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CONVERGENCE OF ADAPTED SEQUENCES IN BANACH
SPACES WITHOUT THE RADON-NIKODYM PROPERTY

DINH QUANG LUU

ABSTRACT. An adapted sequence (X,) of Pettis integrable functions is said
to be a game fairer with time iff for every € > 0 there exists p € N such that
for all n > ¢ > p we have P(||E¢(Xn) — Xq|| > €) < e. We prove some Pettis
mean and almost sure convergence results for such games in Banach spaces
without the Radon-Nikodym property.

1. INTRODUCTION

Recently, several martingale generalizations of Pettis integrable functions in
general Banach spaces have been considered by Uhl (1977), Musial (1980), Egghe
(1984), Maraffa (1988), Davis et al. (1990), Edgar and Sucheston (1992), Krupa
and Zieba (1996), Luu (1997), Bouzar (2001) and others. The main aim of this pa-
per is to extend some convergence results of these authors to (weak) games fairer
with time of Pettis integrable functions in Banach spaces without the Radon-
Nikodym property. Namely, after giving some fundamental notations and defi-
nitions in the next section, using a general Vitali convergence results for Pettis
integrals we shall prove in Section 3 some Pettis mean convergence theorems
for games fairer with time. Almost sure (a.s.) convergence of mils, a class of
games fairer with time, is the subject of Section 4, where as a consequence, some
important versions of the Ito-Nisio theorem (cf. [6]) are given.

2. NOTATIONS AND DEFINITIONS

Throughout the paper, let (2, F, P) be a complete probability space, (F,) a
nondecreasing sequence of complete subo-fields of F with F,, T F and T the set
of all bounded stopping times for (F,,). Given a (real) Banach space E, we denote
by M(E) the collection of all strongly F-measurable functions X :  — E. Such
an X is said to be Bochner integrable, write X € L'(IE), or Pettis integrable, write
X € PY(E), respectively, if its L'-norm

B(IXI) = [ 1X]aP < o
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or its Pettis norm
F(IX]l) = sup{E(|{z", X)]) : 2" € B(E")} < o0,
where B(E*) denotes the closed unit ball of the topological dual E* of E.

It is known that the Banach space L'(E) coincides with P!(E) if and only if
dimE < oo and for every X € P}(E) we have

(2.1) sup {[lo[LaX][[} < F([|X]]) < 2sup{[lo[1aX]]},
AeF AeF

where 14 is the characteristic function of A € F and v[Y] is the Pettis integral
of Y € PY(E). Unless otherwise stated, from now on we shall consider only the
sequences (X,,) in P}(E) for which each X,, is strongly F,-measurable and the
Pettis F,-conditional expectation E4(X,,) exists for every 1 < ¢ < n. Thus by
the Pettis measurability theorem, we can assume that E is separable. However,
it should be noted that an X € P(E) would fail to have the Pettis .A-conditional
expectation for some subo-field A of F, if it is not bounded enough. For more
information of P!(E), the interested reader is refered to [16].

Now let us recall the following notions.

Definition 2.1. A sequence (X,,) in P'(E) is said to be

(a) an amart (cf. [4]) if the net (v[X;]) converges in norm, where X, (w) =
Xr(w)(w) for every w € Q and 7 € T,

(b) a mil (cf. [7]) if for every € > 0 there exists p € N such that for all n > p
we have
(2.2) P( sup ||Ey(X,) — X4 >¢) <e,
PGS
where E,(X,,) denotes the Pettis F,-conditional expectation of X,,. More gener-
ally, if for every z* € E* the sequence ((z*, X,,)) is a mil, then (X,) is called a
weak mal (cf. [10]).

It is easy to construct examples to show that both an amart and a mil are
weak mils, but any of the converse implications fails. We will extend some Pettis
mean and a.s. convergence results of Uhl [18], Musial [13], Davis et al. [3], Edgar
and Sucheston [4], Krupa and Zieba [8] and Bouzar [1] for amarts to the following
class of (weak) games fairer with time.

Definition 2.2. A sequence (X,,) in P!(E) is said to be a game which becomes
fairer with time (cf. [9]) if for every € > 0 there exists p € N such that for all
n = q 2 p we have

(2.3) P(|Ey(Xn) — X4l > €) <e.

