THE BERTRAND OFFSETS OF RULED SURFACES IN \mathbb{R}^3_1

E. KASAP AND N. KURUOĞLU

ABSTRACT. The problem of finding a curve whose principal normals are also the principal normals of another curve was apparently first proposed by Saint-Venant but solved by J. Bertrand. Such curves were referred to as 'Bertrand offsets'. In this paper, a generalization of the theory of Bertrand curves is presented for ruled surfaces in Minkowski space \mathbb{R}^3_1 . Using lines instead of points, two ruled surfaces which are offset in the sense of Bertrand are defined. The obtained results are illustrated by computer-aided examples.

1. Preliminaries

Let us consider the Minkowski 3-space $\mathbb{R}^3_1 = [\mathbb{R}^3, (+, +, -)]$. The Lorentzian inner product of $\mathbf{X} = (x_1, x_2, x_3)$ and $\mathbf{Y} = (y_1, y_2, y_3) \in \mathbb{R}^3_1$ is defined by

$$\langle X, Y \rangle = x_1 y_1 + x_2 y_2 - x_3 y_3.$$

A vector $X \in \mathbb{R}^3_1$ is called a *spacelike*, *timelike* and *null* (*lightlike*) vector if $\langle X, X \rangle > 0$ or X = 0, $\langle X, X \rangle < 0$, and $\langle X, X \rangle = 0$ for $X \neq 0$, respectively [6].

For a regular curve in \mathbb{R}^3 , if its tangent vector at every point is a spacelike, timelike or null vector, then the curve is called a *spacelike*, *timelike* and *null curve*, respectively [6].

A surface in \mathbb{R}^3_1 is called a *timelike* surface if the induced metric on the surface is a Lorentz metric [2]. The normal vector on the timelike surface is a spacelike vector [7]. A surface in \mathbb{R}^3_1 is called a *spacelike surface* if the induced metric on the surface is a positive definite Riemannian metric [2]. The normal vector on the spacelike surface is a timelike vector [8].

The pseudo-hyperbolic space of radius r > 0 in \mathbb{R}^3_1 is the hyperquadric

$$H_0^2 = \{ X \in \mathbb{R}^3_1 | \langle X, X \rangle = -r^2 \}$$

with dimension 2 [6].

Received March 2, 2005.

 $Mathematics\ Subject\ Classification.\ 53C50.$

Key words and phrases. Ruled surfaces, Minkowski space, pseudo-hyperbolic space, Bertrand offsets.

Let $\mathbf{X} = (x_1, x_2, x_3)$ and $\mathbf{Y} = (y_1, y_2, y_3)$ be the vectors in \mathbb{R}^3_1 . The *cross* product of \mathbf{X} and \mathbf{Y} is defined by

(1.1)
$$\mathbf{X} \times \mathbf{Y} = (x_3 y_2 - x_2 y_3, x_1 y_3 - x_3 y_1, x_1 y_2 - x_2 y_1)$$

where $\{\mathbf{e_1}, \mathbf{e_2}, \mathbf{e_3}\}$, $\mathbf{e_i} = (\delta_{i1}, \delta_{i2}, \delta_{i3})$, $1 \leq i \leq 3$, is the standard basis of \mathbb{R}^3_1 . This definition shows that

$$(1.2) \mathbf{e_1} \times \mathbf{e_2} = \mathbf{e_3}, \quad \mathbf{e_2} \times \mathbf{e_3} = -\mathbf{e_1} \quad \text{and} \quad \mathbf{e_3} \times \mathbf{e_1} = \mathbf{e_2}.$$

Theorem 1.1. [1] Let $\mathbf{X} \mathbf{Y} \in \mathbb{R}^3$. We have

- (i) If X and Y are the space-like vectors, $X \times Y$ is a time-like vector.
- (ii) If X and Y are the time-like vectors, $X \times Y$ is a space-like vector.
- (iii) If X is the space-like vector and Y is the time-like vector, $X \times Y$ is a space-like vector.

