \dots, n.
$$

(10)

$$
\leq \frac{C_{2}}{C_{1}} 2^{k/p} \|f\|_{p}.
$$

From (9) and (10), we see that the multi-wavelet decomposition (2) is L_p -stable. Finally, we prove the necessary conditions. If $2 \leqslant p < \infty$, then we have, for $a(s) = 1, s = 0, \ldots, 2^k - 1,$

$$
\begin{aligned} \|\varphi_k^i * a\|_p^p &= \int_0^{2\pi} |(\varphi_k^i * a)(x)|^p dx \\ &= \int_0^{2\pi} |(\varphi_k^i * a)(x)|^{p-2} |(\varphi_k^i * a)(x)|^2 dx \\ &\leq 2\pi C^{p-2} \|\varphi_k^i * a\|_2^2 \\ &= 2\pi C^{p-2} \|\varphi_k^i\|_2^2 \|a\|_2^2. \end{aligned}
$$

But $||a||_2^2 = ||a||_p^p = 2^k$, and L_p -stability of multi-wavelet decomposition (2), we can write

$$
2\pi C^{p-2}2^k \|\varphi_k^i\|_2^2 \geqslant C'2^{-k}2^k = C'.
$$

Thus

$$
\|\varphi^i_k\|_2^2 \geqslant \frac{C'}{C^{p-2}} 2^{-k} = C'_2 2^{-k}.
$$

If $1 \leq p \leq 2$, then Using (7) with $p_1 = p$, $p_2 = 2$ and $\alpha = 2\pi$, we abtain $\|\varphi_k^i * a\|_p \leq (2\pi)^{1/p-1/2} \|\varphi_k^i * a\|_2.$

Hence,

$$
(11) \quad (2\pi)^{1/p-1/2} \|\varphi_k^i\|_2 \|a\|_2 = (2\pi)^{1/p-1/2} \|\varphi_k^i * a\|_2 \ge \|\varphi_k^i * a\|_p \ge C' 2^{-k/p} \|a\|_p.
$$

By taking the sequence $a = \{a(s)\}_{s=0}^{2^k-1}$ with $a(s) = 1$ for all $s = 0, ..., 2^k-1$, we have $||a||_2 = 2^{k/2}$, $||a||_p = 2^{k/p}$. Then (11) tells that

$$
\|\varphi_k^i\|_2 \geqslant C'(2\pi)^{1/2-1/p} 2^{-k/2}.
$$

In the orther words $\|\varphi_k^i\|_2^2 \geqslant C_3 2^{-k}$, where $C_3 := C'^2 (2\pi)^{1-2/p}$. We set $C_1 =$ $\min\{C_3, C_2'\},\$ then

$$
\|\varphi_k^i\|_2^2 \geqslant C_1 2^{-k}.
$$

口

When $1 \leq p \leq 2$, Theorem 4 can be sharpened as follows.

Theorem 5. Let $1 \leq p \leq 2$ and φ_k^i , $i = 1, \ldots, n$, $k \in \mathbb{Z}_+$, be functions defined *on* \mathbb{T} *,* $h = 2\pi/2^k$ *. Assume that*

- (i) *For each* $k \in \mathbb{Z}_+$, $\{\varphi_k^i(\cdot 2\pi s/2^k), s = 0, \ldots, 2^k 1, i = 1, \ldots, n\}$ are an *orthogonal set.*
- (ii) $|\varphi_k^i|_{p',h} \leq C2^{-k/p'}, i = 1,\ldots,n, k \in \mathbb{Z}_+, 1/p + 1/p' = 1.$

Then the multi-wavelet decomposition (2) *is* L_p -stable *if and only if*

$$
\|\varphi_k^i\|_2^2 \geqslant C_1 2^{-k}, \quad \text{for all } i = 1, \dots, n, k \in \mathbb{Z}_+.
$$

