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ADDITIVE REVERSES OF THE GENERALIZED TRIANGLE

INEQUALITY IN NORMED SPACES

S. S. DRAGOMIR

Abstract. Some additive reverses of the generalized triangle inequality in
normed linear spaces are given. Applications for complex numbers are pro-
vided as well.

1. Introduction

In [2], Diaz and Metcalf established the following reverse of the generalized
triangle inequality in real or complex normed linear spaces.

If F : X → K, K = R, C is a linear functional of unit norm defined on the
normed linear space X endowed with the norm ‖·‖ and the vectors x1, . . . , xn

satisfy the condition

0 ≤ r ‖xi‖ ≤ Re F (xi) , i ∈ {1, . . . , n} ;(1.1)

then

r

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

,(1.2)

where equality holds if and only if both

F

(

n
∑

i=1

xi

)

= r

n
∑

i=1

‖xi‖(1.3)

and

F

(

n
∑

i=1

xi

)

=

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

(1.4)

hold.

If X = H, (H; 〈·, ·〉) is an inner product space and F (x) = 〈x, e〉 , ‖e‖ = 1,
then the condition (1.1) may be replaced with the simpler assumption

0 ≤ r ‖xi‖ ≤ Re 〈xi, e〉 , i = 1, . . . , n,(1.5)
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which implies the reverse of the generalized triangle inequality (1.2). In this case
the equality holds in (1.2) if and only if [2]

n
∑

i=1

xi = r

(

n
∑

i=1

‖xi‖
)

e.(1.6)

Let F1, . . . , Fm be linear functionals on X, each of unit norm. Let [2]

c = sup
x 6=0









m
∑

k=1

|Fk (x)|2

‖x‖2









;

it then follows that 1 ≤ c ≤ m. Suppose the vectors x1, . . . , xn whenever xi 6= 0,
satisfy

0 ≤ rk ‖xi‖ ≤ Re Fk (xi) , i = 1, . . . , n, k = 1, . . . ,m.(1.7)

Then [2]









m
∑

k=1

r2
k

c









1/2

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

,(1.8)

where equality holds if and only if both

Fk

(

n
∑

i=1

xi

)

= rk

n
∑

i=1

‖xi‖ , k = 1, . . . ,m(1.9)

and

m
∑

k=1

[

Fk

(

n
∑

i=1

xi

)]2

= c

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

2

.(1.10)

If X = H, an inner product space, then, for Fk (x) = 〈x, ek〉 , where {ek}k=1,n

is an orthonormal family in H, i.e., 〈ei, ej〉 = δij , i, j ∈ {1, . . . , n} , δij denotes
the Kronecker delta, the condition (1.7) may be replaced by

0 ≤ rk ‖xi‖ ≤ Re 〈xi, ek〉 , i = 1, . . . , n, k = 1, . . . ,m;(1.11)

implying the following reverse of the generalized triangle inequality

(

m
∑

k=1

r2
k

)
1

2 n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

,(1.12)

where the equality holds if and only if

n
∑

i=1

xi =

(

n
∑

i=1

‖xi‖
)

m
∑

k=1

rkek.(1.13)
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The main aim of this paper is to provide some new reverse results of the
generalized triangle inequality in its additive form, namely, upper bounds for the
nonnegative quantity

n
∑

i=1

‖xi‖ −
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

under various assumptions for the vectors xi, i ∈ {1, . . . , n} in a real or complex
normed space (X, ‖·‖) . Applications for complex numbers are provided as well.

2. Semi-inner products and Diaz-Metcalf inequality

In 1961, G. Lumer [7] introduced the following concept.

Definition 1. Let X be a linear space over the real or complex number field
K. The mapping [·, ·] : X × X → K is called a semi-inner product on X, if the
following properties are satisfied (see also [3, p. 17]):

(i) [x + y, z] = [x, z] + [y, z] for all x, y, z ∈ X;

(ii) [λx, y] = λ [x, y] for all x, y ∈ X and λ ∈ K;

(iii) [x, x] ≥ 0 for all x ∈ X and [x, x] = 0 implies x = 0;

(iv) |[x, y]|2 ≤ [x, x] [y, y] for all x, y ∈ X;

(v) [x, λy] = λ̄ [x, y] for all x, y ∈ X and λ ∈ K.

