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HOPF-LAX-OLEINIK TYPE FORMULA FOR MULTI-TIME

HAMILTON-JACOBI EQUATIONS

NGUYEN HUU THO

Abstract. We consider the Cauchy problem for multi-time Hamilton-Jacobi
equations whose Hamiltonians depend on the unknown function and its spacial
gradient. We obtain an explicit formula for viscosity solution in a special case.

1. Introduction

Consider the Cauchy problem for multi-time Hamilton-Jacobi equations of the
form:

∂u

∂t
+ H1(t, s, x, u,Du) = 0 in UT := (0, T ]2 × R

n(1.1)

∂u

∂s
+ H2(t, s, x, u,Du) = 0 in UT := (0, T ]2 × R

n(1.2)

u(0, 0, x) = u0(x) on {t = 0, s = 0, x ∈ R
n}.(1.3)

Here, the Hamiltonians Hi = Hi(t, s, x, γ, p), i = 1, 2, and initial data u0 = u0(x)
are given functions, u = u(t, s, x) is unknown,

Du = (∂u/∂x1, . . . , ∂u/∂xn).

Though it is known that this kind of problem appears in Mathematical Eco-
nomics, we will not mention the underlying models. According to our knowledge,
the works where these kinds of problems are studied from a mathematical point
of view are the articles of P. L. Lions and J-C. Rochet [5], G. Barles and A.
Tourin [3], S. Plaskacz and M. Quincampoix [6], T. D. Van and M. D. Thanh [9].

In [5], the case where Hi , i = 1, 2, depend only on Du is completely solved.
The arguments rely on the use of explicit formulas such as the Hopf and Oleinik-
Lax formulas. Using commutation properties of the semigroups for the standard
equation, P. L. Lions and J-C. Rochet proposed a generalization of the formula
that gives explicit solutions of these equations.

G. Barles and A. Tourin [3] proved, under rather natural assumptions, the ex-
istence and uniqueness of multi-time viscosity solution to this problem in the case
in which Hamitonians depend on the space variable. This is the generalization of
the results of P. L. Lions and J-C. Rochet [5].
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T. D. Van and M. D. Thanh [9] considered the Cauchy problem (1.1)-(1.3)
in some special cases and sought conditions which guarantee the existence and
uniqueness of multi-time viscosity solution. The authors considered multi-time
Hamilton-Jacobi equations in two cases:

1. Hamiltonians depend only on spacial gradient of the unknown function.
2. Hamiltonians depend on the unknown function and its spacial gradient.

In [6], S. Plaskacz and M. Quincampoix investigated a system of multi-time
Hamilton-Jacobi equations in (−∞, 0]2 × R

n, where Hamiltonians have form

Hi(γ, p) = H̃i(γ, p) + λ(γ), i = 1, 2,

λ : R → R+ is nonincreasing and C1 and H̃i : R × R
n → R satisfy:

1. H̃i(γ, ·) are concave and positively homogeneous of degree one,

2. H̃i(·, p) are non increasing and C1.

Note that, in [3], [5] and [9], the Hamiltonians Hi , i = 1, 2, satisfy one of the
following two conditions:

(i) Hi = Hi(p) , i = 1, 2, (independent of γ) are convex in p and have super-
linear growth:

lim
|p|→+∞

Hi(p)

|p|
= +∞ .

(ii) Hi = Hi(γ, p) , i = 1, 2, are nondecreasing in γ for all p, convex and
positively homogeneous of degree one in p for all γ.

We will study the question what would happen in the case where Hi(γ, p), i =
1, 2, are positively homogeneous of degree m > 1 in p for all γ?

Definition 1.1. ([7]) A function H is said to be positively homogeneous of degree
m, 1 < m < +∞, if

H(kp) = kmH(p), ∀ k > 0, ∀p.

In this paper we will analyze the above question by considering a form of
the Cauchy problem for multi-time Hamilton-Jacobi equations (1.1)-(1.3) and
give a formula of Hopf-Lax-Oleinik type for multi-time viscosity solution of this
problem.

Adimurthi and Veerappa Gowda [1] have studied this subject for the Cauchy
problem for an equation.

For the notions of viscosity solution and their Hopf-Lax type formulas we refer
to [1]-[6], [8], [9].