Here C *,* C_1 *are positive constants not depending on k.*

Proof. The necessary condition has already proven in Theorem 4. We prove the sufficient condition. Using (7) with $p_1 = p$, $p_2 = p'$, $\alpha = h$, and (ii), we obtain

$$
|\varphi_k^i|_{p,h} \leq (2\pi/2^k)^{1/p-1/p'} |\varphi_k^i|_{p,h} \leq C_0 2^{-k/p}, C_0 := (2\pi)^{1/p-1/p'}.
$$

Now we suppose that

$$
f = \sum_{i=1}^{n} \varphi_k^i * a^i.
$$

Then similarly to the proof of Theorem 4, we have

$$
||f||_p \leq C_0 2^{-k/p} \sum_{i=1}^n ||a^i||_p
$$

and

$$
||f||_p \geqslant \frac{C_1}{nC} 2^{-k/p} \sum_{i=1}^n ||a^i||_p.
$$

Therefore, the multi-wavelet decompostion (2) is L_p -stable.

 \Box

Finally, in the case $p = \infty$, we have

Theorem 6. Let φ_k^i , $i = 1, ..., n$, $k \in \mathbb{Z}_+$, be functions defined on \mathbb{T} , $h = 2\pi/2^k$. *Assume that*

- (i) *For each* $k \in \mathbb{Z}_+$, $\{\varphi_k^i(\cdot 2\pi s/2^k), s = 0, \ldots, 2^k 1, i = 1, \ldots, n\}$ are an *orthogonal set.*
- (ii) $\|\varphi_k^i\|_2^2 \geq C_1 2^{-k}$, for all $k \in \mathbb{Z}_+$.

Then the multi-wavelet decomposition (2) *is* L_{∞} -stable *if and only if*

(12)
$$
|\varphi_k^i|_{\infty,h} \leq C, \quad \text{for all } k \in \mathbb{Z}_+.
$$

Here C*,* C¹ *are positive constants not depending on* k*.*

Proof. Assume that the multi-wavelet decomposition (2) is L_{∞} -stable. Then for all $a = \{a(s)\}_{s=0}^{2^k-1}$, we have

(13)
$$
\|\varphi_k^i * a\|_{\infty} \leq C \|a\|_{\infty}.
$$

For any $x \in \mathbb{T}$, we put

$$
a(s) = \begin{cases} |\varphi_k^i(x - 2\pi s/2^k)|/\varphi_k^i(x - 2\pi s/2^k) & \text{if } \varphi_k^i(x - 2\pi s/2^k) \neq 0; \\ 0 & \text{if } \varphi_k^i(x - 2\pi s/2^k) = 0. \end{cases}
$$

Then

$$
\sum_{s=0}^{2^k-1} |\varphi_k^i(x - 2\pi s/2^k)| = (\varphi_k^i * a)(x) \leq C \|a\|_{\infty} = C.
$$

This inequality implies that $|\varphi_k^i|_{\infty,h} \leq C$. Finally, if (13) holds, then similary to the proof of Theorem 4, we can see that the multi-wavelet decomposition (2) is L_{∞} -stable. \Box

REFERENCES

- [1] Dinh Dung, *On stability in periodic wavelet decompositions*, Vietnam J. of Math. **32** (2004), 235-239.
- [2] Jong-Qing Jia and Charles A. Micchelli, *Using the refinement equations for construction of pre-wavelets. II. Powers of two, curves and surfaces* (Chamonic-Mont-Blanc, 1990), pp. 209- 246, Academic Press, Boston, MA, 1991.
- [3] Say Song Goh and Chee Heng Yeo, *Uncertainty products of local periodic wavelets*, Advances in Computional Mathematics **13** (2000), 319-333.

Information Technology Institute, Vietnam National University, Hanoi, E3, 144 Xuan Thuy Rd., Cau Giay, Hanoi, Vietnam

E-mail address: dinhdung@vnu.edu.vn

E-mail address: bangvc@vnu.edu.vn