It is well known that the mapping X 3 x 7−→ [x, x]
1

2 ∈ R is a norm on X and

for any y ∈ X, the functional x
ϕy7−→ [x, y] ∈ K is a continuous linear functional on

X endowed with the norm ‖·‖ generated by [·, ·] . Moreover, one has ‖ϕy‖ = ‖y‖
(see for instance [3, p. 17]).

Let (X, ‖·‖) be a real or complex normed space. If J : X → 2X∗

is the
normalized duality mapping defined on X, i.e., (see for instance [3, p. 1])

J (x) = {ϕ ∈ X∗|ϕ (x) = ‖ϕ‖ ‖x‖ , ‖ϕ‖ = ‖x‖} , x ∈ X,

then we may state the following representation result (see for instance [3, p. 18]):

Each semi-inner product [·, ·] : X ×X → K that generates the norm ‖·‖ of the

normed linear space (X, ‖·‖) over the real or complex number field K, is of the

form

[x, y] =
〈

J̃ (y) , x
〉

for any x, y ∈ X,

where J̃ is a selection of the normalized duality mapping and 〈ϕ, x〉 := ϕ (x) for

ϕ ∈ X∗ and x ∈ X.

Utilizing the concept of semi-inner products, we can state the following par-
ticular case of the Diaz-Metcalf inequality.

Corollary 1. Let (X, ‖·‖) be a normed linear space, [·, ·] : X × X → K a semi-

inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If xi ∈ X, i ∈
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{1, . . . , n} and r ≥ 0 such that

r ‖xi‖ ≤ Re [xi, e] for each i ∈ {1, . . . , n} ,(2.1)

then we have the inequality

r

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

.(2.2)

The case of equality holds in (2.2) if and only if both
[

n
∑

i=1

xi, e

]

= r

n
∑

i=1

‖xi‖(2.3)

and
[

n
∑

i=1

xi, e

]

=

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

.(2.4)

The proof is obvious from the Diaz-Metcalf theorem [2, Theorem 3] applied for
the continuous linear functional Fe (x) = [x, e] , x ∈ X.

Before we provide a simpler necessary and sufficient condition of equality in
(2.2), we need to recall the concept of strictly convex normed spaces and a classical
characterization of these spaces.

Definition 2. A normed linear space (X, ‖·‖) is said to be strictly convex if for
every x, y from X with x 6= y and ‖x‖ = ‖y‖ = 1, we have ‖λx + (1 − λ) y‖ < 1
for all λ ∈ (0, 1) .

The following characterization of strictly convex spaces is useful in what follows
(see [1], [6], or [3, p. 21]).

Theorem 1. Let (X, ‖·‖) be a normed linear space over K and [·, ·] a semi-inner

product generating its norm. The following statements are equivalent:

(i) (X, ‖·‖) is strictly convex;

(ii) For every x, y ∈ X, x, y 6= 0 with [x, y] = ‖x‖ ‖y‖ , there exists a λ > 0
such that x = λy.

The following result may be stated.

Corollary 2. Let (X, ‖·‖) be a strictly convex normed linear space, [·, ·] a semi-

inner product generating the norm ‖·‖ and e, xi (i ∈ {1, . . . , n}) as in Corollary

1. Then the case of equality holds in (2.2) if and only if

n
∑

i=1

xi = r

(

n
∑

i=1

‖xi‖
)

e.(2.5)

Proof. If (2.5) holds true, then, obviously
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

= r

(

n
∑

i=1

‖xi‖
)

‖e‖ = r

n
∑

i=1

‖xi‖ ,
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which is the equality case in (2.2).

Conversely, if the equality holds in (2.2), then by Corollary 1, we have that
(2.3) and (2.4) hold true. Utilizing Theorem 1, we conclude that there exists a
µ > 0 such that

n
∑

i=1

xi = µe.(2.6)

Inserting this in (2.3) we get

µ ‖e‖2 = r

n
∑

i=1

‖xi‖

giving

µ = r

n
∑

i=1

‖xi‖ .(2.7)

Finally, by (2.6) and (2.7) we deduce (2.5) and the corollary is proved.

3. An additive reverse for the triangle inequality

In the following we provide an alternative of the Diaz-Metcalf reverse of the
generalized triangle inequality.

