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THE BERTRAND OFFSETS OF RULED SURFACES IN R
3
1

E. KASAP AND N. KURUOĞLU

Abstract. The problem of finding a curve whose principal normals are also
the principal normals of another curve was apparently first proposed by Saint-
Venant but solved by J. Bertrand. Such curves were referred to as ‘Bertrand
offsets’. In this paper, a generalization of the theory of Bertrand curves is
presented for ruled surfaces in Minkowski space R3

1. Using lines instead of
points, two ruled surfaces which are offset in the sense of Bertrand are defined.
The obtained results are illustrated by computer-aided examples.

1. Preliminaries

Let us consider the Minkowski 3-space R
3
1 = [ R3, (+,+,−) ]. The Lorentzian

inner product of X = (x1, x2, x3) and Y = (y1, y2, y3) ∈ R
3
1 is defined by

〈X , Y 〉 = x1y1 + x2y2 − x3y3.

A vector X ∈ R
3
1 is called a spacelike, timelike and null (lightlike) vector if

〈X , X〉 > 0 or X = 0, 〈X , X〉 < 0, and 〈X , X〉 = 0 for X �= 0, respec-
tively [6].

For a regular curve in R
3
1, if its tangent vector at every point is a spacelike,

timelike or null vector, then the curve is called a spacelike, timelike and null
curve, respectively [6].

A surface in R
3
1 is called a timelike surface if the induced metric on the surface

is a Lorentz metric [2]. The normal vector on the timelike surface is a spacelike
vector [7]. A surface in R

3
1 is called a spacelike surface if the induced metric on

the surface is a positive definite Riemannian metric [2]. The normal vector on
the spacelike surface is a timelike vector [8].

The pseudo-hyperbolic space of radius r > 0 in R
3
1 is the hyperquadric

H2
0 = {X ∈ R

3
1

∣∣〈X,X〉 = −r2}

with dimension 2 [6].
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Let X = (x1, x2, x3) and Y = (y1, y2, y3) be the vectors in R
3
1. The cross

product of X and Y is defined by

X× Y = (x3y2 − x2y3 , x1y3 − x3y1 , x1y2 − x2y1)(1.1)

where {e1, e2, e3}, ei = (δi1, δi2, δi3), 1 � i � 3, is the standart basis of R
3
1. This

definition shows that

e1 × e2 = e3, e2 × e3 = −e1 and e3 × e1 = e2.(1.2)

Theorem 1.1. [1] Let X Y ∈ R
3
1. We have

(i) If X and Y are the space-like vectors, X× Y is a time-like vector.
(ii) If X and Y are the time-like vectors, X× Y is a space-like vector.
(iii) If X is the space-like vector and Y is the time-like vector, X × Y is a

space-like vector.

A ruled surface ϕ in R
3
1 is a surface swept out by a straight line e along a curve

α and has the parametric representation

ϕ(s, v) = ααα(s) + ve(s), ‖e‖ = 1.(1.3)

The curve ααα = ααα(s) is called base curve and the various positions of the generating
line e(s) are called the rulings of the surface ϕ.

2. The Frenet equations of a timelike ruled surface

according to H2
0

Let ϕ be a ruled surface in R
3
1. The unit normal U of ϕ along a general

generator l = ϕ(s0, v) approaches a limiting direction as v infinitely decreases.
This direction is called the asymptotic normal direction and denoted by g(s)|s=so.
Thus, we can write

g(s)|s=so = lim
v→−∞U(s,v).

The point at which U is perpendicular to g is called striction point on l = ϕ(so, v).
The direction of U at this point is called the central normal of the ruled surface
and is denoted by t. Thus, we have the orthonormal system {e, t,g}. This
system is called the Frenet trihedron of the ruled surface ϕ and each vectors in
this system is called the Frenet vector for the ruled surface ϕ. Since t and g have
the same type, the Frenet trihedron {e, t,g} is not established on a spacelike
ruled surface ϕ. For this reason, in this paper, the surface ϕ will be taken as a
timelike ruled surface. In this case, e is timelike, t and g are spacelike vectors.

Because e is timelike, e traces a general space curve on the pseudo-hyperbolic
space H2

0 . This curve is denoted by (e) and is called indicatrix curve of ϕ accord-
ing to pseudo-hyperbolic space H2

0 . Also, e is called indicatrix vector.
For the ruled surface given in (1.3), we can write

U(s, v) =

(dααα
ds

+ v
de
ds

)
× e

[(〈dααα
ds
, e

〉)2
+

∥∥∥dααα
ds

+ v
de
ds

∥∥∥2]1/2
(2.1)



THE BERTRAND OFFSETS OF RULED SURFACES IN R3
1 41

If we calculates limit of the relation (2.1) as v infinetely decreases, we obtain

g(s)|s=s0 =
e × es

‖es‖
∣∣∣
s=s0

, es =
de
ds

·(2.2)

From the definition of the central normal t we get

t = − es

‖es‖ ·(2.3)

Let To be the unit tangent vector of the indicatrix curve (e) and No be the unit
normal vector field of the pseudo-hyperbolic space H2

0 . Let

γ :=
〈
No × To,

dTo

dq

〉

where q is the arc-length of the indicatrix curve (e) of ϕ. For the equation of (e),
we can write

αααe(q) = e(s),
where s is the arc-length of the base curve α of ϕ. If we take the derivative of
the last equation with respect to the arc q of (e), we obtain To = −t.

