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ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE
FIRST INITIAL BOUNDARY VALUE PROBLEMS FOR

SCHRÖDINGER SYSTEMS IN DOMAINS
WITH CONICAL POINTS I

NGUYEN MANH HUNG AND CUNG THE ANH

Abstract. Some asymptotic formulas in a neighbourhood of a conical point
for solutions of the first initial boundary value problem for strongly Schrödinger
systems are given.

1. Introduction and notations

Boundary value problems for Schrödinger equations and Schrödinger systems
in a finite cylinder ΩT = Ω × (0, T ) have been studied by many authors (see
[3,8,9]). The existence, uniqueness and smoothness of generalized solutions of
the first initial boundary value problem for strongly Schrödinger systems in an
infinite cylinder Ω∞ = Ω× (0,∞) were given in [4,5]. The aim of this paper is to
establish some theorems on the asymptotic expansions of generalized solutions of
the problem in domains with conical points.

Let Ω be a bounded domain in R
n. Its boundary ∂Ω is assumed to be an

infinitely differentiable surface everywhere except for the coordinate origin, in a
neighbourhood of which Ω coincides with the cone K =

{
x : x/|x| ∈ G

}
, where

G is a smooth domain on the unit sphere Sn−1. We begin by recalling some
notations and functional spaces which will be frequenly used in this paper :
• ΩT = Ω × (0, T ), ST = ∂Ω × (0, T ), Ω∞ = Ω × (0,∞), S∞ = ∂Ω × (0,∞), x =
(x1, . . . , xn) ∈ Ω, u(x, t) = (u1(x, t), . . . , us(x, t)) is a vector complex function,

|Dαu|2 =
s∑

i=1
|Dαui|2, utj =

(
∂ju1/∂t

j , . . . , ∂jus/∂t
j
)
, |utj |2 =

s∑
i=1

∣∣∂jui/∂t
j
∣∣2,

dx = dx1 . . . dxn, r = |x| =
√
x2

1 + · · · + x2
n.

• H l
β(Ω) - the space consisting of all functions u(x) = (u1(x), . . . , us(x)) which

have generalized derivatives Dαui, |α| ≤ l, 1 ≤ i ≤ s, satisfying

‖u‖2
Hl

β(Ω)
=

l∑
|α|=0

∫
Ω

r2(β+|α|−l)|Dαu|2dx < +∞.
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• H l,k(e−γt,Ω∞) - the space consisting of all functions u(x, t) which have gener-

alized derivatives Dαui,
∂jui

∂tj
, |α| ≤ l, 1 ≤ j ≤ k, 1 ≤ i ≤ s, satisfying

‖u‖2
Hl,k(e−γt,Ω∞) =

∫
Ω∞

( l∑
|α|=0

|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γtdxdt < +∞.

In particular,

‖u‖2
Hl,0(e−γt,Ω∞) =

l∑
|α|=0

∫
Ω∞

|Dαu|2e−2γtdxdt.

•
◦
H l,k(e−γt,Ω∞) - the closure in H l,k(e−γt,Ω∞) of the set consisting of all infin-

itely differentiable in Ω∞ functions which belong to H l,k(e−γt,Ω∞) and vanish
near S∞.
• H l,k

β (e−γt,Ω∞) - the space consisting of all functions u(x, t) which have gener-

alized derivatives Dαui,
∂jui

∂tj
, |α| ≤ l, 1 ≤ j ≤ k, 1 ≤ i ≤ s, satisfying

‖u‖2
Hl,k

β (e−γt,Ω∞)
=

∫
Ω∞

( l∑
|α|=0

r2(β+|α|−l)|Dαu|2 +
k∑

j=1

|utj |2
)
e−2γtdxdt < +∞.

• H l
β(e−γt,Ω∞) - the space consisting of all functions u(x, t) which have general-

ized derivatives Dα(ui)tj , |α| + j ≤ l, 1 ≤ i ≤ s, satisfying

‖u‖2
Hl

β(e−γt,Ω∞)
=

l∑
|α|+j=0

∫
Ω∞

r2(β+|α|+j−l)|Dαutj |2e−2γtdxdt < +∞.

