
ACTA MATHEMATICA VIETNAMICA 17
Volume 31, Number 1, 2006, pp. 17-30

ON MAXIMALITY FOR SOME KINDS OF CODES
OVER TWO-LETTER ALPHABETS

KIEU VAN HUNG

Abstract. Superinfix codes, p-superinfix codes and s-superinfix codes have
been introduced and considered by D. L. Van, P. T. Huy and the author
in earlier papers. The embedding problem for these classes of codes has been
proved to have positive solution in both the finite and regular case. Also, these
kinds of codes can be characterized by means of variants of Parikh vectors.
In this paper we consider these codes in the case of two-letter alphabets.
Based on the mentioned above vector characterizations, it is shown that, for
each of the classes of codes under consideration, there exists a procedure to
generate all finite maximal codes in the class, starting from anyone among
them. Embedding algorithms, other than those obtained earlier, for these
classes of codes are also exhibited.

1. Introduction and Preliminaries

Prefix codes and suffix codes are among the simplest codes, but most of the
important problems in the theory of codes may arise for them. Superinfix codes,
p-superinfix codes and s-superinfix codes, which are particular cases of prefix
codes and suffix codes, have been introduced and considered in [3, 4, 12, 13,
14]. All these classes of codes can be defined by length-increasing transitive
binary relations. The embedding problem for these kinds of codes has been
solved positively for both the finite and regular case [3, 12, 14]. It turns out
that variants of Parikh vectors are adequate tools to characterize these codes,
especially maximal codes in corresponding classes. These codes have also some
other interesting properties, e.g. every maximal p-superinfix (s-superinfix) code
is maximal as a code.

For a given class C of codes, it is interesting to find out a way to generate all
the finite maximal codes in C. To our knowledge, this problem was solved only
for some classes of codes, namely those of bifix codes (Y. Césari [2]), infix codes,
solid codes, hypercodes (N. H. Lam [6, 7, 8]) and supercodes (D. L. Van [11]).
Binary codes, i.e. codes over two-letter alphabets, being used in most of practical
applications, are subject of many research works. In this paper we consider the
mentioned above kinds of codes in the case of two-letter alphabets. Based on
vector characterizations, it is shown that, for each of the classes of codes under

Received September 27, 2004.
2000 Mathematics Subject Classification. 94A45, 68Q45.
Key words and phrases. Complete chain, Parikh vector, independent set.

18 KIEU VAN HUNG

consideration, there exists a procedure to generate all finite maximal codes in
the class, starting from anyone among them. Embedding algorithms, other than
those obtained earlier, for these classes of codes are also exhibited. This work is
motivated by the idea of D. L. Van who characterizes supercodes as independent
sets of Parikh vector with respect to an appropriate binary and generates all the
maximal supercodes starting from an arbitrary given maximal supercode [11].

We now recall some notions, notations and facts. Let A be a finite alphabet
and A∗ the set of all the words over A. The empty word is denoted by 1 and
A+ stands for A∗ − {1}. The number of all occurrences of letters in a word u is
the length of u, denoted by |u|. A word u is called an infix (a prefix, a suffix)
of a word v if there exist words x, y ∈ A∗ such that v = xuy (resp., v = uy,
v = xu). The infix (prefix, suffix) is proper if xy �= 1 (resp., y �= 1, x �= 1), denote
by u ≺i v (resp., u ≺p v, u ≺s v). A word u is a subword of a word v if, for
some n ≥ 1, u = u1 . . . un, v = x0u1x1 . . . unxn with u1, . . . , un, x0, . . . , xn ∈ A∗.
If x0 . . . xn �= 1 then u is called a proper subword of v, denote by u ≺h v. And a
word u is called a permutation of a word v if |u|a = |v|a for all a ∈ A, where |u|a
denotes the number of occurrences of a in u.

A subset X of A+ is a code over A if any word w in X+ has exactly one
factorization into words of X. A code X is maximal over A if X is not properly
contained in any other code over A. As has been observed by several authors,
many codes can be defined by a binary relation (see [9, 10, 12, 14]). Given a
binary relation ≺ on A∗. A subset X in A∗ is an independent set with respect to
≺ (≺-independent set, for short) if any two elements of X are not in this relation.
We say that a class C of codes is defined by ≺ if these codes are exactly the
independent sets with respect to ≺. For further details of the theory of codes we
refer to [1, 5, 9].
Definition 1.1. A subset X of A+ is a superinfix (p-superinfix, s-superinfix)
code, X ∈ Cspi (resp., X ∈ Cp.spi,X ∈ Cs.spi), if no word in X is a subword
of a permutation of a proper infix (resp., prefix, suffix) of another word in X.
In other words, the classes Cspi, Cp.spi and Cs.spi of these codes have as defining
relations the following, respectively

u ≺spi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ π(v′)) : u �h v′′;

u ≺p.spi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ π(v′)) : u �h v′′;

u ≺s.spi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ π(v′)) : u �h v′′;

where π(v′) denotes the set of all permutations of v′, and �h denotes the reflexive
closure of ≺h.

A superinfix (p-superinfix, s-superinfix) code X over A is said to be maximal
if X is not properly contained in another one over A.
Example 1.1. Consider the sets X = {ab, b3a}, XR = {ba, ab3} and Y = ab∗a
over A = {a, b}. It is easy to check that X ∈ Cp.spi − Cspi, XR ∈ Cs.spi − Cspi

and Y ∈ Cspi. Moreover, Y is a maximal superinfix code over A.