If ψo is the hyperbolic angle between No and g. Then, we can write

No = coshψo e+ sinhψo g.

Thus, we obtain
γ = −(coshψo〈tq,g〉 + sinhψo〈tq, e〉).

Assuming that

〈tq,g〉 = γ.(2.4)

We get

γ = − 1
coshψo

(γ + sinhψo).

Thus, we can give the following formulas


eq = −t
tq = γg − e
gq = −γt.

.(2.5)

These equations are called the Frenet equations of the timelike ruled surface ϕ
according to pseudo-hyperbolic space H2

0 .
The matrix form of (2.5) is


eq

tq
gq


 =




0 −1 0
−1 0 γ
0 −γ 0






e
t
g


 .(2.6)

The 3× 3 matrix given above is a skew-adjoint matrix. From the equations (2.5)
we obtain

γ = −〈e, es × ess〉
‖es‖3

·(2.7)
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The curve which is drawn by the striction points of the timelike ruled surface
ϕ is called striction curve and is denoted by (c).

For the striction curve of ϕ we have

c(s) = ααα(s) − 〈αααs, es〉
〈es, es〉 es.

If the consecutive rulings of the timelike ruled surface ϕ intersect, then ϕ is
said to be developable. For the developable timelike ruled surface ϕ, we can write

〈αααs, e × es〉 = 0.

Thus, we can give the following theorem without proof.

Theorem 2.1. Let the striction curve (c) is taken as the base curve of the time-
like ruled surface ϕ in R

3
1. In this case, ϕ is developable if and only if the

indicatrix vector e is the tangent of the striction curve of ϕ.

Let ϕ be a timelike ruled surface in R
3
1. If ϕ is developable, then from Theorem

2.1 and the Frenet formulas for a timelike curve in R
3
1 [8] we obtain

e = T t = −N , g = −B,(2.8)

where {T , N , B} is the Frenet trihedron of the striction curve (c).
From (2.7), (2.8) and [5] we can give the following result.

Corollary 2.1. Let ϕ be a developable timelike ruled surface in R
3
1. Then γ is

constant if and only if the striction curve (c) of ϕ is a helix.

In this paper, the striction curve of the timelike ruled surface ϕ will be taken
as the base curve. In this case, for the parametric equation of ϕ, we can write

ϕ(s, v) = c(s) + ve(s).

3. Bertrand offsets of the timelike ruled surfaces in R
3
1

Let ϕ and ϕ∗ be two timelike ruled surfaces in R
3
1. ϕ

∗ is said to be Bertrand
offset of ϕ if there exists a one-to-one correspondence between their rulings such
that both surfaces have a common central normal at the striction points of their
corresponding rulings.

The base timelike ruled surface ϕ(s, v) can be expressed as

ϕ(s, v) = c(s) + ve(s)

where (c) is its striction curve and s is arc-length along (c). If e, t and g are
the Frenet vectors of ϕ, then from [4] the Frenet vectors of the timelike Bertrand
offset ϕ∗ of ϕ is given by 



e∗ = coshθ e + sinhθ g
t∗ = t
g∗ = sinhθ e + coshθ g

(3.1)

where θ is the hyperbolic angle between the vectors e and e∗.
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Therefore, the equation of ϕ∗ in terms of ϕ can be written as

ϕ∗(s , v) = [c(s) + Rt(s)] + v [coshθe(s) + sinhθg(s)](3.2)

where R is the Lorentzian distance between the corresponding central normals of
the timelike ruled surfaces ϕ and ϕ∗.

If θ = 0, then two timelike ruled surfaces will be referred to as ‘oriented timelike
offsets’.

Theorem 3.1. If ϕ∗ is the Bertrand offset of ϕ, then R = const and θ = const.

Proof. By definition, the central normal t∗ of ϕ∗ is the same as the central normal
t of ϕ, i.e. t = t∗. From the equality (2.3), we get

t∗ = − e∗s
‖e∗s‖

·
Because of the last two equalities, we have

e∗s = λt (λ a scalar).

Let q be the arc-length of the indicatrix curve (e) of ϕ, then using equations
(3.1) and the chain rule of differentiation we can write

sinhθθse + coshθθsg − (coshθ + γsinhθ)qst = λ t.

Therefore, it is clear that

θs(sinhθ e + coshθg) = 0

or
θs =

dθ

ds
= 0.

This implies that θ = const. Since the base curve of ϕ∗ is its striction curve, we
get 〈c∗s , e∗s〉 = 0.
From the equality e∗s = λt it follows that

〈(c +Rt)s, t〉 = 0.

This last equation simplifies to

〈cs +Rst +Rqs(γg − e), t〉 = 0

which implies that Rs = 0 or R = const.