• V l
β(e−γt,Ω∞) - the space consisting of all functions u(x, t) which have general-

ized derivatives Dα(ui)tj , |α| + j ≤ l, 1 ≤ i ≤ s, satisfying

‖u‖2
V l

β (e−γt,Ω∞)
=

l∑
|α|+j=1

∫
Ω∞

r2(β+|α|+j−l)|Dαutj |2e−2γtdxdt

+
∫

Ω∞

|u|2e−2γtdxdt <∞.

• Let X be a Banach space. Denote by L∞(0,∞;X) the space consisting of all
measurable functions u : (0,∞) −→ X, t �−→ u(x, t), satisfying

‖u‖L∞(0,∞;X) = ess sup
t>0

‖u(x, t)‖X < +∞.

Consider the differential operator of order 2m

L(x, t,D) =
m∑

|p|,|q|=0

Dp
(
apq(x, t)Dq

)
,
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where apq are s × s-matrices of measurable bounded in Ω∞ complex functions,
apq = (−1)|p|+|q|a∗qp. Suppose that apq are continuous in x ∈ Ω uniformly with
respect to t ∈ [0,∞) if |p| = |q| = m, and for each t ∈ [0,∞) the operator
L(x, t,D) is uniformly elliptic in Ω with ellipticity constant a0 independent of
time t, i.e., we have ∑

|p|=|q|=m

apq(x, t)ξpξqηη ≥ a0|ξ|2m|η|2,

for all ξ ∈ R
n \ {0}, η ∈ C

s \ {0} and (x, t) ∈ Ω∞.
In this paper we study the following problem: Find a function u(x, t) such that

(−1)m−1iL(x, t,D)u− ut = f(x, t) in Ω∞,(1.1)

u|t=0 = 0,(1.2)

∂ju

∂νj

∣∣∣
S∞

= 0, j = 0, . . . ,m− 1,(1.3)

where ν is the outer unit normal to S∞.
A function u(x, t) is called a generalized solution of the problem (1.1)-(1.3) in

the space
◦
Hm,0(e−γt,Ω∞) if and only if u(x, t) belongs to

◦
Hm,0(e−γt,Ω∞) and

for each T > 0 the following equality holds

(−1)m−1i

m∑
|p|,|q|=0

(−1)|p|
∫

ΩT

apqD
quDpηdxdt+

∫
ΩT

uηtdxdt =
∫

ΩT

fηdxdt

for any test function η ∈
◦
Hm,1(ΩT ), η(x, T ) = 0.

Put

B(u, u)(t) =
m∑

|p|,|q|=0

(−1)|p|
∫
Ω

apqD
quDpudx, u(x, t) ∈

◦
Hm,0(e−γt,Ω∞).

For a.e. t ∈ [0,∞), the function x �→ u(x, t) belongs to
◦
Hm(Ω). Hence by

Garding’s inequality [2, Th.5.I, p. 44], we have

Lemma 1.1. There exist two constants µ0 and λ0 (µ0 > 0, λ0 ≥ 0) such that

(−1)mB(u, u)(t) ≥ µ0

∥∥u(x, t)∥∥2

Hm(Ω)
− λ0

∥∥u(x, t)∥∥2

L2(Ω)

for all u(x, t) ∈
◦
Hm,0(e−γt,Ω∞).

Therefore, using the transformation u = eiλ0tv if necessary, we can assume
that the operator L(x, t,D) satisfies

(1.4) (−1)mB(u, u)(t) ≥ µ0‖u‖2
Hm(Ω)

for all u(x, t) ∈
◦
Hm,0(e−γt,Ω∞). This inequality is a basic tool for proving the

existence and uniqueness of solutions of the problem under consideration.
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2. Existence, uniqueness and smoothness of solutions

In this section we sumarize the known results on the existence, uniqueness and
smoothness of generalized solutions of the problem (1.1)-(1.3).