Definition 1.2. ([4]) Consider the equation

ut + F (t, x, u,Du) = 0 in Ω.(1.4)

The upper semicontinuous (u.s.c.) function u = u(t, x) is called a viscosity

subsolution of (1.4) if u−φ has local maximum at (t0, x0) ∈ Ω for any φ ∈ C1(Ω)
then we have

φt(t0, x0) + F (t0, x0, u(t0, x0),Dφ(t0, x0)) ≤ 0.
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The lower semicontinuous (l.s.c.) function u = u(t, x) is called a viscosity super-

solution of (1.4) if u − φ has local minimum at (t0, x0) ∈ Ω for any φ ∈ C1(Ω)
then we have

φt(t0, x0) + F (t0, x0, u(t0, x0),Dφ(t0, x0)) ≥ 0.

A function u = u(t, x) is called viscosity solution of (1.4) if it is both viscosity
subsolution and viscosity supersolution.

By adding a constant, it is not restrictive to assume that u − φ has local
maximum (minimum) zero at (t0, x0).

Definition 1.3. ([9]) A function u ∈ C(UT ) will be called a multi-time viscosity

solution of Problem (1.1)-(1.3) if it partially satisfies the equations (1.1), (1.2) in
the viscosity sense, i.e., for each s ∈ (0, T ], u(., s, .) is a viscosity solution of (1.1)
and for each t ∈ (0, T ], u(t, ., .) is a viscosity solution of (1.2), and u satisfies
the initial condition (1.3) in the sense that

lim
(t,s,y)→(0+,0+,x)

(t,s,y)∈UT

u(t, s, y) = u0(x) , x ∈ R
n.

2. Hopf-Lax-Oleinik type formula for multi-time

Hamilton-Jacobi equation

Consider the Cauchy problem in a special form:

∂u

∂t
+ f(u)H1(Du) = 0 in UT ,(2.1)

∂u

∂s
+ f(u)H2(Du) = 0 in UT ,(2.2)

u(0, 0, x) = u0(x) on R
n.(2.3)

In this section the following conditions are assumed:

(I) Hi : R
n → [0,+∞), i = 1, 2, are convex, homogeneous functions of degree

m > 1, satisfying

lim
|p|→+∞

Hi(p)

|p|
= +∞.

(II) u0 is continuous.
(III) f : R → [0,+∞) is a continuous function such that:

(i) {γ ∈ R : f(γ) = 0} is of measure zero,
(ii) For each (t, s, x) ∈ UT ,

inf
y∈Rn

{

h(u0(y)) + (tH1 + sH2)
∗(x − y)

}

∈ Im(h)

where

h(a) =

∫ a

0
f(γ)

1

m−1 dγ .
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(IV) For each bounded subset V of UT , there exists a positive number N(V ) such
that

h(u0(y)) + (tH1 + sH2)
∗(x − y) > inf

|z|≤N(V )
{h(u0(z)) + (tH1 + sH2)

∗(x − z)}

whenever (t, s, x) ∈ V, ∀y : |y| > N(V ).

Let

u(t, s, x) = h−1
(

inf
y∈Rn

{

h(u0(y)) + (tH1 + sH2)
∗(x − y)

}

)

.(2.4)

Recall that the Fenchel conjugate of a function g is given by

g∗(p) = sup
q∈Rn

{〈p, q〉 − g(q)}.

Remark 2.1. The conditions (IV) and (ii) in (III) may be considered as a
compatible condition between the Hamiltonians, the initial data and the function
f for the existence of generalized solution of the Cauchy problem (2.1)- (2.3).

According to the condition (IV) we see that the infimum in (2.4) has to be
taken over the ball B(0;N(V )) for (t, s, x) ∈ V.

Remark 2.2. We can write, for (t, s, x) ∈ UT ,

(tH1 + sH2)
∗(x − y) = sup

z∈Rn

{

〈x − y, z〉 − (tH1 + sH2)(z)
}

= inf
z∈Rn

{

(tH1)
∗(x − z) + (sH2)

∗(z − y)
}

= inf
z∈Rn

{

tH∗
1

(x − z

t

)

+ (sH2)
∗(z − y)

}

= inf
z∈Rn

{

(tH1)
∗(x − z) + sH∗

2

(z − y

s

)}

= inf
z∈Rn

{

tH∗
1

(x − z

t

)

+ sH∗
2

(z − y

s

)}

.

Remark 2.3. From the assumptions on f we remark that h is a C1, strictly in-
creasing function, and hence h−1 : h(R) → R exists, and it is a strictly increasing
function too.