Theorem 3.2. Let ϕ∗ be the Bertrand offset of the developable timelike ruled
surface ϕ. Then ϕ∗ is developable if and only if the following relationship can be
written between the curvature κ and the torsion τ of the striction curve (c) of ϕ:

(1 − κR)sinhθ − τRcoshθ = 0.

Proof. Because of Theorem 2.1, developable surface ϕ can be described as

ϕ(s, v) = c(s) + vT(s)

where T(s) is tangent to c(s). Therefore, the surface ϕ∗ can be expressed as

ϕ∗(s, v) = [c +RN] + v [coshθT + sinhθB] ,
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where N(s) and B(s) are the principal normal and the binormal to c(s), respec-
tively.

If ϕ∗ is developable, then we get
d

ds
(c +RN) = λ [coshθT + sinhθB] (λ a scalar)

or

cs +RNs = λ [coshθT + sinhθB] .

By equation (2.8),

(1 − κR)T - τ RB = λ [coshθT − sinhθB]

The last equation implies that

(1 − κR)sinhθ - τ Rcoshθ = 0.

Conversely, suppose that the equality

(1 − κR)sinhθ - τ Rcoshθ = 0

is satisfied. Then we can write
d

ds
(c +RN) = λ [coshθT + sinhθB] .

Because of Theorem 2.1, ϕ∗ is developable.

Let ϕ∗ be the developable Bertrand offset of the developable timelike ruled
surface ϕ.

From (2.8) and (3.1), we have


T∗ = coshθT − sinhθB
N∗ = N
B∗ = −sinhθT + coshθB

(3.3)

where {T∗, N∗, B∗} is the Frenet triply at the striction point of the striction
curve of ϕ∗.

Because of the Frenet Formulas for a time-like curve in R
3
1, we get

T∗
s∗ = κ∗ N∗(3.4)

where s∗ and κ∗ are the arc-parameter and the curvature of the striction curve
of ϕ∗, respectively.

Taking the derivative of T∗ in the relation (3.3) with respect to the arc s∗ and
using the Frenet Formulas yields

κ∗ =
ds
ds∗

(κ coshθ − τ sinhθ).(3.5)

Similarly, for the torsion τ∗ of the striction curve of ϕ∗, we can write,

τ∗ =
ds
ds∗

(τ coshθ − κ sinhθ).(3.6)



THE BERTRAND OFFSETS OF RULED SURFACES IN R3
1 45

Since ϕ∗ is the Bertrand offset of ϕ, we get 〈t , t∗〉 = 〈t , t〉 = 1 > 0. Thus

〈t , e∗s〉 < 0.

If ϕ and ϕ∗ are developable, we have 〈N , T∗
s〉 > 0. Then

κcoshθ − τsinhθ > 0.

Thus, if ϕ and ϕ∗ are developable, we can give the following results.

Corollary 3.1. There is the following relation between the curvatures and the
torsions of the striction curves of ϕ and ϕ∗:

τ∗

κ∗
=
τcoshθ − κsinhθ
κcoshθ − τsinhθ

·

Corollary 3.2. The striction curve of ϕ is a helix if and only if the striction
curve of ϕ∗ is a helix.

Example 1. For the timelike ruled surface

ϕ(s, v) =
(
cosh(s) + v

√
2sinh(s), 2s + v, sinh(s) + v

√
2cosh(s)

)
.

(i) A Bertrand offset with spacelike base curve of ϕ is

ϕ∗
1(s, v) =

( − cosh(s) + v(2
√

2 +
√

3)sinh(s), 2s + v(2 +
√

6),

− sinh(s) + v(2
√

2 +
√

3) cosh(s)
)

(Fig. 1).

(ii) A Bertrand offset with timelike base curve of ϕ is

ϕ∗
2(s, v) =

( − 4 cosh(s) + v
1
2
(3
√

2 +
√

5)sinh(s), 2s + v
1
2
(3 +

√
10),

− 4sinh(s) + v
1
2
(3
√

2 +
√

5)cosh(s)
)

(Fig. 2).

(iii) A Bertrand offset with null base curve of ϕ is

ϕ∗
3(s, v) = (−2cosh(s) + v

√
2sinh(s), 2s + v,

− 2sinh(s) + v
√

2cosh(s)) (Fig. 3).

Example 2. The surface

η(s, v) =
(
cosh(s) + vsinh(s), 0, sinh(s) + vcosh(s)

)

is a timelike ruled surface. All of the Bertrand offsets of η have timelike base
curve. One of the offsets of η is

η∗(s, v) =
( − cosh(s) + 2vsinh(s),

√
3v,−sinh(s) + 2vcosh(s)

)
(Fig. 4).
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Fig. 1. Ruled surface ϕ and its Bertrand offset with spacelike base curve

Fig. 2. Ruled surface ϕ and its Bertrand offset with timelike base curve
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Fig. 3. Ruled surface ϕ and its Bertrand offset with null base curve

Fig. 4. Ruled surface η and its Bertrand offset
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