ON MAXIMALITY FOR SOME KINDS OF CODES 19

Let A = {a1, a2, . . . , ak} and K = {1, 2, . . . , k}. For every u ∈ A∗, we denote
by p(u) the Parikh vector of u, namely

p(u) = (|u|a1 , |u|a2 , . . . , |u|ak
),

where |u|ai denotes the number of occurrences of ai in u. Thus p is a mapping
from A∗ into the set V k of all the k -vectors of non-negative integers. Now, to
every u ∈ A+ we associate two elements of the cartesian product V k×K, denoted
by pL(u) and pF (u), which are defined as follows

pL(u) = (p(u), l); pF (u) = (p(u), f);

where l and f are the indices of the last and the first letter in u, respectively.
Thus pL and pF are mappings from A+ into V k × K. These mappings are then
extended to sets in a standard way: pL(X) = {pL(u) | u ∈ X} and pF (X) =
{pF (u) | u ∈ X}.

Put U = {(ξ, i) ∈ V k ×K | pi(ξ) �= 0}. On U we associate a binary relation ≺
defined by

(ξ, i) ≺ (η, j) ⇔ (ξ ≤ η) ∧ (pj(ξ) < pj(η)),

where pi(ξ), 1 ≤ i ≤ k, denotes the i-th component of ξ. The relation ≺ on U , as
easily verified, is transitive. Notice that for all set X ⊆ A+, we have pL(X) and
pF (X) are subsets of U .

To every subset X of A+, we associate the sets

EX = {x ∈ X | ∃y ∈ X : p(y) < p(x)}; OX = X − EX .

Let u be a word in A+, we define the following operations

πL(u) = π(u′)b, with u = u′b, b ∈ A;

πF (u) = aπ(u′), with u = au′, a ∈ A;

πLF (u) =

{
aπ(u′)b, if |u| ≥ 2 and u = au′b with a, b ∈ A;
u, if u ∈ A;

which are extended to sets in a normal way: πL(X) =
⋃

u∈X πL(u), πF (X) =⋃
u∈X πF (u) and πLF (X) =

⋃
u∈X πLF (u). Also, we put π(X) =

⋃
u∈X π(u).

The following two results have been proved in [3].

Theorem 1.1. For any X ⊆ A+, the following assertions are equivalent

(i) X is a p-superinfix code (resp., a s-superinfix code, a superinfix code);
(ii) π(OX) ∪ πL(EX) is a p-superinfix code (resp., π(OX) ∪ πF (EX) is a s-

superinfix code, π(OX) ∪ πLF (EX) is a superinfix code);
(iii) pL(X) is a ≺-independent set (resp., pF (X) is a ≺-independent set, both

pL(X) and pF (X) are ≺-independent sets) on U .

Theorem 1.2. For any subset X of A+, X is a maximal p-superinfix (s-superinfix)
code iff pL(X) (resp., pF (X)) is a maximal ≺-independent set on U and π(OX)∪
πL(EX) = X (resp., π(OX) ∪ πF (EX) = X).

20 KIEU VAN HUNG

2. P-Superinfix (S-Superinfix) Codes

From now on, unless otherwise specified, fix A = {a, b}. We always understand
a has index 1 and b has index 2. Put

U2 = {(ξ, i) ∈ V 2 × {1, 2} | pi(ξ) �= 0}.
On U2 we introduce the relation � defined by

(ξ, i) � (η, j) ⇔(p1(ξ) ≥ p1(η)) ∧ (p2(ξ) ≤ p2(η))

∧ (p1(ξ) = p1(η) ⇒ j = 1) ∧ (p2(ξ) = p2(η) ⇒ i = 2),

where pi(ξ) denotes the i-th component of ξ. For simplicity, in the sequel we
write (p1(ξ), p2(ξ), i) instead of ((p1(ξ), p2(ξ)), i).

Lemma 2.1. We have the following assertions

(i) The relation � is transitive.
(ii) If (ξ, i) � (η, j) then {(ξ, i), (η, j)} is a ≺-independent set. Conversely, if

{(ξ, i), (η, j)} is a ≺-independent set, and p1(ξ) = p1(η), ξ ≤ η, j = 1 or
p1(ξ) > p1(η) then (ξ, i) � (η, j).

Proof. It follows immediately from definitions of � and ≺.

A finite sequence (may be empty) S: (ξ1, i1), (ξ2, i2), . . . , (ξn, in) of elements in
U2 is a chain if

(ξ1, i1) � (ξ2, i2) � · · · � (ξn, in).
The chain S is full if

∀k, 1 ≤ k ≤ n − 1, � ∃(η, j) : (ξk, ik) � (η, j) � (ξk+1, ik+1).

If the full chain S satisfies moreover the condition

p2(ξ1) = p1(ξn) = 0,

then it is said to be complete. A finite subset Z of U2 is complete if it can
be arranged to become a complete chain. For 1 ≤ s < t ≤ n we denote by
[(ξs, is), (ξt, it)] the subsequence (ξs, is), (ξs+1, is+1), . . . , (ξt, it) of the sequence S.

We give now characterizations of maximal p-superinfix and s-superinfix codes
over two-letter alphabets.

Theorem 2.1. For any finite subset X of A+, X is a maximal p-superinfix (s-
superinfix) code iff pL(X) (resp., pF (X)) is complete and X = π(OX) ∪ πL(EX)
(resp., X = π(OX) ∪ πF (EX)).