A ruled surface φ in \mathbb{R}^3_1 is a surface swept out by a straight line e along a curve α and has the parametric representation

(1.3)
$$\varphi(s,v) = \alpha(s) + v\mathbf{e}(s), \quad ||\mathbf{e}|| = 1.$$

The curve $\boldsymbol{\alpha} = \boldsymbol{\alpha}(s)$ is called *base curve* and the various positions of the generating line $\mathbf{e}(s)$ are called the *rulings* of the surface φ .

2. The Frenet equations of a timelike ruled surface according to H_0^2

Let φ be a ruled surface in \mathbb{R}^3_1 . The unit normal U of φ along a general generator $\mathbf{l} = \varphi(s_0, v)$ approaches a limiting direction as v infinitely decreases. This direction is called the *asymptotic normal direction* and denoted by $\mathbf{g}(\mathbf{s})|_{s=s_o}$. Thus, we can write

$$\mathbf{g}(\mathbf{s})|_{s=s_o} = \lim_{v \to -\infty} \mathbf{U}(\mathbf{s}, \mathbf{v}).$$

The point at which **U** is perpendicular to **g** is called *striction point* on $l = \varphi(s_o, v)$. The direction of **U** at this point is called the *central normal* of the ruled surface and is denoted by **t**. Thus, we have the orthonormal system $\{\mathbf{e}, \mathbf{t}, \mathbf{g}\}$. This system is called the *Frenet trihedron* of the ruled surface φ and each vectors in this system is called the *Frenet vector* for the ruled surface φ . Since **t** and **g** have the same type, the Frenet trihedron $\{\mathbf{e}, \mathbf{t}, \mathbf{g}\}$ is not established on a spacelike ruled surface φ . For this reason, in this paper, the surface φ will be taken as a timelike ruled surface. In this case, **e** is timelike, **t** and **g** are spacelike vectors.

Because **e** is timelike, **e** traces a general space curve on the pseudo-hyperbolic space H_0^2 . This curve is denoted by (**e**) and is called *indicatrix curve of* φ *according to pseudo-hyperbolic space* H_0^2 . Also, **e** is called *indicatrix vector*.

For the ruled surface given in (1.3), we can write

(2.1)
$$\mathbf{U}(s,v) = \frac{\left(\frac{d\mathbf{\alpha}}{ds} + v\frac{d\mathbf{e}}{ds}\right) \times \mathbf{e}}{\left[\left(\left\langle\frac{d\mathbf{\alpha}}{ds}, \mathbf{e}\right\rangle\right)^2 + \left\|\frac{d\mathbf{\alpha}}{ds} + v\frac{d\mathbf{e}}{ds}\right\|^2\right]^{1/2}}$$

If we calculates limit of the relation (2.1) as v infinetely decreases, we obtain

(2.2)
$$\mathbf{g}(s)|_{s=s_0} = \frac{\mathbf{e} \times \mathbf{e_s}}{\|\mathbf{e_s}\|}\Big|_{s=s_0}, \quad \mathbf{e_s} = \frac{d\mathbf{e}}{ds}.$$

From the definition of the central normal \mathbf{t} we get

$$\mathbf{t} = -\frac{\mathbf{e_s}}{\|\mathbf{e_s}\|} \cdot$$

Let $\mathbf{T_o}$ be the unit tangent vector of the indicatrix curve (e) and $\mathbf{N_o}$ be the unit normal vector field of the pseudo-hyperbolic space H_0^2 . Let

$$\gamma := \left\langle \mathbf{N_o} \times \mathbf{T_o}, \frac{d\mathbf{T_o}}{dq} \right\rangle$$

where q is the arc-length of the indicatrix curve (**e**) of φ . For the equation of (**e**), we can write

$$\alpha_{\mathbf{e}}(q) = \mathbf{e}(s),$$

where s is the arc-length of the base curve α of φ . If we take the derivative of the last equation with respect to the arc q of (e), we obtain $T_o = -\mathbf{t}$.

