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ON THE ASYMPTOTIC EQUIVALENCE OF
LINEAR DELAY EQUATIONS IN BANACH SPACE

DANG DINH CHAU

Abstract. In this paper we present some sufficient conditions for the as-
ymptotic equivalence of linear evolution equations with time-delay in Banach
spaces. Besides, we discuss the asymptotic relationship between C0 groups
and strongly continuous evolutionary processes. The obtained results extend
the Levinsons theorem on the asymptotic equivalence of linear differential
equations.

1. Introduction

Let us consider the following linear differential equations:

dx(t)
dt

= Ax(t), t � 0,(1)

and

dy(t)
dt

= C(t)y(t), t � 0,(2)

where x(t), y(t) ∈ X, X is a complex Banach space, A and C(t) are linear op-
erators acting on X for each t ∈ R+. Under suitable conditions, equations (1)
and (2) are well posed (see [1], [7], [9]). We recall that equations (1) and (2) are
said to be asymptotically equivalent if there exists a bijection between the set of
solutions {x(t)} of (1) and the one of {y(t)} of (2) such that

lim
t→∞ ‖x(t) − y(t)‖ = 0.(3)

An interesting proplem in the qualitative theory of solutions to differential equa-
tions is to find conditions such that (1) and (2) are asymptotically equivalent.
The first results on this problem were given by N. Levinson in 1946 (see [5]).
Then, the results have been developed by many authors (see [2], [3], [4], [5], [6],
[10]). In recent years, much attention has been devoted to the qualitative theory
of solutions to differential equations with time delay (see [1], [6], [7], [12], [13],
[14], [15]). In this direction, several authors have focused on extending the clas-
sical results of the asymptotic behavior of solutions to differential equations. In
the models related to mechanics and biology (see [12], [13], [14], [15]), one usually
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studies retarded differential equations in the form

dy(t)
dt

= Ay(t) + µ

q∑
k=1

Bk(t)y(t + τk).(4)

In this paper, we are interested in finding conditions such that the solutions of
(4) in the case µ = 0 are asymptotically equivalent to the solutions of (4) in the
case µ �= 0. We will consider the case q = 1. The case q > 1 can be treated in a
similar way.

2. Main results

For a Banach space X we denote by L(X) the Banach space of all bounded
linear operators on X. Together with (1), we consider the differential equation

dy(t)
dt

= Ay(t) + B(t)y(t + θ), t ≥ 0,(5)

where x(t) ∈ X, y(t) ∈ X, −h � θ � 0, A ∈ L(X) and B(.) : [0,+∞) → L(X)
satisfies the condition ∫ +∞

0
‖B(t)‖dx < +∞.(6)

Denote by T (t) and N(t, t0) the solution operators of (1) and (5), respectively.
Then (T (t))t 0 is a C0-semigroup in X, (N(t, t0))t s is a strongly continuous
evolutionary process (see [16], [17]).

Definition 2.1. The equations (1) and (5) are said to be asymptotically equiv-
alent if for every solution x(t) of (1), there is a solution y(t) of (5) such that

lim
t→+∞ ‖y(t) − x(t)‖ = 0,(7)

and conversely for each solution y(t) of (5) there is a solution x(t) of (1) such
that (7) holds.

Suppose that φ(.) ∈ C([−h, 0],X), by Grownwall–Belmann’s lemma and the
methods in [12] we can get the following result.

Theorem 2.1.
(a) For a given φ(.) ∈ C([−h, 0],X), there exists a unique solution of (4) on

[−h,+∞] satisfying y(t) = φ(t), (t ∈ [−h, 0]).
(b) If ‖T (t)‖ � M for all t � 0 then N(t, t0) is a bounded operator, i.e., there

exists K > 0 such that

‖N(t, t0)‖ � K, for all t � t0 > 0.

In order to prove the asymptotic equivalence of (1) and (4) we consider the
following lemma.
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Lemma 2.1. Suppose that there is a projector P : X → X such that:
(a) ‖PT (t)‖ � Me−ωt, for all t ∈ R+,
(b) ‖(I − P )T (t)‖ � m, for all t ∈ R,

where M , m, ω are positive constants. Then the operator F : X → X defined by

Fx :=
∫ +∞

t0

(I − P )T (t0 − s)B(s)N(s + θ, t0)xds

is bounded. Moreover, there exists a positive constant ∆ such that

‖F‖ < 1, ∀t0 � ∆ > 0.

Proof. Putting

U(t) = PT (t), V (t) = (I − P )T (t),

we get
T (t) = U(t) + V (t).