More generally, if for every x* € E* the sequence ((x*, Xn>) is a real-valued game
fairer with time, then (X,,) is called a weak game fairer with time.

It is easily checked that, by (2.2) and (2.3), every (weak) mil is a (weak) game
fairer with time, but the converse fails.
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3. PETTIS MEAN CONVERGENCE OF GAMES FAIRER WITH TIME

Recall that a sequence (X,,) in M (E) is said to be converging scalarly a.s. (resp.
scalarly in probability) to some X € M(E) iff for every z* € E* the sequence
((:E*,Xn>) converges a.s. (resp. in probability) to (x*, X). Related to the scalar
a.s. and Pettis mean convergence in P!(IE), Edgar and Sucheston proved in ([4],
Proposition 5.3.6, p. 199) that if (X,,) is a uniformly Pettis continuous, i.e.

(3.1) P(lgloitelgF(lllAXnH) 0,

and it converges scalarly a.s. to some X € M(E), then (X,,) converges also to X
in the Pettis norm. Unfortunately, the result is wrong even for an L,.-bounded
sequential amart (X,,) in f9, i.e. for every increasing sequence (7,) of T the
sequence (E(XT”)) converges weakly in E. Indeed, as a counter-example, let
X, = ep, where (e,) is the usual basis of f5. It is easily seen that (X,,) is an
L,.-bounded sequential amart in ¢5 which converges weakly to zero everywhere.
However, it never converges to zero in the Pettis norm, since E( HXnH) =1
for every n € N. The following general Vitali convergence result is not only a
correction for the above statement of Edgar and Sucheston, but also a starting
point of our investigation.

Proposition 3.1 (Vitali convergence theorem for Pettis integrals). Let (X,,) be
a uniformly Pettis continuous sequence in P(E). Suppose that (X,,) converges
scalarly in probability to some X € M(E). Then X € PYE). Consequently,
the sequence (v[14X,]) converges weakly to v[14X] uniformly A € F, i.e. for
every x* € E* the sequence ((z*,v[14Xy])) converges to (x*,v[14X]) uniformly
inAeF.

Suppose more that (X,,) converges to X in probability. Then it also converges
to X in the Pettis norm, hence the sequence (v[14X,]) converges in norm to
v[1aX] uniformly in A € F.

Proof. Let (X,,) and X be as assumed in the proposition. Then by the usual Vitali
convergence theorem for Lebesgue integrals, the sequence ((x*,Xn>) converges
in LY(R) to (z*, X) for every * € E*. This with the uniform Pettis continuity of
(X,,) guarantees the P-absolute continuity of the family {(z*, X) : 2* € B(E*)}
of scalar functions, i.e. for every ¢ > 0 there exists § > 0 such that if A € F with
P(A) <6, then

(3.2) sup {E([{(z",14X)|)} <e.
z*€B(E*)

Now define A,, = {||X|| < n},n € N. Then each Pettis integral v[14, X] is
equal to the Bochner integral E(14,X) and P(2\ A,,) | 0 as n | co. We shall
show that the sequence (E (14,X )) is Cauchy in norm. To see that, let ¢ > 0 be
given. There exists 0 > 0 such that if A € F with P(A) < ¢, then A satisfies
(3.2). Thus if we choose ng € N such that P(2\ 4,,) < ¢ then, by (3.2), for all
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n > m = ng we have

[1E(1a,X) = E(1a,, X)| = sup {[(z", E(La,\a,, X))}
z*€B(E*)

< sup{ / |<a:*,X>|}
o€ B(EX)

n m)

< sup { / |(:L"*,X>|}<6.
c*eB(E*) .