If ψ_o is the hyperbolic angle between N_o and g. Then, we can write

$$N_o = \cosh \psi_o \, e + \sinh \psi_o \, g.$$

Thus, we obtain

$$\gamma = -(\cosh\psi_o\langle \mathbf{t_q}, \mathbf{g}\rangle + \sinh\psi_o\langle \mathbf{t_q}, \mathbf{e}\rangle).$$

Assuming that

$$\langle \mathbf{t_q}, \mathbf{g} \rangle = \overline{\gamma}.$$

We get

$$\overline{\gamma} = -\frac{1}{\cosh \psi_o} (\gamma + \sinh \psi_o).$$

Thus, we can give the following formulas

(2.5)
$$\begin{cases} \mathbf{e_q} = -\mathbf{t} \\ \mathbf{t_q} = \overline{\gamma}\mathbf{g} - \mathbf{e} \\ \mathbf{g_q} = -\overline{\gamma}\mathbf{t}. \end{cases}$$

These equations are called the Frenet equations of the timelike ruled surface φ according to pseudo-hyperbolic space H_0^2 .

The matrix form of (2.5) is

(2.6)
$$\begin{bmatrix} \mathbf{e_q} \\ \mathbf{t_q} \\ \mathbf{g_q} \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ -1 & 0 & \overline{\gamma} \\ 0 & -\overline{\gamma} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{e} \\ \mathbf{t} \\ \mathbf{g} \end{bmatrix}.$$

The 3×3 matrix given above is a skew-adjoint matrix. From the equations (2.5) we obtain

(2.7)
$$\overline{\gamma} = -\frac{\langle \mathbf{e}, \mathbf{e_s} \times \mathbf{e_{ss}} \rangle}{\|\mathbf{e_s}\|^3}.$$

The curve which is drawn by the striction points of the timelike ruled surface φ is called *striction curve* and is denoted by (c).

For the striction curve of φ we have

$$\mathbf{c}(s) = \boldsymbol{\alpha}(s) - \frac{\langle \boldsymbol{\alpha}_{\mathbf{s}}, \mathbf{e}_{\mathbf{s}} \rangle}{\langle \mathbf{e}_{\mathbf{s}}, \mathbf{e}_{\mathbf{s}} \rangle} \mathbf{e}_{\mathbf{s}}.$$

If the consecutive rulings of the timelike ruled surface φ intersect, then φ is said to be *developable*. For the developable timelike ruled surface φ , we can write

$$\langle \boldsymbol{\alpha}_{\mathbf{s}}, \mathbf{e} \times \mathbf{e}_{\mathbf{s}} \rangle = 0.$$

Thus, we can give the following theorem without proof.

Theorem 2.1. Let the striction curve (c) is taken as the base curve of the time-like ruled surface φ in \mathbb{R}^3_1 . In this case, φ is developable if and only if the indicatrix vector \mathbf{e} is the tangent of the striction curve of φ .

Let φ be a timelike ruled surface in \mathbb{R}^3_1 . If φ is developable, then from Theorem 2.1 and the Frenet formulas for a timelike curve in \mathbb{R}^3_1 [8] we obtain

$$(2.8) \mathbf{e} = \mathbf{T} \ \mathbf{t} = -\mathbf{N}, \ \mathbf{g} = -\mathbf{B},$$

where $\{T, N, B\}$ is the Frenet trihedron of the striction curve (c).

From (2.7), (2.8) and [5] we can give the following result.

Corollary 2.1. Let φ be a developable timelike ruled surface in \mathbb{R}^3_1 . Then $\overline{\gamma}$ is constant if and only if the striction curve (c) of φ is a helix.

In this paper, the striction curve of the timelike ruled surface φ will be taken as the base curve. In this case, for the parametric equation of φ , we can write

$$\varphi(s, v) = \mathbf{c}(s) + v\mathbf{e}(s).$$

3. Bertrand offsets of the timelike ruled surfaces in \mathbb{R}^3_1

Let φ and φ^* be two timelike ruled surfaces in \mathbb{R}^3_1 . φ^* is said to be Bertrand offset of φ if there exists a one-to-one correspondence between their rulings such that both surfaces have a common central normal at the striction points of their corresponding rulings.