We prepare several lemmas for the proof of the main theorem.

Lemma 2.1. 1) ([9]) The function (tH1 + sH2)
∗(z), (t, s, z) ∈ UT is finite and

convex in the open set UT , therefore locally Lipschitz continuous in UT . Moreover,

(tH1 + sH2)
∗(z) = (t + s)

( t

t + s
H1 +

s

t + s
H2

)∗
( z

t + s

)

, ∀(t, s, z) ∈ UT ,

and

lim
|z|

t + s
→+∞

(tH1 + sH2)
∗(z)

|z|
= +∞.

2) (tH1 + sH2)
∗(z) ≥ 0 for all z ∈ R

n.
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Proof. 1) The proof of the first part is given in [9].

2) From the definition of Fenchel conjugate we have

(tH1 + sH2)
∗(z) = sup

x∈Rn

{〈z, x〉 − (tH1 + sH2)(x)} ≥ −(tH1 + sH2)(0).

Because Hi, i = 1, 2, are positively homogeneous of degree m > 1, Hi(0) = 0,
i = 1, 2. Hence 2) is verified.

Lemma 2.2 (Dynamic Programming Principle). 1) Fix s0. For 0 ≤ t1 < t ≤ T,
we have

u(t, s0, x) = h−1
(

inf
y∈Rn

{

h(u(t1, s0, y)) + (t − t1)H
∗
1 (

x − y

t − t1
)
}

)

.(2.5)

2) Fix t0. For 0 ≤ s1 < s ≤ T, we have

u(t0, s, x) = h−1
(

inf
y∈Rn

{

h(u(t0, s1, y)) + (s − s1)H
∗
2 (

x − y

s − s1
)
}

)

.(2.6)

In other words, for fixed s0, to compute u(t, s0, .) we can calculate u at time
t1 and then use u(t1, s0, .) as the initial condition on the remaining time interval
[t1, t]. Arguing analogously, we also have the same result for fixed t0.

Remark 2.4. The function u(t, s, x) can be rewritten by

u(t, s, x) = h−1
(

inf
y∈Rn

inf
z∈Rn

{

h(u0(y)) + tH∗
1 (

x − z

t
) + (sH2)

∗(z − y)
}

)

.

Proof of Lemma 2.2. 1) Fix s = s0. Let v(t, s0, x) denote the right-hand expres-
sion of (2.5). Choose ω ∈ R

n such that

u(t, s0, x) = h−1
{

h(u0(ω)) + (tH1 + s0H2)
∗(x − ω)

}

= h−1
(

inf
z∈Rn

{

h(u0(ω)) + tH∗
1 (

x − z

t
) + (s0H2)

∗(z − ω)
}

)

.

Set

y =
t1
t

x + (1 −
t1
t

)z.

Then

y − z

t1
=

x − z

t
=

x − y

t − t1
.(2.7)

Since

h(u(t1, s0, y) ≤ h(u0(ω)) + (t1H1 + s0H2)
∗(y − ω)

= inf
z∈Rn

{

h(u0(ω)) + t1H
∗
1 (

y − z

t1
) + (s0H2)

∗(z − ω)
}

= h(u0(ω)) + inf
z∈Rn

{

t1H
∗
1 (

y − z

t1
) + (s0H2)

∗(z − ω)
}

,
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we have

h(v(t, s0, x)) ≤ h(u(t1, s0, y)) + (t − t1)H
∗
1 (

x − y

t − t1
)

≤ h(u0(ω)) + inf
z∈Rn

{

t1H
∗
1

(y − z

t1

)

+ (s0H2)
∗(z − ω)

}

+ (t − t1)H
∗
1

(x − y

t − t1

)

.

Then, using (2.7) we have

h(v(t, s0, x)) ≤ h(u0(ω)) + inf
z∈Rn

{

t1H
∗
1

(y − z

t1

)

+ (s0H2)
∗(z − ω)

+ (t − t1)H
∗
1

(x − y

t − t1

)}

= h(u0(ω)) + inf
z∈Rn

{

t1H
∗
1

(x − z

t

)

+ (s0H2)
∗(z − ω)

+ (t − t1)H
∗
1

(x − z

t

)}

= h(u0(ω)) + inf
z∈Rn

{

tH∗
1 (

x − z

t
) + (s0H2)

∗(z − ω)
}

= inf
z∈Rn

{

h(u0(ω)) + tH∗
1 (

x − z

t
) + (s0H2)

∗(z − ω)
}

= h(u(t, s0, x)).