Proof. We treat only the case of p-superinfix codes. For the case of s-superinfix
codes the argument is similar. Let X be a finite maximal p-superinfix code.
By Theorem 1.2, we have pL(X) is a maximal ≺-independent set on U2 and
X = π(OX) ∪ πL(EX). Let |pL(X)| = n. Arrange pL(X) to become a sequence
S′ : (ξ′1, i′1), . . . , (ξ′n, i′n) such that p1(ξ′1) ≥ · · · ≥ p1(ξ′n). If for any different
(ξ, i), (η, j) in pL(X) with p1(ξ) = p1(η), p2(ξ) ≤ p2(η) then either p2(ξ) = p2(η)
or p2(ξ) < p2(η), j = 1 because pL(X) is a ≺-independent set. Therefore, for

ON MAXIMALITY FOR SOME KINDS OF CODES 21

every subsequence [(ξ′s, i′s), (ξ′t, i′t)] of S′, 1 ≤ s < t ≤ n, with p1(ξ′s) = · · · = p1(ξ′t),
we can arrange it to become a sequence [(ξs, is), (ξt, it)] with p1(ξs) = · · · = p1(ξt)
such that ξk ≤ ξk+1 and ik+1 = 1, for all k, s ≤ k ≤ t−1. Then, by Lemma 2.1(ii),
[(ξs, is), (ξt, it)] is a chain. By this, we obtain a sequence S : (ξ1, i1), . . . , (ξn, in)
with p1(ξ1) ≥ · · · ≥ p1(ξn) and every subsequence [(ξs, is), (ξt, it)] with p1(ξs) =
· · · = p1(ξt), is a chain. Again by Lemma 2.1(ii), for any (ξk, ik), (ξk+1, ik+1) in
S such that p1(ξk) > p1(ξk+1), 1 ≤ k ≤ n − 1, we have (ξk, ik) � (ξk+1, ik+1).
Thus, the sequence S is a chain. If p2(ξ1) �= 0 then, choosing (ξ, i) in U2 with
p1(ξ) > p1(ξ1), p2(ξ) = 0 and i = 1. Then, pL(X)∪{(ξ, i)} is still a ≺-independent
set, a contradiction. Thus p2(ξ1) = 0. Similarly we have p1(ξn) = 0. Now if there
exists (η, j) such that (ξk, ik) � (η, j) � (ξk+1, ik+1) for some k, 1 ≤ k ≤ n − 1,
then by Lemma 2.1(i) and (ii), pL(X) ∪ {(η, j)} is a ≺-independent set, which
contradicts again the maximality of pL(X). So, the sequence S is a complete
chain and, therefore, the set pL(X) is complete.

Conversely, suppose pL(X) is complete and X = π(OX)∪πL(EX). Since, as it
is easily verified by Lemma 2.1, every complete set is a maximal ≺-independent
set, again by Theorem 1.2, it follows that X is a maximal p-superinfix code.

Example 2.1. It is easy to check that, for any m,n ≥ 1, the sequence

(m, 0, 1), (m, 1, 1), . . . , (m,n − 1, 1), (m − 1, n, 2), . . . , (1, n, 2), (0, n, 2)

is a complete chain. Therefore, the set

Um,n = {(m, 0, 1), . . . , (m,n − 1, 1), (m − 1, n, 2), . . . , (0, n, 2)}
is complete. With m = 2, n = 4, for example

U2,4 = {(2, 0, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (1, 4, 2), (0, 4, 2)}.
By Theorem 2.1, X = π({a2, b4})∪πL({aba, ab2a, ab3a, ab4}) = {a2, b4, aba, ba2,
ab2a, baba, b2a2, ab3a, bab2a, b2aba, b3a2, ab4, bab3, b2ab2, b3ab} is a maximal p-
superinfix code. The set Y = π({a2, b4})∪πF ({aba, ab2a, ab3a, b4a}) is a maximal
s-superinfix code.

By Theorem 2.1, in order to characterize the finite maximal p-superinfix (s-
superinfix) codes over A = {a, b} we may characterize the complete sets instead.
For this we first consider some transformations on complete chains. Let S :
(ξ1, i1), (ξ2, i2), . . . , (ξn, in) be a complete chain.

(T1) (extension). It consists in doing consecutively the following:
• Add on the left of S an element (ξ, i) with p1(ξ) > p1(ξ1);
• If i = 1 then delete from S all elements (ξk, ik) with p2(ξk) ≤ p2(ξ), else

delete all elements (ξk, ik) with p2(ξk) < p2(ξ);
• If (ξk0 , ik0) is the first among the (ξk, ik) remained, then insert between (ξ, i)

and (ξk0 , ik0) any chain such that [(ξ, i), (ξk0 , ik0)] is a full chain;
• If there is no such a (ξk0 , ik0), then add on the right of (ξ, i) any chain ending

with a (η, 2), p1(η) = 0, and such that [(ξ, i), (η, 2)] is a full chain;

22 KIEU VAN HUNG

• Add on the left of (ξ, i) any chain begining with a (θ, 1), p2(θ) = 0, and such
that [(θ, 1), (ξ, i)] is a full chain.

(T2) (insertion). This consists of the following successive steps:
• For some k, insert in the middle of (ξk, ik) and (ξk+1, ik+1), 1 ≤ k ≤ n − 1,

an element (ξ, i) with p1(ξk) ≥ p1(ξ) ≥ p1(ξk+1);
• Delete all elements (ξt, it) on the left of (ξ, i) which satisfy one of the following

conditions
− or p2(ξt) > p2(ξ), or p2(ξt) = p2(ξ) and it = 1, or p1(ξt) = p1(ξ) and i = 2,

in the case p2(ξ) ≤ p2(ξk);
− or p1(ξt) = p1(ξ) and i = 2, if p2(ξ) > p2(ξk);

• If (ξr0 , ir0) is the last among the (ξr, ir) remained, then insert between
(ξr0, ir0) and (ξ, i) any chain such that [(ξr0 , ir0), (ξ, i)] is a full chain (by con-
vention, (ξr0 , ir0) = (ξk, ik) if no elements deleted);

• If there is no such a (ξr0 , ir0), then add on the left of (ξ, i) any chain com-
mencing with a (θ, 1), p2(θ) = 0, and such that [(θ, 1), (ξ, i)] is a full chain;

• Delete all elements (ξt, it) on the right of (ξ, i) which satisfy one of the
following conditions

− or p1(ξt) = p1(ξ) and it = 2, or p2(ξt) = p2(ξ) and i = 1, in the case
p2(ξ) ≤ p2(ξk);

− or p2(ξt) < p2(ξ), or p2(ξt) = p2(ξ) and i = 1, or p1(ξt) = p1(ξ) and it = 2,
in the case p2(ξ) > p2(ξk);

• If (ξr0 , ir0) is the first among the (ξr, ir) remained, then insert between (ξ, i)
and (ξr0 , ir0) any chain such that [(ξ, i), (ξr0 , ir0)] is a full chain (by convention,
(ξr0, ir0) = (ξk+1, ik+1) if no elements deleted);

• If there is no such a (ξr0, ir0), then add on the right of (ξ, i) any sequence
ending with a (η, 2), p1(η) = 0, and such that [(ξ, i), (η, 2)] is a full chain.