Denote by m∗ the number of multi-indexes which have order not exceeding m.
Let µ0 be the constant in (1.4). By using Theorems 3.1, 3.2 in [4] and induction
we obtain the following result.

Theorem 2.1. Let

(i) sup
{∣∣∣∂apq

∂t

∣∣∣ : (x, t) ∈ Ω∞, 0 ≤ |p|, |q| ≤ m
}

= µ < +∞;

∣∣∣∂kapq

∂tk

∣∣∣ ≤ µ1, µ1 = const > 0, for 2 ≤ k ≤ h+ 1;

(ii) ftk ∈ L∞(0,∞;L2(Ω)), for k ≤ h+ 1;
(iii) ftk(x, 0) = 0, for k ≤ h.

Then for every γ > γ0 =
m∗µ
2µ0

, the problem (1.1)-(1.3) has exactly one gener-

alized solution u(x, t) in the space
◦
Hm,0(e−γt,Ω∞). Moreover, u(x, t) has deriv-

atives with respect to t up to order h belonging to
◦
Hm,0(e−(2h+1)γt,Ω∞) and the

following estimate holds

‖uth‖2
Hm,0(e−(2h+1)γt,Ω∞)

≤ C
h+1∑
k=0

‖ftk‖2
L∞(0,∞;L2(Ω)),

where C is a positive constant independent of u and f .

From now on, for the sake of brevity we will write γh instead of (2h+1)γ
(h = 1, 2, ...).

To study the smoothness with respect to (x, t) and establish asymptotic for-
mulas of solutions of the problem (1.1)-(1.3), for simplicity we assume that the
coefficients apq(x, t) of the operator L(x, t,D) are infinitely differentiable in Ω∞.
Moreover, we also assume that apq(x, t) and all its derivatives are bounded in
Ω∞.

First, we recall two basic lemmas.

Lemma 2.1. [5] Let f, ft, ftt ∈ L∞(0,∞;L2(K)) and f(x, 0) = ft(x, 0) = 0.

If u(x, t) ∈
◦
Hm,0(e−γt,Ω∞) is a generalized solution of the problem (1.1)-(1.3)

in the space
◦
Hm,0(e−γt,Ω∞) such that u ≡ 0 whenever |x| > R = const, then

u ∈ H2m,0
m (e−γ1t,K∞) and the following estimate holds

‖u‖2
H2m,0

m (e−γ1t,K∞)
≤ C

[
‖f‖2

L∞(0,∞;L2(K))+‖ft‖2
L∞(0,∞;L2(K))+‖ftt‖2

L∞(0,∞;L2(K))

]
,

where C = const.
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Denote by L0(0, t,D) the principal part of the operator L(x, t,D) at origin 0.
We consider the Dirichlet problem for the system

(−1)m−1L0(0, t,D)u = F (x, t), x ∈ K.(2.1)

Lemma 2.2. [5] Let u(x, t) be a generalized solution of the Dirichlet problem for
the system (2.1) for a.e. t ∈ [0,∞) such that u ≡ 0 whenever |x| > R = const,
and u(x, t) ∈ H2m+l−1,0

β−1 (e−γt,K∞). Let F ∈ H l,0
β (e−γt,K∞). Then u(x, t) ∈

H2m+l,0
β (e−γt,K∞) and

‖u‖2
H2m+l,0

β (e−γt,K∞)
≤ C

[
‖F‖2

Hl,0
β (e−γt,K∞)

+ ‖u‖2
H2m+l−1,0

β−1 (e−γt,K∞)

]
,

where C = const.

Let ω be a local coordinate system on Sn−1. The principal part of the operator
L(x, t,D) at origin 0 can be written in the form

L0(0, t,D) = r−2mQ(ω, t, rDr,Dω), Dr =
i∂

∂r
,

where Q is a linear operator with smooth coefficients. From now on the following
spectral problem will play an important role

Q(ω, t, λ,Dω)v(ω) = 0, ω ∈ G,(2.2)

Dj
ωv(ω) = 0, ω ∈ ∂G, |j| = 0, . . . ,m− 1.(2.3)

It is well known [7, p. 146] that for every t ∈ [0,∞) its spectrum is discrete.