) )

It means that the sequence E(14,X) is Cauchy in norm. Similarly, for every
A € F the sequence E(14n4,X) is also Cauchy in norm, hence it converges
strongly to some x4 € E. It is easily checked that in the case, for every z* € E*
we have

(x*,xa) = /(:E*,X)dP.
A

In other words, X € P}(E) and for every A € F one obtains v[14X] = x4. Con-
sequently, by (1.1) the sequence (v[14X,,]) converges weakly to v[14X] uniformly
in A € F, since for every z* € E* we have

sup|(z*, v[14Xy]) — (", v[1aX])| < E(|(z*, X,, — X)|).
AeF

This proves the first part of the proposition. Now suppose more that (X,,) con-
verges to X in probability. We shall show that (X,,) also converges to X in the
Pettis norm. To see this, let € > 0 be given. By the uniform Pettis continuity of
(X), there exists 6 > 0 such that if A € F with P(A) < J, then

g
(3.3) supF'([[14, X1]) < 3.
neN

Further, choose a subsequence (ny) of N such that the subsequence (X, ) con-
verges a.s. to X. By the Fatou lemma and (3.3), for every z* € B(E*) we
have

E(|(z*,14X)]) < limkinfE(Kx*,lAXnk)])
€
< iléIN)F(HlAXnH) <3
Thus, by taking the supremum over z* € B(E*) we obtain
(3.4) F(LaX|) < 5.
On the other hand, if for every n € N we set
An = {I1X0 - X1 > £},

then also by the convergence in probability of (X,,) to X, it follows that there
exists ng € N such that for all n > ng we have P(A,,) < ¢. This with (3.3) and
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(3.4) implies that for every z* € B(E*) and n > ng the following estimate holds
E(|{a", Xn = X)|) = E(|(z", X — X)[14,) + E(|(z", Xn — X)[1a\4,)

< B((@" Xa)[1a,) + E(|@", X)I1a,) + 5

< P11, Xall) + F(11a,XI) + 5 <<

Therefore, by taking the supremum over z* € B(E*) we get
F(|1Xn - X)) <e.

This shows that the sequence (X)) converges in the Pettis norm to X. The proof
is completed. O

Note that the first conclusion of the proposition is a stronger version of Theo-
rem 1 of Musial [14], where the author used a deep theorem of James [7] to show
that for every A € F the sequence (v[14X,]) is relatively weakly compact, hence
its weak cluster point defines the Pettis integral of X over A. Further, as we have
seen that the Pettis infinite integrals are only o-bounded. Thus to establish the
next convergence results for (weak) games fairer with time (X,,) in PY(E), it is
reasonable to impose on them some weaker conditions.

Definition 3.1. A sequence (X,,) in P!(E) is said to be o-bounded iff there exists
a nondecreasing sequence (B,,) of events adapted to (F,) with lim P(B,) =1
n—oo

and such that restricted to each By, the sequence (X,,) is L'-bounded. More
generally, if for every z* € E* the sequence ((x*, Xn>) is o-bounded, then (X,,) is
called scalarly o-bounded.

Corollary 3.1. Let (X,) be a scalarly o-bounded weak game fairer with time.
Suppose that the sequence (X, (w)) is relatively weakly compact a.s. Then (X,,)
converges scalarly in probability to some X € M (E). Consequently, if (X,,) is uni-
formly Pettis continuous, then X € PY(E) and the sequence (v[14X,]) converges
weakly to v[14X]| uniformly in A € F.

Proof. Let (X,,) be as given in the corollary. Then by Theorem 2.2 [8], for each
z* € E* the sequence ((z*, X)) converges in probability to some ®(z*) € M(R).
Next, since E* is total and E is separable, by Lemma II1.31 and II1.32 in ([2], p.
81), there exists a sequence (y;) of E* such that the countable collection D of
all linear combinations of rational coefficients of elements of (y) is dense in E*
for the Mackey topology 7(E*,E), i.e. the topology of uniform convergence on
convex cirled weakly compact subsets of E (cf. [15], IV. 3.3, p. 132).

Further, suppose that (X,,) is relatively weakly compact a.s. Then by the
Krein-Smulian theorem, there exist a subset g of Q with P(Qy) = 1 and an
X € M(E) such that for every w € Qg we have

(a) the closed cirled convex hull co{ X, (w)} of (X,(w)) is a weakly compact
subset of E.