Theorem 2.2. The following assertions hold true

(i) The transformations (T1) and (T2) preserve the completeness of a chain.
(ii) Any complete chain can be obtained from another one by a finite number of

applications of the transformations (T1) and (T2).
(iii) Every chain S can be embedded in a complete chain by a finite number of

applications of the transformations (T1) and (T2).

Proof. (i) Easily seen by the definitions of (T1) and (T2).
(ii) Let S: (ξ1, i1), . . . , (ξn, in) and S′: (η1, j1), . . . , (ηm, jm) be two complete

chains. To obtain S′ from S we can do as follows. According as p1(η1) > p1(ξ1)
or p1(η1) ≤ p1(ξ1) we apply to S the transformations (T1) or (T2) with (ξ, i) =
(η1, j1). In any case we obtain a complete chain S(1) commencing with (η1, j1).
Suppose S(k), 1 ≤ k ≤ m − 1, have been constructed, which is a complete chain
commencing with (η1, j1), . . . , (ηk, jk). Let S(k) : (η1, j1), . . . , (ηk, jk), (θk+1, tk+1),
. . . , (θr, tr). We construct S(k+1) as follows. If p1(ηk+1) ≥ p1(θk+1) then, since

ON MAXIMALITY FOR SOME KINDS OF CODES 23

p1(ηk) ≥ p1(ηk+1), we may apply (T2) to insert (ηk+1, jk+1) in the middle
of (ηk, jk) and (θk+1, tk+1). Because S′ is complete, in the chain obtained,
(ηk+1, jk+1) must be next to (ηk, jk). If p1(ηk+1) < p1(θk+1) then, since p1(θk+1) ≥
· · · ≥ p1(ηk+s+1) ≥ p1(θr), there exists s ≥ 1 such that p1(ηk+1) = p1(θk+s+1).
Let (θk+s+1, tk+s+1) be the leftmost element in S(k) such that p1(ηk+1) = p1(θk+s+1).
Then, p1(θk+s) > p1(ηk+1) = p1(θk+s+1). If either p2(ηk+1) > p2(θk+1) or
p2(ηk+1) = p2(θk+1) and tk+1 = 2 then it follows that (ηk, jk) � (θk+1, tk+1) �
(ηk+1, jk+1), a contradiction with the completeness of S′. So we must have either
p2(ηk+1) < p2(θk+1) or p2(ηk+1) = p2(θk+1) and tk+1 = 1. Since p1(θk+s) >
p1(ηk+1) = p1(θk+s+1), we may apply (T2) to insert (ηk+1, jk+1) in the mid-
dle of (θk+s, tk+s) and (θk+s+1, tk+s+1). Because either p2(ηk+1) < p2(θk+1) or
p2(ηk+1) = p2(θk+1) and tk+1 = 1, it follows that (θk+1, tk+1) will be deleted and
in the chain obtained, (ηk+1, jk+1) must be next to (ηk, jk). Thus, in any case,
the chain obtained is complete and commences with (η1, j1), . . . , (ηk+1, jk+1). We
take this chain to be S(k+1). As p1(ηm) = 0, S(m) must coincide with S′.

(iii) Given a chain S : (θ1, t1), . . . , (θk, tk). Choose S′ to be any complete
chain. Similarly as above, we may apply to S′ appropriate transformations (T1)
and (T2), to “enter” S : (θ1, t1), . . . , (θk, tk) consecutively. Notice that, always
entering (θi+1, ti+1), i ≥ 1, on the right of (θi, ti) for does not delete any of
(θ1, t1), . . . , (θi, ti) which have been entered previously.

Example 2.2. Consider the chain S : (4, 1, 1), (2, 3, 2), (2, 5, 1). We try to embed
S in a complete chain by using (T1) and (T2). For this, we choose an arbitrary
complete chain S′, say S′ : (3, 0, 1), (3, 1, 1), (2, 2, 2), (1, 2, 2), (0, 2, 2) (S′ = U3,2,
see Example 2.1, and manipulate like this:

• Applying (T1) to S′ with (ξ, i) = (4, 1, 1) we obtain from step to step the
following sequences, where underline indicates the elements added in every step.

(4, 1, 1), (3, 0, 1), (3, 1, 1), (2, 2, 2), (1, 2, 2), (0, 2, 2);

(4, 1, 1), (2, 2, 2), (1, 2, 2), (0, 2, 2);
(4, 1, 1), (3, 2, 2), (2, 2, 2), (1, 2, 2), (0, 2, 2);

(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (2, 2, 2), (1, 2, 2), (0, 2, 2).

• Applying (T2) to the last chain with (ξ, i) = (2, 3, 2) we obtain successively
(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (2, 3, 2), (2, 2, 2), (1, 2, 2), (0, 2, 2);

(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2);

(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2), (1, 3, 2), (0, 3, 2).

• Applying (T2) to the last chain with (ξ, i) = (2, 5, 1) such that (ξ, i) is to the
right of (2, 3, 2), we obtain

(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2), (2, 5, 1), (1, 3, 2), (0, 3, 2);

(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2), (2, 3, 1), (2, 4, 1), (2, 5, 1);

(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2), (2, 3, 1), (2, 4, 1), (2, 5, 1),
(1, 6, 2), (0, 6, 2).