Theorem 2. Let (X, ‖·‖) be a normed linear space over the real or complex num-

ber field K and F : X → K a linear functional with the property that |F (x)| ≤ ‖x‖
for any x ∈ X. If xi ∈ X, ki ≥ 0, i ∈ {1, . . . , n} are such that

(0 ≤) ‖xi‖ − Re F (xi) ≤ ki for each i ∈ {1, . . . , n} ,(3.1)

then we have the inequality

(0 ≤)

n
∑

i=1

‖xi‖ −
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

≤
n
∑

i=1

ki.(3.2)

The equality holds in (3.2) if and only if both

F

(

n
∑

i=1

xi

)

=

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

and F

(

n
∑

i=1

xi

)

=

n
∑

i=1

‖xi‖ −
n
∑

i=1

ki.(3.3)

Proof. If we sum in (3.1) over i from 1 to n, then we get

n
∑

i=1

‖xi‖ ≤ Re

[

F

(

n
∑

i=1

xi

)]

+
n
∑

i=1

ki.(3.4)

Taking into account that |F (x)| ≤ ‖x‖ for each x ∈ X, then we may state that

Re

[

F

(

n
∑

i=1

xi

)]

≤
∣

∣

∣

∣

∣

Re F

(

n
∑

i=1

xi

)∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

F

(

n
∑

i=1

xi

)∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

.(3.5)

Now, making use of (3.4) and (3.5), we deduce (3.2).
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Obviously, if (3.3) is valid, then the case of equality in (3.2) holds true.

Conversely, if the equality holds in (3.2), then it must hold in all the inequalities
used to prove (3.2), therefore we have

n
∑

i=1

‖xi‖ = Re

[

F

(

n
∑

i=1

xi

)]

+

n
∑

i=1

ki

and

Re

[

F

(

n
∑

i=1

xi

)]

=

∣

∣

∣

∣

∣

F

(

n
∑

i=1

xi

)∣

∣

∣

∣

∣

=

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

,

which imply (3.3).

The following corollary may be stated.

Corollary 3. Let (X, ‖·‖) be a normed linear space, [·, ·] : X × X → K a semi-

inner product generating the norm ‖·‖ and e ∈ X, ‖e‖ = 1. If xi ∈ X, ki ≥ 0,
i ∈ {1, . . . , n} are such that

(0 ≤) ‖xi‖ − Re [xi, e] ≤ ki for each i ∈ {1, . . . , n} ,(3.6)

then we have the inequality

(0 ≤)
n
∑

i=1

‖xi‖ −
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

≤
n
∑

i=1

ki.(3.7)

The equality holds in (3.7) if and only if both
[

n
∑

i=1

xi, e

]

=

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

and

[

n
∑

i=1

xi, e

]

=
n
∑

i=1

‖xi‖ −
n
∑

i=1

ki.(3.8)

Moreover, if (X, ‖·‖) is strictly convex, then the case of equality holds in (3.7) if

and only if

n
∑

i=1

‖xi‖ ≥
n
∑

i=1

ki(3.9)

and
n
∑

i=1

xi =

(

n
∑

i=1

‖xi‖ −
n
∑

i=1

ki

)

· e.(3.10)

Proof. The first part of the corollary is obvious by Theorem 2 applied for the
continuous linear functional of unit norm Fe, Fe (x) = [x, e] , x ∈ X. The second
part may be shown on utilizing a similar argument to the one from the proof of
Corollary 2. We omit the details.

Remark 1. If X = H, (H; 〈·, ·〉) is an inner product space, then from Corollary
3 we deduce the additive reverse inequality obtained in Theorem 7 of [4]. For
further similar results in inner product spaces, see [4] and [5].
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4. Reverse inequalities for m functionals

The following result generalising Theorem 2 may be stated.

Theorem 3. Let (X, ‖·‖) be a normed linear space over the real or complex num-

ber field K. If Fk, k ∈ {1, . . . ,m} are bounded linear functionals defined on X and

xi ∈ X, Mik ≥ 0 for i ∈ {1, . . . , n}, k ∈ {1, . . . ,m} such that

‖xi‖ − Re Fk (xi) ≤ Mik for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,(4.1)

then we have the inequality

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

1

m

m
∑

k=1

Fk

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

m

m
∑

k=1

n
∑

i=1

Mik.(4.2)

The case of equality holds in (4.2) if both

1

m

m
∑

k=1

Fk

(

n
∑

i=1

xi

)

=

∥

∥

∥

∥

∥

1

m

m
∑

k=1

Fk

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

(4.3)

and

1

m

m
∑

k=1

Fk

(

n
∑

i=1

xi

)

=
n
∑

i=1

‖xi‖ −
1

m

m
∑

k=1

n
∑

i=1

Mik.(4.4)

Proof. If we sum (4.1) over i from 1 to n, then we deduce

n
∑

i=1

‖xi‖ − Re Fk

(

n
∑

i=1

xi

)

≤
n
∑

i=1

Mik

for each k ∈ {1, . . . ,m} .