Because h is increasing and continuous, this implies

v(t, s0, x) ≤ u(t, s0, x).(2.8)

Since

v(t, s0, x) = h−1
(

inf
y∈Rn

{

h(u(t1, s0, y)) + (t − t1)H
∗
1

(x − y

t − t1

)}

)

,

h(v(t, s0, x)) = inf
y∈Rn

{

h(u(t1, s0, y)) + (t − t1)H
∗
1

(x − y

t − t1

)}

,

we can choose y ∈ R
n such that

h(u(t1, s0, y)) + (t − t1)H
∗
1

(x − y

t − t1

)

≤ h(v(t, s0, x)) + ε,

for ε > 0. Let us choose ω ∈ R
n such that

h(u(t1, s0, y)) = h(u0(ω)) + (t1H1 + s0H2)
∗(y − ω).

Then

h(u(t1, s0, y)) = h(u0(ω)) + inf
z∈Rn

{

t1H
∗
1

(y − z

t1

)

+ (s0H2)
∗(z − ω)

}

.

Now from the convexity of H∗
1 and

x − z

t
=

(

1 −
t1
t

)x − y

t − t1
+

t1
t

y − z

t1
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we have

H∗
1 (

x − z

t
) ≤

(

1 −
t1
t

)H∗
1

(x − y

t − t1

)

+
t1
t

H∗
1

(y − z

t1

)

,

hence

h(u(t, s0, x)) ≤ h(u0(ω)) + (tH1 + s0H2)
∗(x − ω)

= inf
z∈Rn

{

h(u0(ω)) + tH∗
1 (

x − z

t
) + (s0H2)

∗(z − ω)
}

= h(u0(ω)) + inf
z∈Rn

{

tH∗
1 (

x − z

t
) + (s0H2)

∗(z − ω)
}

≤ h(u0(ω)) + inf
z∈Rn

{

(t − t1)H
∗
1 (

x − y

t − t1
)

+ t1H
∗
1 (

y − z

t1
) + (s0H2)

∗(z − ω)
}

= h(u0(ω)) + inf
z∈Rn

{

t1H
∗
1 (

y − z

t1
) + (s0H2)

∗(z − ω)
}

+ (t − t1)H
∗
1 (

x − y

t − t1
)

= h(u0(ω)) + (t1H1 + s0H2)
∗(y − ω) + (t − t1)H

∗
1 (

x − y

t − t1
)

= h(u(t1, s0, y)) + (t − t1)H
∗
1 (

x − y

t − t1
)

≤ h(v(t, s0, x)) + ε.

Since ε > 0 is arbitrary, we obtain

h(u(t, s0, x)) ≤ h(v(t, s0, x)).

Consequently,

u(t, s0, x) ≤ v(t, s0, x).(2.9)

From (2.8) and (2.9) we obtain 1). By a similar argument we also obtain 2).

The next theorem is the main result of this paper.

Theorem 2.3. Assume the conditions (I)-(IV) hold. Then the function u =
u(t, s, x) given by (2.4) is a multi-time viscosity solution of problem (2.1)-(2.3).

Proof. Step 1. Define

L(t, s, x) := Argmin
y∈Rn

h−1{h(u0(y)) + (tH1 + sH2)
∗(x − y)}

=
{

y0 ∈ R
n : h−1{h(u0(y0)) + (tH1 + sH2)

∗(x − y0)}

= h−1
(

min
y∈Rn

{h(u0(y)) + (tH1 + sH2)
∗(x − y)}

)}

.

By Remark 2.1, L(t, s, x) is nonempty and locally bounded, that means

||L(t, s, x)|| = sup
y∈L(t,s,x)

|y| ≤ N , ∀(t, s) ∈ [0, T ]2, x ∈ B(0, r),
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where B(0, r) is a ball with radius r, which is a neighbourhood of x. Let K be
the Lipschitz constant of the function

(t, s, x, y) 7−→ (tH1 + sH2)
∗(x − y), t, s ∈ (0, T ], x, y ∈ B(0, r).

Then for all y ∈ L(t, s, x), t, s, t′, s′ ∈ (0, T ],

h(u(t, s, x)) = h(u0(y)) + (tH1 + sH2)
∗(x − y)

h(u(t′, s′, x′)) ≤ h(u0(y)) + (t′H1 + s′H2)
∗(x′ − y).