The base timelike ruled surface $\varphi(s, v)$ can be expressed as

$$\varphi(s, v) = \mathbf{c}(s) + v\mathbf{e}(s)$$

where (c) is its striction curve and s is arc-length along (c). If e, t and g are the Frenet vectors of φ , then from [4] the Frenet vectors of the timelike Bertrand offset φ^* of φ is given by

(3.1)
$$\begin{cases} \mathbf{e}^* = \cosh\theta \, \mathbf{e} + \sinh\theta \, \mathbf{g} \\ \mathbf{t}^* = \mathbf{t} \\ \mathbf{g}^* = \sinh\theta \, \mathbf{e} + \cosh\theta \, \mathbf{g} \end{cases}$$

where θ is the hyperbolic angle between the vectors **e** and **e***.

Therefore, the equation of φ^* in terms of φ can be written as

(3.2)
$$\varphi^*(s, v) = [\mathbf{c}(s) + R\mathbf{t}(s)] + v[\cosh\theta \,\mathbf{e}(s) + \sinh\theta \,\mathbf{g}(s)]$$

where R is the Lorentzian distance between the corresponding central normals of the timelike ruled surfaces φ and φ^* .

If $\theta=0$, then two timelike ruled surfaces will be referred to as 'oriented timelike offsets'.

Theorem 3.1. If φ^* is the Bertrand offset of φ , then R = const and $\theta = \text{const}$.

Proof. By definition, the central normal \mathbf{t}^* of φ^* is the same as the central normal \mathbf{t} of φ , i.e. $\mathbf{t} = \mathbf{t}^*$. From the equality (2.3), we get

$$\mathbf{t}^* = -\frac{\mathbf{e}_\mathbf{s}^*}{\|\mathbf{e}_\mathbf{s}^*\|} \cdot$$

Because of the last two equalities, we have

$$\mathbf{e}_{\mathbf{s}}^* = \lambda \mathbf{t} \ (\lambda \text{ a scalar}).$$

Let q be the arc-length of the indicatrix curve (e) of φ , then using equations (3.1) and the chain rule of differentiation we can write

$$\sinh\theta\theta_s \mathbf{e} + \cosh\theta\theta_s \mathbf{g} - (\cosh\theta + \overline{\gamma}\sinh\theta)q_s \mathbf{t} = \lambda \mathbf{t}.$$

Therefore, it is clear that

$$\theta_s(\sinh\theta \mathbf{e} + \cosh\theta \mathbf{g}) = 0$$

or

$$\theta_s = \frac{d\theta}{ds} = 0.$$

This implies that $\theta = \text{const.}$ Since the base curve of φ^* is its striction curve, we get $\langle \mathbf{c}_{\mathbf{s}}^*, \mathbf{e}_{\mathbf{s}}^* \rangle = 0$.

From the equality $\mathbf{e}_{\mathbf{s}}^* = \lambda \mathbf{t}$ it follows that

$$\langle (\mathbf{c} + R\mathbf{t})_s, \mathbf{t} \rangle = 0.$$

This last equation simplifies to

$$\langle \mathbf{c}_s + R_s \mathbf{t} + Rq_s(\overline{\gamma}\mathbf{g} - \mathbf{e}), \mathbf{t} \rangle = 0$$

which implies that $R_s = 0$ or R = const.

Theorem 3.2. Let φ^* be the Bertrand offset of the developable timelike ruled surface φ . Then φ^* is developable if and only if the following relationship can be written between the curvature κ and the torsion τ of the striction curve (c) of φ :

$$(1 - \kappa R)\sinh\theta - \tau R\cosh\theta = 0.$$

Proof. Because of Theorem 2.1, developable surface φ can be described as

$$\varphi(s, v) = \mathbf{c}(s) + v\mathbf{T}(s)$$

where $\mathbf{T}(s)$ is tangent to $\mathbf{c}(s)$. Therefore, the surface φ^* can be expressed as

$$\varphi^*(s, v) = [\mathbf{c} + R\mathbf{N}] + v \left[\cosh\theta \mathbf{T} + \sinh\theta \mathbf{B} \right],$$

where $\mathbf{N}(s)$ and $\mathbf{B}(s)$ are the principal normal and the binormal to $\mathbf{c}(s)$, respectively.