Summing these inequalities over k from 1 to m, we deduce

n
∑

i=1

‖xi‖ ≤ 1

m

m
∑

k=1

Re Fk

(

n
∑

i=1

xi

)

+
1

m

m
∑

k=1

n
∑

i=1

Mik.(4.5)

Utilizing the continuity property of the functionals Fk and the properties of the
modulus, we have

m
∑

k=1

Re Fk

(

n
∑

i=1

xi

)

≤
∣

∣

∣

∣

∣

m
∑

k=1

Re Fk

(

n
∑

i=1

xi

)∣

∣

∣

∣

∣

(4.6)

≤
∣

∣

∣

∣

∣

m
∑

k=1

Fk

(

n
∑

i=1

xi

)∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∥

m
∑

k=1

Fk

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

.

Now, by (4.5) and (4.6), we deduce (4.2).

Obviously, if (4.3) and (4.4) hold true, then the case of equality is valid in
(4.2).
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Conversely, if the case of equality holds in (4.2), then it must hold in all the
inequalities used to prove (4.2). Therefore we have

n
∑

i=1

‖xi‖ =
1

m

m
∑

k=1

Re Fk

(

n
∑

i=1

xi

)

+
1

m

m
∑

k=1

n
∑

i=1

Mik,

m
∑

k=1

Re Fk

(

n
∑

i=1

xi

)

=

∥

∥

∥

∥

∥

m
∑

k=1

Fk

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

and
m
∑

k=1

Im Fk

(

n
∑

i=1

xi

)

= 0.

These imply that (4.3) and (4.4) hold true, and the theorem is completely proved.

Remark 2. If Fk, k ∈ {1, . . . ,m} are of unit norm, then, from (4.2), we deduce
the inequality

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

m

m
∑

k=1

n
∑

i=1

Mik,(4.7)

which is obviously coarser than (4.2), but perhaps more useful for applications.

The case of inner product spaces, in which we may provide a simpler condition
of equality, is of interest in applications.

Theorem 4. Let (H, ‖·‖) be an inner product space over the real or complex

number field K, ek, xi ∈ H\ {0} , k ∈ {1, . . . ,m} , i ∈ {1, . . . , n} . If Mik ≥ 0 for

i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} such that

‖xi‖ − Re 〈xi, ek〉 ≤ Mik for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,(4.8)

then we have the inequality

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

1

m

m
∑

k=1

ek

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

m

m
∑

k=1

n
∑

i=1

Mik.(4.9)

The case of equality holds in (4.9) if and only if

n
∑

i=1

‖xi‖ ≥ 1

m

m
∑

k=1

n
∑

i=1

Mik(4.10)

and

n
∑

i=1

xi =

m

(

n
∑

i=1

‖xi‖ − 1
m

m
∑

k=1

n
∑

i=1

Mik

)

∥

∥

∥

∥

m
∑

k=1

ek

∥

∥

∥

∥

2

m
∑

k=1

ek.(4.11)
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Proof. As in the proof of Theorem 3, we have

n
∑

i=1

‖xi‖ ≤ Re

〈

1

m

m
∑

k=1

ek,

n
∑

i=1

xi

〉

+
1

m

m
∑

k=1

n
∑

i=1

Mik,(4.12)

and
m
∑

k=1

ek 6= 0.

On utilizing the Schwarz inequality in the inner product space (H; 〈·, ·〉) for
n
∑

i=1

xi,
m
∑

k=1

ek, we have

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

m
∑

k=1

ek

∥

∥

∥

∥

∥

≥
∣

∣

∣

∣

∣

〈

n
∑

i=1

xi,

m
∑

k=1

ek

〉∣

∣

∣

∣

∣

≥
∣

∣

∣

∣

∣

Re

〈

n
∑

i=1

xi,

m
∑

k=1

ek

〉∣

∣

∣

∣

∣

(4.13)

≥ Re

〈

n
∑

i=1

xi,

m
∑

k=1

ek

〉

.