24 KIEU VAN HUNG

The last chain (5, 0, 1), . . . , (0, 6, 2) is a complete chain containing S.
As a consequence of Theorem 2.2 we have

Theorem 2.3. Let A be a two-letter alphabet. Then, we have

(i) There exists a procedure to generate all the finite maximal p-superinfix (s-
superinfix) codes over A starting from an arbitrary given finite maximal
p-superinfix (s-superinfix, resp.) code.

(ii) There is an algorithm allowing to construct, for every finite p-superinfix (s-
superinfix) code X over A, a finite maximal p-superinfix (s-superinfix, resp.)
code Y containing X.

Proof. We treat only the case of p-superinfix codes. The reasonements for the
case of s-superinfix codes is similar.

(i) Let X be a given finite maximal p-superinfix code. Compute first pL(X),
which is a complete set. Arrange pL(X) to become a complete chain S. By
Theorem 2.2(ii), every possible complete chain, hence every complete set, can be
obtained from S by a finite number of applications of the transformations (T1)
and (T2). The inverse images of all such sets with respect to the mapping pL

give all the possible finite maximal p-superinfix codes.
(ii) Let X be a finite p-superinfix code. By Theorem 1.1, pL(X) is a ≺-

independent set on U2. So it can be arranged to become a chain S. By Theo-
rem 2.2(iii), we can construct a complete chain S′ containing S. Let T be the com-
plete set corresponding to S′. Put Y = p−1

L (T). Evidently Y = π(OY)∪πL(EY),
Y contains X and pL(Y) = T . Thus, by Theorem 2.1, Y is a finite maximal
p-superinfix code.

Example 2.3. Let X = {ab5a, a2b3, ba4}. Since

pL(X) = {(2, 5, 1), (2, 3, 2), (4, 1, 1)}
is a ≺-independent set on U2, by Theorem 1.1, X is a p-superinfix code over
A. The corresponding chain of pL(X) is S : (4, 1, 1), (2, 3, 2), (2, 5, 1). By Ex-
ample 2.2, the sequence S′: (5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2),
(2, 3, 1), (2, 4, 1), (2, 5, 1), (1, 6, 2), (0, 6, 2) is a complete chain containing S. The
corresponding complete set of S′ is

T = {(5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2),

(2, 3, 1), (2, 4, 1), (2, 5, 1), (1, 6, 2), (0, 6, 2)}.
So Y = p−1

L (T) is a finite maximal p-superinfix code containing X. More explic-
itly, Y = π(Z) ∪ πL(Z ′) with Z = {a5, a4b, a3b2, b2a3, b6} and Z ′ = {b4a2, b5a2,
ab6}.

3. Superinfix Codes

Put W 2 = {(ξ, i) ∈ U2 | pi(ξ) ≥ 2} ∪{(1, 0, 1), (0, 1, 2)} and G = A ∪ aA∗a ∪
bA∗b. A ≺-independent set Z on U2 is called a weakly maximal ≺-independent
set if Z ∪ {w} is not a ≺-independent set, for all w ∈ W 2.

ON MAXIMALITY FOR SOME KINDS OF CODES 25

In order to characterize maximal superinfix codes by means of weakly maximal
≺-independent sets on U2. We need first some lemmas.

Lemma 3.1. If X is a maximal superinfix code over a finite alphabet A then
pL(X) = pF (X).

Proof. Let X be a maximal superinfix code over A. By Theorem 1.1, it follows
that X = π(OX) ∪ πLF (EX). Therefore, pL(X) = pL(π(OX)) ∪ pL(πLF (EX))
and pF (X) = pF (π(OX)) ∪ pF (πLF (EX)). Since pL(π(OX)) = pF (π(OX)) it
suffices to show that pL(πLF (EX)) = pF (πLF (EX)). Assume q ∈ pL(πLF (EX)),
it means q = pL(x) for some x ∈ πLF (EX). Suppose x = aiwaj and x′ = ajwai

with ai, aj ∈ A,w ∈ A∗. Since p(x′) = p(x), it follows that x′ /∈ π(OX). If
x′ /∈ πLF (EX) then X ∪ {x′} is not a superinfix code because X is a maximal
superinfix code. Then either x′ ≺spi z or z ≺spi x′ for some z ∈ X. By definition
of ≺spi, it follows that x ≺spi z or z ≺spi x, which contradicts the fact that X
is a superinfix code. Thus x′ ∈ πLF (EX). Hence q = pF (x′) ∈ pF (πLF (EX))
and therefore pL(πLF (EX)) ⊆ pF (πLF (EX)). Similarly we have pF (πLF (EX)) ⊆
pL(πLF (EX)). So pL(πLF (EX)) = pF (πLF (EX)) and hence pL(X) = pF (X).

Lemma 3.2. If X is a superinfix code over A then EX ⊆ G.

Proof. Let X be a superinfix code over A and let x ∈ EX but x /∈ G. As
x ∈ EX , it follows that there is y ∈ OX with p(y) < p(x). Since x /∈ G, we
have x ∈ aA∗b ∪ bA∗a, and hence there exists x′, x′ ≺i x such that p(y) ≤ p(x′).
Therefore, y ≺spi x, i. e. X is not a superinfix code, a contradiction. So x ∈ G
and hence EX ⊆ G.

Lemma 3.3. If X ⊆ G then πL(X) ∩ πF (X) = πLF (X).