By (6), for any α < 1 we can find a number ∆ > 0 such that∫ +∞

t0

‖B(s)‖ds � α

m.K
, ∀ t0 > ∆ > 0,

where the constant K is defined as in Theorem 2.1. By the above inequality and
Theorem 2.1, we have

‖F‖ �
∫ ∞

t0

‖V (t0 − s)‖.‖B(s)‖.‖N(s + θ, t0)‖ds

� m.K

∫ ∞

t0

‖B(s)‖ds � α < 1, ∀t0 � ∆ > 0.

From Theorem 2.1 we obtain the following result.

Theorem 2.2. Suppose that (T (t))t 0 satisfies all the conditions of Lemma 2.1.
Moveover, the operator P commutes with T (t) for all t � 0. Then (1) and (5)
are asymptotically equivalent.

Proof. By Theorem 2.1, for each φ(.) ∈ C
(
[−h, 0],X

)
equation (5) has an unique

solution satisfying

y(t) = T (t)φ(0) +
∫ t

0
T (t − s)B(s)y(s + θ)ds, t � 0,(8)

y(t) = φ(t), −h � t � 0.

Let y(t0) = y0, t0 > 0. Then the solution y(t) of (5) can be written in the form

y(t) = T (t − t0)y0 +
∫ t

t0

T (t − s)B(s)y(s + θ)ds,
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Moreover, by Lemma 2.1, we have

T (t) = U(t) + V (t),

V (t − s) = T (t − t0)V (t0 − s).

Let Qx = (I + F )x, x ∈ X. Then the operator Q : X → X is invertible. Assume
that y(t) is a solution of (5). For each sufficiently large t0 ∈ R+ and y(t0) ∈ X,
taking x(t0) = Qy(t0) we have

x(t0) = Qy(t0) = y(t0) +
∫ +∞

t0

V (t0 − s)B(s)y(s + θ)ds.

Hence,

x(t) = T (t − t0)x(t0)

= T (t − t0)y(t0) +
∫ +∞

t0

V (t − s)B(s)y(s + θ)ds.

Consequently,

‖y(t) − x(t)‖ =
∥∥∥

∫ t

t0

U(t − s)B(s)y(s + θ)ds −
∫ ∞

t
V (t − s)B(s)y(s + θ)ds

∥∥∥.

Therefore,

‖y(t) − x(t)‖ � M.K‖y0‖
∫ t

t0

e−ω(t−s)
∥∥∥B(s)

∥∥∥ds + m.K‖y0‖
∫ ∞

t

∥∥∥B(s)
∥∥∥ds

� M1

∫ t

t0

e−ω(t−s)
∥∥∥B(s)

∥∥∥ds + M2

∫ ∞

t

∥∥∥B(s)
∥∥∥ds, ∀t � s,

where M1 = M.K‖y0‖, M2 = mK‖y0‖.
For every positive number ε > 0, there exists a sufficiently large number t,

t > 2t0, such that the following inequalities are valid:

∫ t
2

t0

e−ω(t−s)
∥∥∥B(s)

∥∥∥ds � e−
ωt
2

∫ ∞

t0

∥∥∥B(s)
∥∥∥ds <

ε

3M1
,

∫ t

t
2

∥∥∥B(s)
∥∥∥ds <

ε

3M1
,

∫ ∞

t

∥∥∥B(s)
∥∥∥ds <

ε

3M2
·
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Hence,

‖y(t) − x(t)‖ � M1

(∫ t
2

s
e−ω(t−s)

∥∥∥B(s)
∥∥∥ds +

t∫
t
2

e−ω(t−s)
∥∥∥B(s)

∥∥∥ds
)

+ M2

∞∫
t

∥∥∥B(s)
∥∥∥ds

<
ε

3
+

ε

3
+

ε

3
= ε.

This means that

lim
t→∞ ‖y(t) − x(t)‖ = 0.

Semilarly, by the existence and uniqueness of solutions of (1) and (5) (see Theorem
2.1) we also get (7) for x(t) = T (t − t0)x(t0) and y(t) = N(t, t0)y(t0), where
y(t0) = Q−1x(t0). The theorem is proved.

Example 2.1. In the space l2, we consider linear diffrential equations:
dx

dt
= Ax,(9)

dy

dt
= Ay(t) + B(t)y(t + θ),(10)

where −h � θ � 0, t � t0 � 0, x(t), y(t) ∈ l2. In an orthonormal basis we define

A = diag(A1, A2, . . . , An, . . . )

with

An :=



−1 0 0

0 0
−1
n

0
1
n

0




and let B(.) : R+ → L(�2) be such that∫ +∞

0
‖B(t)‖dt < +∞.

Then the Cauchy operator T (t) of (9) is in the form

T (t) = diag(T1, T2, . . . , Tn, . . . )

with

Tn =




e−t 0 0

0 cos
t

n
− sin

t

n

0 sin
t

n
cos

t

n


 .
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Note that

T (t) = diag(U1(t), U2(t), . . . , Un(t), . . . ) + diag(V1(t), V2(t), . . . , Vn(t), . . . ),

where

Un =


e−t 0 0

0 0 0
0 0 0


 ,

Vn =




0 0 0

0 cos
t

n
− sin

t

n

0 sin
t

n
cos

t

n


 .