By (4.12) and (4.13) we deduce (4.9).

Taking the norm in (4.11) and using (4.10), we have

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

=

m

(

n
∑

i=1

‖xi‖ − 1
m

m
∑

k=1

n
∑

i=1

Mik

)

∥

∥

∥

∥

m
∑

k=1

ek

∥

∥

∥

∥

,

showing that the equality holds in (4.9).

Conversely, if the case of equality holds in (4.9), then it must hold in all the
inequalities used to prove (4.9). Therefore we have

‖xi‖ = Re 〈xi, ek〉 + Mik for each i ∈ {1, . . . , n} , k ∈ {1, . . . ,m} ,(4.14)

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

m
∑

k=1

ek

∥

∥

∥

∥

∥

=

∣

∣

∣

∣

∣

〈

n
∑

i=1

xi,

m
∑

k=1

ek

〉∣

∣

∣

∣

∣

(4.15)

and

Im

〈

n
∑

i=1

xi,

m
∑

k=1

ek

〉

= 0.(4.16)

From (4.14), on summing over i and k, we get

Re

〈

n
∑

i=1

xi,

m
∑

k=1

ek

〉

= m

n
∑

i=1

‖xi‖ −
m
∑

k=1

n
∑

i=1

Mik.(4.17)

On the other hand, by the use of the following identity in inner product spaces,
∥

∥

∥

∥

u − 〈u, v〉 v

‖v‖2

∥

∥

∥

∥

2

=
‖u‖2 ‖v‖2 − |〈u, v〉|2

‖v‖2
, v 6= 0;
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the relation (4.15) holds if and only if
n
∑

i=1

xi =
〈∑n

i=1 xi,
∑m

k=1 ek〉
‖
∑m

k=1 ek‖2

m
∑

k=1

ek,

giving, from (4.16) and (4.17), that
n
∑

i=1

xi =
m
∑n

i=1 ‖xi‖ −
∑m

k=1

∑n
i=1 Mik

‖∑m
k=1 ek‖2

m
∑

k=1

ek.

If the equality case holds in (4.9), then obviously (4.10) is valid, and the theorem
is proved.

Remark 3. If in the above theorem the vectors {ek}k=1,m are assumed to be

orthogonal, then (4.9) becomes:

n
∑

i=1

‖xi‖ ≤ 1

m

(

m
∑

k=1

‖ek‖2

)
1

2

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

m

m
∑

k=1

n
∑

i=1

Mik.(4.18)

Moreover, if {ek}k=1,m is an orthonormal family, then (4.18) becomes

n
∑

i=1

‖xi‖ ≤
√

m

m

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

m

m
∑

k=1

n
∑

i=1

Mik,(4.19)

which has been obtained in [5].

Before we provide some natural consequences of Theorem 4, we need some
preliminary results concerning reverses of Schwarz’s inequality in inner product
spaces (see for instance [4, p. 27]).

Lemma 1. Let (H, ‖·‖) be an inner product space over the real or complex num-

ber field K and x, a ∈ H, r > 0. If ‖x − a‖ ≤ r, then we have the inequality

‖x‖ ‖a‖ − Re 〈x, a〉 ≤ 1

2
r2.(4.20)

The case of equality holds in (4.20) if and only if

‖x − a‖ = r and ‖x‖ = ‖a‖ .(4.21)

Proof. The condition ‖x − a‖ ≤ r is clearly equivalent to

‖x‖2 + ‖a‖2 ≤ 2 Re 〈x, a〉 + r2.(4.22)

Since

2 ‖x‖ ‖a‖ ≤ ‖x‖2 + ‖a‖2 ,(4.23)

with equality if and only if ‖x‖ = ‖a‖ , hence by (4.22) and (4.23) we deduce
(4.20).

The case of equality is obvious.