Hence

h(u(t′, s′, x′)) − h(u(t, s, x)) ≤ (t′H1 + s′H2)
∗(x′ − y) − (tH1 + sH2)

∗(x − y)

≤ K
(

|t − t′| + |s − s′| + ||x − x′||
)

.

Interchanging (t, s, x) and (t′, s′, x′) implies that

|h(u(t′, s′, x′)) − h(u(t, s, x))| ≤ K
(

|t − t′| + |s − s′| + ||x − x′||
)

.(2.10)

Let {tk, sk, xk} be a sequence converging to (t0, s0, x0) as k → +∞ and yk ∈
L(tk, sk, xk). Assume that

lim
k→+∞

u(tk, sk, xk) = l.

We have

h(u(tk, sk, xk)) = h(u0(yk)) + (tkH1 + skH2)
∗(xk − yk)

≤ h(u0(y)) + (tkH1 + skH2)
∗(xk − y),

hence, when k → +∞,

h(l) ≤ h(u0(y)) + (t0H1 + s0H2)
∗(x0 − y) for all y ∈ R

n

h(l) ≤ inf
y∈Rn

{h(u0(y)) + (t0H1 + s0H2)
∗(x0 − y)}

h(l) ≤ h(u(t0, s0, x0)).

Since h is a strictly monotone function, we conclude that

lim
k→+∞

u(tk, sk, xk) = l ≤ u(t0, s0, x0).(2.11)

On the other hand, from (2.10) we get

h(u(t0, s0, x0)) ≤ K
(

|tk − t0| + |sk − s0| + ‖xk − x0‖
)

+ h(u(tk, sk, xk)).

Thus,

h(u(t0, s0, x0)) ≤ h(l) as k → +∞,

u(t0, s0, x0) ≤ l = lim
k→+∞

u(tk, sk, xk).(2.12)

Combining (2.11) and (2.12) we see that u is continuous in UT .

Step 2. We claim that

lim
(t,s,y)→(0+,0+,x)

(t,s,y)∈UT

u(t, s, y) = u0(x) , for each fixed x ∈ R
n.
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Indeed, on the one hand, the definition (2.4) clearly shows that

h(u(t, s, y)) ≤ h(u0(y)) + (tH1 + sH2)
∗(0), ∀(t, s, y) ∈ UT .

This yields

lim sup
(t,s,y)→(0+,0+,x)

(t,s,y)∈UT

h
(

u(t, s, y)
)

≤ h(u0(x)).

Thus,

lim sup
(t,s,y)→(0+,0+,x)

(t,s,y)∈UT

u(t, s, y) ≤ u0(x).(2.13)

On the other hand,

h(u(t, s, x′)) = h(u0(y)) + (tH1 + sH2)
∗(x′ − y)

≥ h(u0(y)) − (tH1 + sH2)(0)
(2.14)

for all (t, s, x′) ∈ (0, T ]2 × B(0; r); ∀y ∈ L(t, s, x′).

We now show that

lim
y∈L(t,s,x′)

(t,s,x′)→(0+,0+,x)

y = x.(2.15)

Assume the contrary. By passing to a subsequence, we may assume that there
are (tk, sk, xk) ∈ (0, T ]2 × B(0, r), yk ∈ L(tk, sk, xk), k ∈ N, |xk − yk| ≥ ε > 0.

Since ||L(t, s, x)|| ≤ N, ∀(t, s, x) ∈ (0, T ]2 × B(0, r), it holds for k quite large
and yk ∈ L(tk, sk, xk) that

+∞ > C = max
|x|<r

h(u0(x)) + T.(H1 + H2)
∗(0)

≥ h(u0(xk)) + (tkH1 + skH2)
∗(0) ≥ h

(

u(tk, sk, xk)
)

,
(2.16)

h
(

u(tk, sk, xk)
)

= h(u0(yk)) + (tkH1 + skH2)
∗(xk − yk)

= h(u0(yk)) +
(tkH1 + skH2)

∗(xk − yk)

|xk − yk|
|xk − yk|

≥ min
|y|≤N

h(u0(y)) + ε
(tkH1 + skH2)

∗(xk − yk)

|xk − yk|
→ +∞

as k → ∞. This contradicts (2.16). Hence (2.15) is verified. From (2.14) and
(2.15) we obtain

lim inf
(t,s,x′)→(0+,0+,x)

(t,s,x′)∈UT

u(t, s, x′) ≥ u0(x).(2.17)

Therefore, (2.3) immediately follows from (2.13) and (2.17).