If φ^* is developable, then we get

$$\frac{d}{ds}(\mathbf{c} + R\mathbf{N}) = \lambda \left[\cosh\theta \mathbf{T} + \sinh\theta \mathbf{B} \right] (\lambda \text{ a scalar})$$

or

$$\mathbf{c}_s + R\mathbf{N}_s = \lambda \left[\cosh\theta \mathbf{T} + \sinh\theta \mathbf{B} \right].$$

By equation (2.8),

$$(1 - \kappa R)T - \tau RB = \lambda \left[\cosh\theta T - \sinh\theta B\right]$$

The last equation implies that

$$(1 - \kappa R) \sinh \theta - \tau R \cosh \theta = 0.$$

Conversely, suppose that the equality

$$(1 - \kappa R) \sinh \theta - \tau R \cosh \theta = 0$$

is satisfied. Then we can write

$$\frac{d}{ds}(\mathbf{c} + R\mathbf{N}) = \lambda \left[\cosh\theta \mathbf{T} + \sinh\theta \mathbf{B} \right].$$

Because of Theorem 2.1, φ^* is developable.

Let φ^* be the developable Bertrand offset of the developable timelike ruled surface φ .

From (2.8) and (3.1), we have

(3.3)
$$\begin{cases} \mathbf{T}^* = \cosh\theta \, \mathbf{T} - \sinh\theta \, \mathbf{B} \\ \mathbf{N}^* = \mathbf{N} \\ \mathbf{B}^* = -\sinh\theta \, \mathbf{T} + \cosh\theta \, \mathbf{B} \end{cases}$$

where $\{\mathbf{T}^*, \mathbf{N}^*, \mathbf{B}^*\}$ is the Frenet triply at the striction point of the striction curve of φ^* .

Because of the Frenet Formulas for a time-like curve in \mathbb{R}^3_1 , we get

$$\mathbf{T}_{s^*}^* = \kappa^* \, \mathbf{N}^*$$

where s^* and κ^* are the arc-parameter and the curvature of the striction curve of φ^* , respectively.

Taking the derivative of \mathbf{T}^* in the relation (3.3) with respect to the arc s^* and using the Frenet Formulas yields

(3.5)
$$\kappa^* = \frac{\mathrm{ds}}{\mathrm{ds}^*} (\kappa \cosh \theta - \tau \sinh \theta).$$

Similarly, for the torsion τ^* of the striction curve of φ^* , we can write,

(3.6)
$$\tau^* = \frac{\mathrm{ds}}{\mathrm{ds}^*} (\tau \cosh \theta - \kappa \sinh \theta).$$

Since φ^* is the Bertrand offset of φ , we get $\langle \mathbf{t}, \mathbf{t}^* \rangle = \langle \mathbf{t}, \mathbf{t} \rangle = 1 > 0$. Thus

$$\langle \mathbf{t} , \mathbf{e}_s^* \rangle < 0.$$

If φ and φ^* are developable, we have $\langle \mathbf{N}, \mathbf{T}_s^* \rangle > 0$. Then

$$\kappa \cosh \theta - \tau \sinh \theta > 0.$$

Thus, if φ and φ^* are developable, we can give the following results.

Corollary 3.1. There is the following relation between the curvatures and the torsions of the striction curves of φ and φ^* :

$$\frac{\tau^*}{\kappa^*} = \frac{\tau \cosh\theta - \kappa \sinh\theta}{\kappa \cosh\theta - \tau \sinh\theta}.$$

Corollary 3.2. The striction curve of φ is a helix if and only if the striction curve of φ^* is a helix.