Utilizing the above lemma we may state the following corollary of Theorem 4.
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Corollary 4. Let (H; 〈·, ·〉) , ek, xi be as in Theorem 4. If rik > 0, i ∈ {1, . . . , n} ,

k ∈ {1, . . . ,m} are such that

‖xi − ek‖ ≤ rik for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} ,(4.24)

then we have the inequality

n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

1

m

m
∑

k=1

ek

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

2m

m
∑

k=1

n
∑

i=1

r2
ik.(4.25)

The equality holds in (4.25) if and only if

n
∑

i=1

‖xi‖ ≥ 1

2m

m
∑

k=1

n
∑

i=1

r2
ik

and

n
∑

i=1

xi =

m

(

n
∑

i=1

‖xi‖ − 1
2m

m
∑

k=1

n
∑

i=1

r2
ik

)

∥

∥

∥

∥

m
∑

k=1

ek

∥

∥

∥

∥

2

m
∑

k=1

ek.

The following lemma may provide another sufficient condition for (4.8) to hold
(see also [4, p. 28]).

Lemma 2. Let (H; 〈·, ·〉) be an inner product space over the real or complex

number field K and x, y ∈ H, M ≥ m > 0. If either

Re 〈My − x, x − my〉 ≥ 0(4.26)

or, equivalently,
∥

∥

∥

∥

x − m + M

2
y

∥

∥

∥

∥

≤ 1

2
(M − m) ‖y‖ ,(4.27)

holds, then

‖x‖ ‖y‖ − Re 〈x, y〉 ≤ 1

4
· (M − m)2

m + M
‖y‖2 .(4.28)

The case of equality holds in (4.28) if and only if the equality case is realized in

(4.26) and

‖x‖ =
M + m

2
‖y‖ .

The proof is obvious by Lemma 1 for a =
M + m

2
y and r =

1

2
(M − m) ‖y‖ .

Finally, the following corollary of Theorem 4 may be stated.

Corollary 5. Assume that (H, 〈·, ·〉) , ek, xi are as in Theorem 4. If Mik ≥
mik > 0 satisfy the condition

Re 〈Mikek − xi, xi − mikek〉 ≥ 0 for each i ∈ {1, . . . , n} and k ∈ {1, . . . ,m} ,
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then
n
∑

i=1

‖xi‖ ≤
∥

∥

∥

∥

∥

1

m

m
∑

k=1

ek

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

n
∑

i=1

xi

∥

∥

∥

∥

∥

+
1

4m

m
∑

k=1

n
∑

i=1

(Mik − mik)
2

Mik + mik
‖ek‖2 .

5. Applications for complex numbers

Let C be the field of complex numbers. If z = Re z + i Im z, then by |·|p :

C → [0,∞), p ∈ [1,∞] we define the p−modulus of z as

|z|p :=







max {| Re z| , | Im z|} if p = ∞,

(| Re z|p + | Im z|p)
1

p if p ∈ [1,∞),

where |a| , a ∈ R is the usual modulus of the real number a. Obviously, for p = 2,
we recapture the usual modulus of a complex number.

It is well known that
(

C, |·|p
)

, p ∈ [1,∞] is a Banach space over the real

number field R.

Consider the Banach space (C, |·|1) and F : C → C, F (z) = az with a ∈ C,
a 6= 0. Obviously, F is linear on C. For z 6= 0, we have

|F (z)|
|z|1

=
|a| |z|
|z|1

=
|a|
√

| Re z|2 + | Im z|2

| Re z| + | Im z| ≤ |a| .

Since, for z0 = 1, we have |F (z0)| = |a| and |z0|1 = 1, hence

‖F‖1 := sup
z 6=0

|F (z)|
|z|1

= |a| ,

showing that F is a bounded linear functional on (C, |·|1) and ‖F‖1 = |a| .
We can apply Theorem 3 to state the following reverse of the generalized

triangle inequality for complex numbers.

Proposition 1. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist

the constants Mjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such that

|Re xj | + |Im xj | ≤ Re ak · Re xj − Im ak · Im xj + Mjk(5.1)

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

n
∑

j=1

[|Re xj | + |Im xj|] ≤
1

m

∣

∣

∣

∣

∣

m
∑

k=1

ak

∣

∣

∣

∣

∣





∣

∣

∣

∣

∣

∣

n
∑

j=1

Re xj

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

n
∑

j=1

Im xj

∣

∣

∣

∣

∣

∣



+
1

m

m
∑

k=1

n
∑

j=1

Mjk.