Step 3. Now we will show that u is a subsolution.
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Let us fix s. If ϕ ∈ C1(UT ), u(t0, s, x0) = ϕ(t0, s, x0) and u − ϕ has a local
maximum at (t0, s, x0). For (t, s, x) in a neighbourhood of (t0, s, x0) (0 ≤ t < t0)

h(ϕ(t0, s, x0)) = h(u(t0, s, x0))

≤ h(u(t, s, x)) + (t0 − t)H∗
1 (

x0 − x

t0 − t
) (by Lemma 2.2)

≤ h(ϕ(t, s, x)) + lH∗
1 (λ),

where l = t0 − t, x = x0 − lλ, λ ∈ R
n. Hence

h(ϕ(t0, s, x0)) − h(ϕ(t0 − l, s, x0 − lλ))

l
≤ H∗

1 (λ).

Letting l → 0, we obtain at (t0, s, x0)

h′(ϕ)ϕt + 〈h′(ϕ)Dϕ,λ〉 ≤ H∗
1 (λ)

h′(ϕ)ϕt + sup
λ∈Rn

{〈h′(ϕ)Dϕ,λ〉 − H∗
1 (λ)} ≤ 0,

and then

h′(ϕ)ϕt + H1(h
′(ϕ)Dϕ) ≤ 0.(2.18)

Since H1 is a convex and homogeneous function of degree m > 1,

H1(h
′(ϕ)Dϕ) =

(

h′(ϕ)
)m

H1(Dϕ) at (t0, s, x0).

Moreover, h′(ϕ) = f(ϕ)
1

m−1 at (t0, s, x0). Then (2.18) becomes

f(ϕ)
1

m−1 ϕt +
(

f(ϕ)
1

m−1

)m
H1(Dϕ) ≤ 0 at (t0, s, x0)

(

f(ϕ)
1

m−1

)[

ϕt + f(ϕ)H1(Dϕ)
]

≤ 0 at (t0, s, x0).

Using the assumptions on f, we get

ϕt(t0, s, x0) + f(ϕ(t0, s, x0))H1(Dϕ(t0, s, x0)) ≤ 0,

thus

ϕt(t0, s, x0) + f(u(t0, s, x0))H1(Dϕ(t0, s, x0)) ≤ 0.

Similarly, for fixed t, if ϕ ∈ C1(UT ) such that u(t, s0, x0) = ϕ(t, s0, x0) and u−ϕ
has a local maximum at (t, s0, x0), we have

ϕs(t, s0, x0) + f(u(t, s0, x0))H2(Dϕ(t, s0, x0)) ≤ 0.

Step 4. Finally, we will show that the function u is supersolution.

Let us fix s. Assume for the contrary that u = u(t, s, x) is not a supersolution
of (2.1). Then there exist ε0 > 0, (t0, s, x0) ∈ UT , a neighbourhood V (t0, s, x0) of
(t0, s, x0) and ϕ ∈ C1(UT ) such that u−ϕ attains its minimum zero at (t0, s, x0)
on V (t0, s, x0) and h′(ϕ(t0, s, x0)) 6= 0,

u(t0, s, x0) = ϕ(t0, s, x0),

u − ϕ ≥ 0 in V (t0, s, x0),

ϕt(t0, s, x0) + f(u(t0, s, x0))H1(Dϕ(t0, s, x0)) < −ε0 < 0.
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Then

ϕt(t0, s, x0) + f(ϕ(t0, s, x0))H1(Dϕ(t0, s, x0)) < −ε0 < 0.

Thus,

h′(ϕ)ϕt + h′(ϕ)f(ϕ)H1(Dϕ) < −ε0h
′(ϕ) < 0 at (t0, s, x0)(2.19)

since h′(ϕ(t0, s, x0)) > 0.

From the Dynamic Programming Principle (Lemma 2.2), for l > 0 sufficiently
small, there exists x∗ such that x∗ → x0 as l → 0, and

h(u(t0, s, x0)) = h(u(t0 − l, s, x∗)) + lH∗
1 (

x0 − x∗

l
).

Let λ =
x0 − x∗

l
. Then λ ∈ R

n,

h(ϕ(t0, s, x0)) = h(u(t0, s, x0))

= h(u(t0 − l, s, x∗)) + lH∗
1 (

x0 − x∗

l
)

≥ h(ϕ(t0 − l, s, x∗)) + lH∗
1 (

x0 − x∗

l
)

= h(ϕ(t0 − l, s, x0 − lλ)) + lH∗
1 (λ).