Theorem 2.2. [5] Let u(x, t) be a generalized solution of the problem (1.1)-(1.3)

in the space
◦
Hm,0(e−γt,Ω∞) and let ftk ∈ L∞(0,∞;H l

0(Ω)) for k ≤ 2m + l + 1,
ftk(x, 0) = 0 for k ≤ 2m+ l. In addition, supppose that the strip

m− n

2
≤ Im λ ≤ 2m+ l − n

2

does not contain points of spectrum of the problem (2.2)-(2.3) for every t ∈ [0,∞).
Then u(x, t) ∈ H2m+l

0 (e−γ2m+lt,Ω∞) and the following estimate holds

‖u‖2
H2m+l

0 (e−γ2m+lt,Ω∞)
≤ C

2m+l+1∑
k=0

‖ftk‖2
L∞(0,∞;Hl

0(Ω))
,

where C = const.

3. Asymptotic expansions of solutions

In this section we will study asymptotic expansions of generalized solutions of
the problem (1.1)-(1.3) in the case the strip

m− n

2
< Imλ < 2m+ l − n

2
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contains only one simple eigenvalue of the problem (2.2)-(2.3). From now on, for
convenience we denote

L2,γ [0,∞) =
{
c(t) : c(t)e−γt ∈ L2[0,∞)

}
.

Lemma 3.1. Let u(x, t) be a generalized solution of the Dirichlet problem for the
system (2.1) for a.e. t ∈ [0,∞) such that u ≡ 0 whenever |x| > R = const, and
let utk ∈ H2m+l,0

β (e−γt,K∞), Ftk ∈ H l,0
β′ (e−γt,K∞) for k ≤ h, β′ < β ≤ m+ l. In

addition, suppose that the straight lines

Imλ = −β + 2m+ l − n

2
and Imλ = −β′ + 2m+ l − n

2
do not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t ∈ [0,∞), and in the strip

−β + 2m+ l − n

2
< Imλ < −β′ + 2m+ l − n

2
there exists only one simple eigenvalue λ(t) of the problem (2.2)-(2.3). Then the
following representation holds

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t),

where φ is an infinitely differentiable function of (ω, t) that does not depend on
the solution, ctk ∈ L2,γ [0,∞) and (u1)tk ∈ H2m+l,0

β′ (e−γt,K∞) for k ≤ h.

Proof. From Theorem 3.2 in [10, p. 37] it follows that

u(x, t) = c(t)r−iλ(t)φ(ω, t) + u1(x, t),(3.1)

where φ(ω, t) is the eigenfunction of the problem (2.2)-(2.3) which corresponds
to the eigenvalue λ(t), u1 ∈ H2m+l,0

β′ (e−γt,K∞), and

c(t) = i

∫
K

F (x, t)r−iλ(t)+2m−nψ(x, t)dx,

where ψ is the eigenfunction of the problem conjugating to the problem (2.2)-(2.3)
and which corresponds to the eigenvalue λ(t). Since

Imλ(t) > β′ − 2m− l +
n

2
and

F ∈ H l,0
β′ (e−γt,K∞),

we have c(t) ∈ L2,γ [0,∞). Hence the assertion is proved for h = 0.
Assume that the assertion is true for 0, 1, . . . , h− 1. Denoting uth by v. From

(2.1) we obtain

(−1)m−1L0(0, t,D)v = Fth + (−1)m
h∑

k=1

(
h
k

)
L0tk(0, t,D)uth−k ,(3.2)
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where

L0tk =
∑

|p|=|q|=m

∂kapq(0, t)
∂tk

DpDq.

Put S0(ω, t) = r−iλ(t)φ(ω, t). Since φ(ω, t) ∈ C∞(ω, t) [1], from (3.1) it follows
that

h∑
k=1

(
h
k

)
L0tk(0, t,D)uth−k =

h∑
k=1

(
h
k

)
L0tk(0, t,D)

[
(cS0)th−k

]

+
h∑

k=1

(
h
k

)
L0tk(0, t,D)(u1)th−k .