(b) X (w) is a weak cluster point of (X, (w)).
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Hence, by (b) and the countability of D, for every w € Qg there exists a
subsequence (n,) of N, which may depend on w, such that the sequence

({e; Xn, ()))
converges to (e, X (w)) for every e € D. This with the 7(E*, E)-density of D in
E* and (a) guarantees that (X, (w)) also converges weakly to X(w) for every
w € §)y. But as we have noted at the beginning of the proof that for each
z* € E* the sequence ((z*,X,)) converges in probability to ®(z*) € M(R), so
®(z*) = (2*,X) a.s. It means that (X,) converges scalarly in probability to
X. This proves the main assertion of the corollary. The second assertion follows
immediately from the first part of Proposition 3.1. O

Before going to the next convergence result for games fairer with time, it is
worth noting that the above proof allows one to conclude that if a sequence (X, )
in M (E) converges scalarly to both X and X’ of M (E) simultaneously, then X =
X' a.s. Indeed, by the countability of D there exists a subset g with P(Qg) =1
such that (e, X (w)) = (e, X'(w)) for every e € D and w € Qy. But on the other
hand, as D is 7(E*,E)-dense in E*, it follows that (z*, X(w)) = (z*, X'(w)) for
every z* € E* and w € Q. Consequently, X (w) = X'(w) for every w € Q.

Proposition 3.2. Let (X,,) be a o-bounded game fairer with time in P*(E) and
X € M(E). Then the following conditions are equivalent:

(a) (X,) converges in probability to X ;
(b) (X,,) converges scalarly in probability to some X ;

(c) There exists a total subset S of E* such that the sequence ((x*, X)) con-
verges in probability to (x*, X) for every z* € S.

Consequently, if (X,) is uniformly Pettis continuous and one of the above
conditions holds, then (X,) converges to X in the Pettis norm.

Proof. Let (X,,) and X be as given in the proposition. Since the implications
(a) = (b) = (c) are true in general, we have to prove only that (c) implies (a).
To see this, let S be given as in (c¢) and (B,,) nondecreasing sequence of events
adapted to (F,) with nan;O P(B;) = 1 and such that restricted to each B,,, the

sequence (X,,) is L!-bounded. Now fix any m € N. Applying Theorem 2.5 in [9]
to the L'-bounded game fairer with time (X), given by

xm _ 1, Xpn, n<m,
" 1Ban7 n 2 m,

(X)) can be written in a unique form: X = M™ + P where (M]") is a
uniformly integrable martingale and (P)") goes to zero in probability. Conse-
quently, the real-valued uniformly integrable martingale ((x*, MZL”>) converges in
probability, hence also a.s. to (z*,1p, X) for every z* € S. This with an a.s.
convergence result of Davis et al. [3] (see also [4], Theorem 5.3.27, p. 209) implies
that (M) converges itself a.s. to 1, X. Taking the pieces, it is easily checked
that the sequence (X,,) converges in probability to the resulting random element
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just equal to X. This completes the proof of the main part, hence also the whole
proposition, since the final consequence follows immediately from Proposition
3.1. O

4. ALMOST SURE CONVERGENCE OF MILS

The notion of cluster point in a linear topological space is well-known. Here
an x € E is said to be a scalar cluster point of a sequence (x,) of E iff for every
x* € E*, the real number (z*,x) is a cluster point of ((x*,xn>) Obviously, if x
is a weak cluster point of (z,), then it is a scalar cluster point of (z,). Further,
a sequence (X,,) in M(E) is said to be essentially tight (cf. [8]) if for every € > 0

oo

there exists a compact subset K of E such that P( () [X, € K]) > 1 —¢. Thus
n=1

it is clear that if (X)) is essentially tight, then the sequence (X,,(w)) is relatively

compact a.s. Therefore, by the remark given after Definition 2.1, the main a.s.

convergence result of Krupa and Zieba in [8] for amarts is an easy consequence

of the following proposition.

Proposition 4.1. Let (X,,) be a scalarly o-bounded weak mil and X € M(E) its
scalar cluster point a.s. Then (X,) converges scalarly a.s. to X. Consequently,
(X,) converges a.s. if and only if (X, (w)) is relatively compact a.s.