This shows that ‖U(t)‖ � e−t for every t ∈ R+ and ‖V (t)‖ � m < +∞ for every
t ∈ R. Hence T (t) satisfies the conditions of Theorem 2.2 . This implies that (9)
and (10) are asymptotically equivalent.

The following is a generalization of the Levinson theorem (see [8]) for the
asymptotic equivalence of the linear differential equations with time delay.

Theorem 2.3. The equations (1) and (5) are asymptotically equivalent if one of
following conditions is satisfied:
(i) (T (t))t 0 is a eventually compact, uniformly bounded C0-semigoup.
ii) X = Rn and (T (t))t 0 is a uniformly bounded C0-semigoup (Levinson’s theo-
rem).

Proof. (i) We will show that T (t) satisfies all the conditions of Lemma 2.1. Since
(T (t))t 0 is a eventually compact, bounded uniformly C0-semigroup, we deduce
that the spectral set σ

(
T (1)

)
is countable and

σ
(
T (1)

) ⊂ {λ ∈ C : |λ| � 1}
(see [16], [17]). Denoting σ(T (1)) = σ1 ∪ σ2, where

σ1 ⊂ {λ ∈ C : |λ| < 1}, σ2 ⊂ {λ ∈ C : |λ| = 1}.
Let P be a projection defined as follows

P =
1

2πi

∫
γ
(zI − eA)−1dz

(see [16], [17]), where γ is a contour enclosing σ1 and disjoint from σ2. Since T (t)
commutes with the resolvent (λI − A)−1, we see that P commutes with T (t).

Let

U(t) = PT (t), V (t) = (I − P )T (t).

We have σ(U(1)) ⊂ {λ ∈ C : |λ < 1}. Hence rσ(U(1)) < 1. Thus we need only
to prove that ‖U(t)‖ � Me−ωt for all t > 0,M, ω > 0. By assumption, (T (t))t 0
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is a eventually compact semigroup. So σ2 has finitely many elements. Using the
spectral maping theorem we have

‖V (t)‖ � m < +∞, ∀t ∈ R.

Thus T (t) satisfies the conditions of Lemma 2.1 and the assertion (i) is proved.
(ii) It suffices to observe that every bounded linear operator on Rn is compact.
The theorem is proved.

Theorem 2.4. Suppose that X = H, H is Hilbert spase, and A is a compact,
self-adjoint linear operator in H. If all the solutions of (1) are bounded, then (1)
and (5) are asymptotically equivalent.

Proof. Since A ∈ L(X) is self-adjoint and compact, we have that

σ(A) = {λk : lim
k→∞

λk = 0, λk ∈ R, k = 1, 2, . . . }.
Let {ek}∞1 be an orthonomal basis of H consisting eigen-vectors of A. Then, we
can write A in the form

A = diag{λ1, λ2, . . . , λn, . . . }.
Moreover, all the solutions of (1) are bounded. Hence,

T (t) = diag{eλ1t, eλ2t, . . . , eλnt, . . . } and Reλk � 0, k = 1, 2, . . .

We deduce that (T (t))t 0 is a uniformly bounded C0-semigroup. Using Theorem
2.1 we can show that there exists a possitive constant M0 satisfying

‖T (t − t0) − N(t, t0)‖ � 2M0, ∀t ∈ R+.

Choosing ξ =
∞∑
i=1

ξiei ∈ H and denoting Pnξ =
n∑

i=1
ξiei, we see that

lim
n→∞(I − Pn)ξ = 0, ∀ξ ∈ H.

Let x(t) = T (t−t0)ξ and y(t) = N(t, t0)ξ be solutions of (1) and (5) respectively.
For every ε > 0, there exists n0 ∈ N such that

‖(I − Pn)ξ‖ <
ε

4M0
, ∀n > n0.

Taking λ0 = max{λ1, λ2, . . . , λn0} we have λ0 < 0, which implies that there exists
a number t∗ > t0 such that for any t > t∗ we get

‖[T (t − t0) − N(t, t0)]Pn0ξ‖ <
ε

2
·

Thus, for any t > t∗ and n > n0 we have

‖y(t) − x(t)‖ = ‖T (t − t0)ξ − N(t, t0)ξ‖
� ‖T (t − t0)Pn0ξ − N(t, t0)Pn0ξ‖

+ ‖T (t − t0)(I − Pn0)ξ − N(t, t0)(I − Pn0)ξ‖
� ε

2
+

ε

2
= ε,
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i.e., lim
t→∞ ‖x(t) − y(t)‖ = 0. This implies that (1) and (5) are asymptotically

equivalent. The theorem is proved.
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