Proof. For any Y ⊆ A∗, by definitions of πL(Y), πF (Y) and πLF (Y), we have
πLF (Y) ⊆ πL(Y) and πLF (Y) ⊆ πF (Y). Therefore, πLF (Y) ⊆ πL(Y) ∩ πF (Y).
Let X ⊆ G. By the above, it suffices to show that πL(X)∩πF (X) ⊆ πLF (X). The
assertion is true if for all g ∈ G, we have πL(g) ∩ πF (g) ⊆ πLF (g). If g ∈ A then
the inclusion is trivial. Suppose g = aua with u ∈ A∗, and let x ∈ πL(g)∩πF (g).
Then x = ava with av ∈ π(au). We shall prove that v ∈ π(u). Note that for any
w ∈ A∗, by definitions of p(w) and π(w), we have t ∈ π(w) iff p(t) = p(w). If now
v /∈ π(u) then, by the above, p(v) �= p(u). Therefore, p(av) �= p(au). Again by
the above, av /∈ π(au), which contradicts with av ∈ π(au). Thus v ∈ π(u) and
hence x ∈ πLF (g).

Theorem 3.1. For any subset X of A+, X is a maximal superinfix code iff
pL(X) = pF (X) and it is a weakly maximal ≺-independent set on U2, and
π(OX) ∪ πLF (EX) = X.

Proof. Let X be a maximal superinfix code. By Lemma 3.1, pL(X) = pF (X). By
Theorem 1.1, π(OX)∪πLF (EX) = X and pL(X) is a ≺-independent set on U2. If
pL(X) were not a weakly maximal then ∃t ∈ W 2 − pL(X) such that pL(X) ∪ {t}
is still a ≺-independent set. Let t = (ξ, i). According as t ∈ {(1, 0, 1), (0, 1, 2)} or

26 KIEU VAN HUNG

t ∈ U2 with pi(ξ) ≥ 2, we can choose a word u such that u ∈ {a, b}, or p(u) = ξ
and i is the index of the last and the first letter in u. Thus, in any case, we have
pL(u) = pF (u) = t. Since t = pL(u) /∈ pL(X), it follows that u /∈ X. We have
pL(X∪{u}) = pL(X)∪{t} = pF (X)∪{t} = pF (X∪{u}). Again by Theorem 1.1,
X ∪ {u} is both a p-superinfix code and a s-superinfix code, i.e. X ∪ {u} is a
superinfix code, a contradiction with the maximality of X.

Conversely, let pL(X) = pF (X) and it is a weakly maximal ≺-independent
set on U2, and π(OX) ∪ πLF (EX) = X. By Theorem 1.1, X is a superinfix
code. Assume that X is not maximal as a superinfix code. Then, there exists
y, 1 �= y /∈ X such that Y = X ∪ {y} is still a superinfix code. We consider the
following two cases.

• Case 1: y ∈ G. Then pL(y) = pF (y) = q ∈ W 2. As X is a superinfix code,
by Lemma 3.2, we have EX ⊆ G. By Lemma 3.3, πL(EX)∩πF (EX) = πLF (EX).
Therefore, if q ∈ pL(X) = pF (X) then y ∈ πL(X)∩πF (X) ⊆ π(OX)∪πLF (EX) =
X, a contradiction to y /∈ X. Thus q /∈ pL(X). Again by Theorem 1.1, pL(X ∪
{y}) = pL(X) ∪ {q} is still a ≺-independent set, which contradicts the weakly
maximality of pL(X).

• Case 2: y /∈ G. Then, since y �= 1, either y ∈ {ab, ba} or |y| > 2. If y ∈
{ab, ba} then, by Y is a superinfix code, Y ⊆ {am, ab, ba, bn | for some m,n ≥ 2}.
Therefore, pL(X) = pL(Y − {y}) is not a weakly maximal ≺-independent set on
U2, a contradiction. Thus |y| > 2, and hence either |y|a ≥ 2 or |y|b ≥ 2. Without
loss of generality we may assume that |y|a ≥ 2. Then, there exists y′ ∈ π(y)
such that y′ = aua with u ∈ A+, i.e. y′ ∈ G. Suppose that X ∪ {y′} is not
a superinfix code. By definition, there is x ∈ X such that either x ≺spi y′ or
y′ ≺spi x. If x ≺spi y′ then p(x) < p(y′) = p(y). Consequently y ∈ EY , and hence
y ∈ G by Lemma 3.2, a contradiction with y /∈ G. If y′ ≺spi x then, evident,
y ≺spi x, which contradicts the Y is a superinfix code. Thus, X ∪ {y′} is also a
superinfix code. By Case 1, pL(X ∪ {y′}) = pL(X) ∪ {q′} with q′ ∈ W 2 − pL(X),
is a ≺-independent set, a contradiction.

So X must be maximal as a superinfix code.

Example 3.1. Let m,n ≥ 2 and k ≥ 1. Consider the sets X = {am, ab, ba, bn},
Y = {ak, b} and Z = {a, bk} over A. We have evidently EX = EY = EZ = ∅.
A simple verification leads to π(OX) ∪ πLF (EX) = X, π(OY) ∪ πLF (EY) = Y ,
π(OZ) ∪ πLF (EZ) = Z, and

pL(X) = pF (X) = {(m, 0, 1), (1, 1, 2), (1, 1, 1), (0, n, 2)},
pL(Y) = pF (Y) = {(k, 0, 1), (0, 1, 2)},
pL(Z) = pF (Z) = {(1, 0, 1), (0, k, 2)}.

It is easy to check that pL(X), pL(Y) and pL(Z) are weakly maximal ≺-independent
sets on U2. By virtue of Theorem 3.1, we may conclude that X, Y and Z are
maximal superinfix codes over A.

In the rest of this section, we shall give a procedure to generate all the finite
maximal superinfix codes, starting from an arbitrary given full uniform code, and

ON MAXIMALITY FOR SOME KINDS OF CODES 27

an algorithm to embed a finite superinfix code in a finite maximal one. For this,
we need the following lemma.