Proof. Let (X,,) and X be as given in the proposition. By Theorem 2.4 of [10], for
every x* € E* the o-bounded real-valued mil ((:E*,Xn>) converges a.s. to some
®(z*) € M(R). On the other hand, as (z*, X) is a cluster point of ((z*, X,,)) a.s.,
by the cluster point approximation theorem 1.2.4 in ([4], p. 11) there exists a se-
quence (7,(2*)) of T with each 7,,(z*) > n such that the sequence ({z*, X, (;+)))
converges to (z*, X). By Lemma 3 of [11], the optional sequence

(<x*7XTn(x*)>)
converges also a.s. to ®(z*), so it follows that ®(z*) = (2*, X) a.s. This means
that the weak mil (X,,) converges scalarly a.s to X, which proves the first conclu-
sion of the proposition. To see its consequence, suppose now that the sequence
(X,) is relatively compact a.s. Then by the Mazur theorem and the countability

of the subset D of E*, given in the proof of Corollary 3.1, there exists a subset
Qg of Q with P(£2) = 1 such that

(a) the sequence ({e,X,(w))) converges to (e, X,(w)) for every w € Q and
ecD.

(b) the closed cirled convex hull ¢co{X,(w)} of (X,(w)) is compact for every
w € Q.

Therefore, by the density of D in E* for the Mackey topology, the sequence
(Xn(w)) converges weakly to X(w) for every w € y. But on every convex
compact subset K of E the weak and the norm topology coincide, it follows by
(b) that (X,,(w)) converges even in norm to X (w) for every w € €y. This proves
that (X,,) converges a.s. to X and completes the proof, since the necessity of the
consequence is trivial. O
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Finally, let us recall that a sequence (X,) in L'(E) is said to be a uniform
amart (cf. [4]) if for every € > 0 there exists p € N such that for all o,7 € T with
T > 0 > p we have

E(”EO'(XT) - XO'”) <g,
where F, is the subo-field of F given by
Fo={AeF: An{oc=n}eF, for all n € N}

and E,(X) is the F,-conditional expectation of an X € L!(E). By Definition 2.1,
every uniform amart is a mil. Therefore, the following proposition gives several
important versions of the Ito-Nisio theorem (cf. [6]) for mils of Pettis integrable
functions which contain the main convergence results of Davis et al. [3] and
Bouzar [1] for L'-bounded uniform amarts.

Proposition 4.2. Let (X,) be a o-bounded mil in PY(E). Then the following
conditions are equivalent:

(a) (X,) converges a.s.;

(b) (X)) converges scalarly a.s.;

(¢) There exist a total subset S of E* and element X € M(E) such that the
scalar sequence ((m*,Xn>) converges in probability to (x*, X) for every z* € S;

(d) There exist S and X as in (c) such that (z*,X) is a cluster point of
((z*, Xn)) a.s. for every z* € S.

Proof. Since the first implications (a) = (b) = (c¢) = (d) are true in general, so it
remains to prove only that (d) implies (a). For this purpose, let (X;,) be as given
in the proposition. Then there exists a nondecreasing sequence (B,,) of events
adapted to (F,) with nILHOlO P(B,,) = 1 and such that restricted to each B,,, the

sequence (X,,) is an L'-bounded mil in L!(E). Thus if we fix an m € N and define
the sequence (X]") as given in the proof of Proposition 3.2, then by Theorem 8
[17], (X)) can be written in a unique form: X" = M™ + P n € N, where
(M) is a uniformly integrable martingale and (P}") goes to zero a.s. Now let S
and X be as mentioned in (d). Then for any but fixed z* € S, (z*,1p,, X) is a
cluster point of ((z*, X)) a.s. Consequently, by the cluster point approximation
theorem 1.2.4 in ([4], p. 11), there exists a sequence (7,,) of T (which may depend
on z* and m) with each 7, > n such that the sequence ((a:*,X;p) converges
a.s. to (z%,1p,, X). But as ((z*, PI")) converges to zero a.s., by Lemma 3 of
[11], so does the sequence ((z*, P™)). Consequently, the sequence ((z*, M™))
converges a.s. to (x*,1p_X). On the other hand, as a uniformly integrable
real-valued martingale, the sequence ((x*,M,’ZL>) must converge a.s. Therefore,
it should converges a.s. to the same limit (z*,1p,, X). It follows from the recent
martingale a.s. convergence result of Davis et al. [3] (see also [4], Theorem 5.3.27,
p. 209) that the martingale (M) converges itself a.s. to 1p, X, hence so does
the sequence (X)). Since X' = 1p,, X, for all n > m, this shows that the
sequence (X, ), restricted to B,,, converges also a.s. to 15, X. Taking the pieces,
it is clear that the mil (X,,) converges a.s. to X. This completes the proof. O
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