(5.2)

The proof follows by Theorem 3 applied for the Banach space (C, |·|1) and
Fk (z) = akz, k ∈ {1, . . . ,m} on taking into account that:

∥

∥

∥

∥

∥

m
∑

k=1

Fk

∥

∥

∥

∥

∥

1

=

∣

∣

∣

∣

∣

m
∑

k=1

ak

∣

∣

∣

∣

∣

.
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Now, consider the Banach space (C, |·|∞) . If F (z) = dz, then for z 6= 0 we have

|F (z)|
|z|∞

=
|d| |z|
|z|∞

=
|d|
√

| Re z|2 + | Im z|2

max {| Re z| , | Im z|} ≤
√

2 |d| .

Since, for z0 = 1 + i, we have |F (z0)| =
√

2 |d| , |z0|∞ = 1, hence

‖F‖∞ := sup
z 6=0

|F (z)|
|z|∞

=
√

2 |d| ,

showing that F is a bounded linear functional on (C, |·|∞) and ‖F‖∞ =
√

2 |d| .
If we apply Theorem 3, then we can state the following reverse of the general-

ized triangle inequality for complex numbers.

Proposition 2. Let ak, xj ∈ C, k ∈ {1, . . . ,m} and j ∈ {1, . . . , n} . If there exist

the constants Mjk ≥ 0, k ∈ {1, . . . ,m} , j ∈ {1, . . . , n} such that

max {|Re xj | , |Im xj|} ≤ Re ak · Re xj − Im ak · Im xj + Mjk

for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.3)
n
∑

j=1

max {|Re xj| , |Im xj|}

≤
√

2

m

∣

∣

∣

∣

∣

m
∑

k=1

ak

∣

∣

∣

∣

∣

max







∣

∣

∣

∣

∣

∣

n
∑

j=1

Re xj

∣

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣

n
∑

j=1

Im xj

∣

∣

∣

∣

∣

∣







+
1

m

m
∑

k=1

n
∑

j=1

Mjk.

Finally, consider the Banach space
(

C, |·|2p

)

with p ≥ 1.

Let F : C → C, F (z) = cz. By Hölder’s inequality, we have

|F (z)|
|z|2p

=
|c|
√

| Re z|2 + | Im z|2
(

| Re z|2p + | Im z|2p
) 1

2p

≤ 2
1

2
− 1

2p |c| .

Since, for z0 = 1 + i we have |F (z0)| = 2
1

2 |c| , |z0| = 2
1

2p (p ≥ 1) , hence

‖F‖2p := sup
z 6=0

|F (z)|
|z|2p

= 2
1

2
− 1

2p |c| ,

showing that F is a bounded linear functional on
(

C, |·|2p

)

, p ≥ 1 and ‖F‖2p =

2
1

2
− 1

2p |c| .
If we apply Theorem 3, then we can state the following proposition.

Proposition 3. Let ak, xj, Mjk be as in Proposition 2. If

[

|Re xj|2p + |Im xj|2p
] 1

2p ≤ Re ak · Re xj − Im ak · Im xj + Mjk
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for each j ∈ {1, . . . , n} and k ∈ {1, . . . ,m} , then

(5.4)

n
∑

j=1

[

|Re xj|2p + |Im xj|2p
]

1

2p

≤ 2
1

2
− 1

2p

m

∣

∣

∣

∣

∣

m
∑

k=1

ak

∣

∣

∣

∣

∣





∣

∣

∣

∣

∣

∣

n
∑

j=1

Re xj

∣

∣

∣

∣

∣

∣

2p

+

∣

∣

∣

∣

∣

∣

n
∑

j=1

Im xj

∣

∣

∣

∣

∣

∣

2p



1

2p

+
1

m

m
∑

k=1

n
∑

j=1

Mjk,

where p ≥ 1.

Remark 4. If in the above proposition we choose p = 1, then we have the
following reverse of the generalized triangle inequality for complex numbers

n
∑

j=1

|xj| ≤
∣

∣

∣

∣

∣

1

m

m
∑

k=1

ak

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n
∑

j=1

xj

∣

∣

∣

∣

∣

∣

+
1

m

m
∑

k=1

n
∑

j=1

Mjk

provided xj, ak, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} satisfy the assumption

|xj | ≤ Re ak · Re xj − Im ak · Im xj + Mjk

for each j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} . Here |·| is the usual modulus of a complex
number and Mjk > 0, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} are given.
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