Lemma 3.4. Let S : (u1, u2, s), (v11, v12, i1), . . . , (vk1, vk2, ik), (w1, w2, t), k ≥ 1
be a full chain with (u1, u2, s), (w1, w2, t) ∈ W 2 and (vj1, vj2, ij) ∈ U2 − W 2 for
all j ∈ {1, . . . , k}. Then S has one of the following forms

(i) S0
m,n : (m, 0, 1), (m − 1, 1, 2), . . . , (1, 1, 2), (1, 1, 1), (1, 2, 1), . . . , (1, n − 1, 1),

(0, n, 2), with m,n ≥ 2.
(ii) S0

m,1 : (m, 0, 1), (m − 1, 1, 2), . . . , (m − i, 1, 2), . . . , (1, 1, 2), (0, 1, 2), with
m ≥ 2.

(iii) S0
1,n : (1, 0, 1), (1, 1, 1), . . . , (1, n − i, 1), . . . , (1, n − 1, 1), (0, n, 2), with n ≥ 2.

(iv) S1
m,n : (m, 0, 1), (m − 1, 1, 2), . . . , (n, 1, 2), (n, 1, 1), with m > n ≥ 2.

(v) S2
m,n : (1,m, 2), (1,m, 1), (1, m + 1, 1), . . . , (1, n − 1, 1), (0, n, 2), with

n > m ≥ 2.

Proof. Since s, t ∈ {1, 2}, only the following cases are possible.
• Case 1: s = t = 1. The full chain S has the form

S : (u1, u2, 1), . . . , (vj1, 1, 2), . . . , (w1, w2, 1), 1 ≤ j ≤ k,

with 0 ≤ u2 ≤ 1 ≤ w2 and u1 ≥ vj1 ≥ w1 ≥ 2. If w2 > 1 then, by S is a chain,
vk1 = w1, but we have (vk1, 1, 2) � (w1, w2, 2) � (w1, w2, 1), which contradicts the
fullness of S. Thus w2 = 1. Also, we have u2 = 0 by S is a chain. Therefore, S
has the form

S : (u1, 0, 1), . . . , (vj1, 1, 2), . . . , (w1, 1, 1).

Since S is a full chain, we must have S = S1
m,n with m > n ≥ 2.

• Case 2: s = 1, t = 2. If u1, w2 ≥ 2 then S has the form

S : (u1, u2, 1), . . . , (vi1, 1, 2), . . . , (1, vj2, 1), . . . , (w1, w2, 2),

with 0 ≤ u2 ≤ 1 and 1 ≥ w1 ≥ 0. By definition of S, it is easy to verify that
u2 = w1 = 0. Therefore, since S is a full chain, we must have S = S0

m,n with
m,n ≥ 2. If u1 ≥ 2 and (w1, w2, 2) = (0, 1, 2) then S has the form

S : (u1, u2, 1), . . . , (vi1, 1, 2), . . . , (0, 1, 2),

with 0 ≤ u2 ≤ 1. Clearly, u2 = 0. As S is a full chain, it follows that S = S0
m,1

with m ≥ 2. Similarly, if (u1, u2, 1) = (1, 0, 1) and w2 ≥ 2 then S = S0
1,n with

n ≥ 2.
• Case 3: s = 2, t = 1. Then, we have u1 ≥ w2 ≥ 2 and w2 ≥ u2 ≥ 2. Since

every element in U2 − W 2 has the form either (r, 1, 2) or (1, r′, 1), therefore, we
cannot insert between (u1, u2, 2) and (w1, w2, 1) any elements in U2 − W 2.

• Case 4: s = t = 2. In the same way as in Case 1, we obtain S = S2
m,n.

To every subset T of U2, we set

ET = {(ξ, i) ∈ T | ∃(η, j) ∈ T : η < ξ}; OT = T − ET .

28 KIEU VAN HUNG

The following result shows relationship between complete chains and maximal
superinfix codes.

Theorem 3.2. Every complete chain S always contains a weakly maximal ≺-
independent set T on U2 such that SR = p−1(O′

T) ∪ (p−1
L (ET) ∩ p−1

F (ET)) is a
maximal superinfix code over A, where O′

T = {ξ | (ξ, i) ∈ OT }.
Proof. Since S is a complete chain, only the following cases possible.

• Case 1: S = S0, with S0 : (1, 0, 1), (0, 1, 2). Clearly, T = S is a weakly
maximal ≺-independent set, and SR = A is a maximal superinfix code over A.

• Case 2: S has one of the forms S0
m,n, S0

m,1 and S0
1,n. The assertion is obvious

by Example 3.1.
• Case 3: S : (m, 0, 1), . . . , (0, n, 2) with m,n ≥ 2, and S has not one of the

forms in Cases 1 and 2. Put T = S − {(θ, t) | (θ, t) ∈ U2 − W 2}. Then T �= ∅
and hence SR �= ∅. By definition, OSR

= p−1(O′
T) = π(OSR

) and

p−1
L (ET) ∩ p−1

F (ET) = πL(ESR
) ∩ πF (ESR

).

Therefore, by Lemma 3.3, SR = π(OSR
) ∪ πLF (ESR

). If T = S then, evident,
pL(SR) = pF (SR) = T and it is a weakly maximal ≺-independent set. Thus,
by Theorem 3.1. SR is a maximal superinfix code. Suppose now T ⊂ S. Then,
always there exist sub-chains of S such that every sub-chain S′ of S, S′ has the
form (ξ, i), (θ1, t1), . . . , (θk, tk), (η, j) with k ≥ 1, (ξ, i), (η, j) ∈ W 2 and (θ1, t1),
. . . , (θk, tk) ∈ U2 − W 2. Clearly, S′ has not one of the forms S0, S0

m,n, S0
m,1 and

S0
1,n. By Lemma 3.4, we may check that � ∃(θ′, t′) ∈ W 2 such that (ξ, i) � (θ′, t′) �

(η, j). Therefore, T must be a weakly maximal ≺-independent set on U2. A direct
verification shows that T ⊆ pL(SR) = pF (SR) ⊆ S. Hence, pL(SR) = pF (SR)
and it is a weakly maximal ≺-independent set on U2. Again by Theorem 3.1, SR

must be a maximal superinfix code.