Example 1. For the timelike ruled surface

$$\varphi(s, v) = (\cosh(s) + v\sqrt{2}\sinh(s), 2s + v, \sinh(s) + v\sqrt{2}\cosh(s)).$$

(i) A Bertrand offset with spacelike base curve of φ is

$$\varphi_1^*(s,v) = \left(-\cosh(s) + v(2\sqrt{2} + \sqrt{3})\sinh(s), 2s + v(2 + \sqrt{6}), -\sinh(s) + v(2\sqrt{2} + \sqrt{3})\cosh(s)\right) \text{ (Fig. 1)}.$$

(ii) A Bertrand offset with timelike base curve of φ is

$$\varphi_2^*(s,v) = \left(-4\cosh(s) + v\frac{1}{2}(3\sqrt{2} + \sqrt{5})\sinh(s), 2s + v\frac{1}{2}(3 + \sqrt{10}), -4\sinh(s) + v\frac{1}{2}(3\sqrt{2} + \sqrt{5})\cosh(s)\right)$$
(Fig. 2).

(iii) A Bertrand offset with null base curve of φ is

$$\varphi_3^*(s, v) = (-2\cosh(s) + v\sqrt{2}\sinh(s), 2s + v,$$
$$-2\sinh(s) + v\sqrt{2}\cosh(s)) \quad \text{(Fig. 3)}.$$

Example 2. The surface

$$\eta(s, v) = \left(\cosh(s) + v\sinh(s), 0, \sinh(s) + v\cosh(s)\right)$$

is a timelike ruled surface. All of the Bertrand offsets of η have timelike base curve. One of the offsets of η is

$$\eta^*(s,v) = \left(-\cosh(s) + 2v\sinh(s), \sqrt{3}v, -\sinh(s) + 2v\cosh(s)\right) \quad (\text{Fig. 4}).$$

 $\mathit{Fig.~1}.$ Ruled surface φ and its Bertrand offset with spacelike base curve

 $\mathit{Fig.\,2}.$ Ruled surface φ and its Bertrand offset with timelike base curve

 $\mathit{Fig.\,3}.$ Ruled surface φ and its Bertrand offset with null base curve

Fig. 4. Ruled surface η and its Bertrand offset

References

- [1] K. Akutagawa and S. Nishikawa, The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space, Tohoku Math. J. 42 (1990), 67-82.
- [2] J. K. Beem and P. E. Ehrlich, Global Lorentzian Geometry, Marcel Dekker, New York, 1981.
- [3] J. Bertrand, Memoire sur la theorie des courbes a double courbure, Comptes rendus 31, 1850
- [4] G. S. Birman and K. Nomizu, Trigonometry in Lorentzian geometry, Ann. Math. Mont. 91 (9) (1984), 543-549.
- [5] N. Ekmekci and H. H. Hacisalihoğlu, On helices of a Lorentzian manifold, Commun. Fac. Sci. Univ. Ank., Series A1, 45 (1996), 45-50.
- [6] B. O'Neill, Semi Riemannian Geometry, Academic Press, New York-London, 1983.
- [7] A. Turgut and H. H. Hacisalihoğlu, Time-like ruled surfaces in the Minkowski 3-space, Far East J. Math. Sci. 5 (1997), 83-90.
- [8] A. Turgut and H. H. Hacisalihoğlu, Space-like ruled surfaces in the Minkowski 3-space, Commun. Fac. Sci. Univ. Ank., Series A1, 46 (1997), 83-91.
- [9] C. E. Weatherburn, Differential Geometry of Three Dimensions, Vols 1 and 2, Cambridge, 1930.
- [10] V. D. I. Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, World Scientific Publishing, Singapore, 1990, 344-369.

Ondokuz Mayis University Science and Arts Faculty Department of Mathematics Kurupelit 55139, Samsun, Turkey

E-mail address: kasape@omu.edu.tr

Bahçeşehir University Science and Arts Faculty Department of Mathematics and Computer Sciences Bahçeşehir 34538, İstanbul, Turkey

 $E ext{-}mail\ address: kuruoglu@bahcesehir.edu.tr}$