Hence
h(ϕ(t0, s, x0)) − h(ϕ(t0 − l, s, x0 − lλ))

l
≥ H∗

1 (λ).

Computing as in Step 3 we obtain

h′(ϕ)ϕt + h′(ϕ)f(ϕ)H1(Dϕ) ≥ 0 , at (t0, s, x0)

which conflicts with (2.19).

This proves that, for fixed s, u is a supersolution of (2.1). Arguing similarly
as above, we can also prove that for fixed t, u is a supersolution of (2.2).

Remark 2.5. The results in Theorem 2.3 can be extended to an arbitrary number
of times, that is, k equations in (0, T ]k × R

n involving k different Hamiltonians
Hi = Hi(γ, p), (i = 1, ..., k) , k > 2. In the case k = 1 we get the same result as
in [1].

We explain our result by the following examples.

Example 1. Consider the Cauchy problem

ut + 3u2.(Du)2 = 0 in (0, T ]2 × R,

us + 3u2.(Du)2 = 0 in (0, T ]2 × R,

u(0, 0, x) = u0(x) = ln(x2 + 1) on R.
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Clearly, the Hamiltonians f(γ)H1(p) = f(γ)H2(p) = 3γ2.(p)2 and the initial
function u0(x) = ln(x2 + 1) satisfy all the assumptions of Theorem 2.3. Hence,
we can find a multi-time viscosity solution of the above problem:

u(t, s, x) =
(

ln3(y2
0 + 1) +

(x − y0)
2

4(t + s)

)
1

3

,

where y0 is a solution of the equation

6y ln2(y2 + 1)

y2 + 1
+

y

2(t + s)
=

x

2(t + s)
.

Example 2. Consider the Cauchy problem

ut + e3u.(Du)4 = 0 in (0, T ]2 × R,

us + e3u.(Du)4 = 0 in (0, T ]2 × R,

u(0, 0, x) = u0(x) = ln(x2 + 1) on R.

It is easy to check that all the conditions of Theorem 2.3 are fulfilled. A multi-
time viscosity solution of problem is given by

u(t, s, x) = ln
(

y2
0 + 1 +

3

4

3
√

(x − y0)4

3
√

4(t + s)

)

,

where y0 is the unique solution of

8y3 +
y

4(t + s)
=

x

4(t + s)
.

Acknowledgment

This paper is partially supported by the National Council on Natural Science,
Vietnam. The author would like to express his sincere thanks to Professor Tran
Duc Van for many helpful discussions during the preparation of this note.

References

[1] Adimurthi and G. D. Veerappa Gowda, Hopf-Lax type formula for sub-and supersolutions,

Adv. Differential. Equ. 5 (2000), 97 - 119.
[2] M. Bardi and L. C. Evans, On Hopf’s formulas for solutions of Hamilton-Jacobi equations,

Nonlinear Anal. 8 (1984), 1373 - 1381.
[3] G. Barles and A. Tourin, Commutation properties of semigroups for first-oder Hamilton-

Jacobi equation and application to multi-time equations, Indiana Univ. Math. J. 50 (2001),
1523 - 1544.

[4] M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of

Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 282 (1984), 487-502.
[5] P. L. Lions and J-C. Rochet, Hopf formula and multi-time Hamilton-Jacobi equations, Proc.

Amer. Math. Soc. 96 (1986), 79 - 84.
[6] S. Plaskacz and M. Quincampoix, Oleinik-Lax formulas and Hamilton-Jacobi systems, Non-

linear Anal. 51 (2002), 957 - 967.
[7] R. I. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton NJ, 1970.
[8] T. D. Van, M. Tsuji and N. D. Thai Son, The Characteristic Method and Its Generalizations

for First-Order Nonlinear Partial Differential Equations, Chapman & Hall, CRC Press,
2000.



HOPF-LAX-OLEINIK TYPE FORMULA 287

[9] T. D. Van and M. D. Thanh, Oleinik-Lax type formulas for multi-time Hamilton-Jacobi

equations, Advances in Math. Sci. Appl. 10 (2000), 395-405.

Bureau of Education and Training of Hatay

Hatay, Vietnam

E-mail address: nhtho67@yahoo.com