Recall that the set Ak, k ≥ 1, is called a full uniform code. As a consequence
of Theorems 2.2 and 3.2 we obtain

Theorem 3.3. Let A be a two-letter alphabet. Then, we have

(i) There exists a procedure to generate all the finite maximal superinfix codes
over A starting from an arbitrary given full uniform code.

(ii) There is an algorithm allowing to construct, for every finite superinfix code
X over A, a finite maximal superinfix code Y containing X.

Proof. (i) Let X = Ak for k ≥ 1. Compute first pL(X), which is a complete set.
Arrange pL(X) to become a complete chain S. By Theorem 2.2(ii), every possible
complete chain S′, can be obtained from S by a finite number of applications of
the transformations (T1) and (T2). According to Theorem 3.2, S′

R is a finite
maximal superinfix code. By this, we can obtain all the possible finite maximal
superinfix codes.

(ii) Let X be a finite superinfix code. Then, by Theorem 1.1, pL(X) is a
≺-independent set on U2. So it can be arranged to become a chain S. By

ON MAXIMALITY FOR SOME KINDS OF CODES 29

Theorem 2.2(iii), we can construct a complete chain S′ containing S. Thus, by
Theorem 3.2, S′

R is a finite maximal superinfix code which contains X.

Example 3.2. Let X = {ab5a, ba2b2, aba3}. Since

pL(X) = {(2, 5, 1), (2, 3, 2), (4, 1, 1)} = pF (X),

and it is a ≺-independent set on U2, by Theorem 1.1, X is a superinfix code over
A. The corresponding chain of pL(X) is S : (4, 1, 1), (2, 3, 2), (2, 5, 1). As has
been shown in Example 2.2, the sequence S′: (5, 0, 1), (4, 1, 2), (4, 1, 1), (3, 2, 2),
(3, 2, 1), (2, 3, 2), (2, 3, 1), (2, 4, 1), (2, 5, 1), (1, 6, 2), (0, 6, 2) is a complete chain
containing S. The weakly maximal ≺-independent set on U2 is

T = {(5, 0, 1), (4, 1, 1), (3, 2, 2), (3, 2, 1), (2, 3, 2),

(2, 3, 1), (2, 4, 1), (2, 5, 1), (1, 6, 2), (0, 6, 2)}.
So S′

R = p−1(O′
T) ∪ (p−1

L (ET) ∩ p−1
F (ET)) is a finite maximal superinfix code

containing X, where O′
T = {(5, 0), (4, 1), (3, 2), (2, 3), (0, 6)} and ET = {(2, 4, 1),

(2, 5, 1), (1, 6, 2)}. More explicitly, S′
R = π(Y)∪πLF (Z) with Y = {a5, a4b, a3b2,

b2a3, b6} and Z = {ab4a, ab5a, bab5}.
Acknowledgment

The author would like to thank his colleagues at the seminar Mathematical
Foundation of Computer Science of Institute of Mathematics for useful discussions
and attention to the work. Especially, the author is indebted to Professor Do
Long Van and Professor Phan Trung Huy for critically reading the manuscript
and helping improve the presentation.

References

[1] J. Berstel and D. Perrin, Theory of codes, Academic Press, New York, 1985.
[2] Y. Césari, Sur un algorithme donnant les codes bipréfixes finis, Math. System Theory 6

(1972), 221–225.
[3] K. V. Hung, P. T. Huy and D. L. Van, On some classes of codes defined by binary relations,

Acta Math. Vietnam. 29 (2004), 163–176.
[4] K. V. Hung, P. T. Huy and D. L. Van, Codes concerning roots of words, Vietnam J. Math.

32 (2004), 345–359.
[5] H. Jürgensen and S. Konstatinidis, Codes, in: G. Rozenberg and A. Salomaa (Eds.), Hand-

book of formal languages, Springer, Berlin, 1997, 511–607.
[6] N. H. Lam, Finite maximal infix codes, Semigroup Forum 61 (2000), 346–356.
[7] N. H. Lam, Finite maximal solid codes, Theoret. Comput. Sci. 262 (2001), 333–347.
[8] N. H. Lam, Maximal independent sets in certain subword orders, in Proceedings of MFI’99,

World Scientific, 2005, 95–110.
[9] H. J. Shyr, Free monoids and languages, Hon Min Book Company, Taichung, 1991.

[10] H. J. Shyr and G. Thierrin, Codes and binary relations, “Sèminarie d’Algèbre, Paul Dubreil,
Paris (1975-1976)”, LNM 586 Springer-Verlag, 180–188.

[11] D. L. Van, On a class of hypercodes, in: M. Ito and T. Imaoka (Eds.), Words, Languages
and Combinatorics III, World Scientific, 2003, 171–183.

[12] D. L. Van and K. V. Hung, An approach to the embedding problem for codes defined by
binary relations, in Proceedings of CAI, Greece, 2005, 111–127.

30 KIEU VAN HUNG

[13] D. L. Van and K. V. Hung, Characterizations of some classes of codes defined by binary
relations, to appear in Volume in honor of Professor R. Siromoney, World Scientific, 2005.

[14] D. L. Van, K. V. Hung and P. T. Huy, Codes and length-increasing transitive binary rela-
tions, LNCS 3722, Springer, 2005, 29–48.

Department of Computer Science
Hanoi Pedagogical University No. 2
Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam

E-mail address: hungkv@hn.vnn.vn