Using the induction hypothesis we obtain

h∑
k=1

(
h
k

)
L0tk(0, t,D)uth−k = F1 −

h∑
k=1

(
h
k

)
cth−kL0(0, t,D)(S0)tk ,(3.3)

where F1 ∈ H l,0
β′ (e−γt,K∞). From (3.2) and (3.3) we see that

(−1)m−1L0(0, t,D)v = F2 − (−1)m
h∑

k=1

(
h
k

)
cth−kL0(0, t,D)(S0)tk ,

where F2 ∈ H l,0
β′ (e−γt,K∞). Hence by the arguments used in the proof of the

case h = 0 we can find

uth = v =
h∑

k=1

(
h
k

)
cth−k (S0)tk + d(t)S0 + u2,(3.4)

where d(t) ∈ L2,γ [0,∞), u2 ∈ H2m+l,0
β′ (e−γt,K∞). From this equality it follows

that

S0,1 = uth −
h∑

k=2

(
h
k

)
cth−k(S0)tk − (h− 1)cth−1(S0)t

= cth−1(S0)t + dS0 + u2.

Now differentiate the equality (3.1) (h− 1) times by t. As a result we obtain

uth−1 =
h−1∑
k=0

(
h− 1
k

)
cth−k−1(S0)tk + (u1)th−1 .(3.5)

We rewrite (3.5) in the form

S0,2 = uth−1 −
h−1∑
k=1

(
h− 1
k

)
cth−k−1(S0)tk = cth−1S0 + (u1)th−1 .
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Then

(S0,2)t = uth −
h−1∑
k=1

(
h− 1
k

) [
cth−k (S0)tk + cth−k−1(S0)tk+1

]

= uth −
h∑

k=1

(
h
k

)
cth−k(S0)tk + cth−1(S0)t.

From this equality and (3.4) we obtain

(S0,2)t = cth−1(S0)t + dS0 + u2.

Put S1 = S−1
0 (u1)th−1 , S2 = S−1

0 u2 −S−2
0 (S0)t(u1)th−1 . It is easy to check that

S−1
0 S0,2 = cth−1 + S1, (S−1

0 S0,2)t = d+ S2.

It follows that

I(t) = cth−1(t) − cth−1(0) −
t∫

0

d(τ)dτ

=

t∫
0

S2(x, τ)dτ − S1(x, t) + S1(x, 0).

Since (u1)th−1 ∈ H2m+l,0
β′ (e−γt,K∞), u2 ∈ H2m+l,0

β′ (e−γt,K∞); so S1, S2 ∈ H0,0
−n

2

(e−γt,K∞). Therefore I(t) ∈ H0
−n

2
(K), i.e., I(t) ≡ 0. Hence cth = d ∈ L2,γ [0,∞),

and (u1)th = u2 ∈ H2m+l,0
β′ (e−γt,K∞). The proof is completed.

Lemma 3.2. Let u(x, t) be a generalized solution of the Dirichlet problem for the
system (2.1) for a.e. t ∈ [0,∞) such that u ≡ 0 whenever |x| > R = const, and
let utk ∈ H2m,0

m−µ(e−γt,K∞), Ftk ∈ H0,0
m−µ−1(e

−γt,K∞) for k ≤ 2m − 1, 0 ≤ µ ≤
m− 1. In addition, suppose that the straight lines

Imλ = m+ µ− n

2
and Imλ = m+ µ+ 1 − n

2

do not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t ∈ [0,∞), and in the strip

m+ µ− n

2
< Imλ < m+ µ+ 1 − n

2
there exists only one simple eigenvalue λ(t) of the problem (2.2)-(2.3). Then the
representation

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m
m−µ−1+Im λ(t)(e

−γt,K∞) and u1(x, t) ∈ H2m
m−µ−1(e

−γt,K∞),
holds.
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Proof. From Lemma 3.1 it follows that

u(x, t) = c(t)r−iλ(t)ϕ(ω, t) + u1(x, t),(3.6)

where ϕ(ω, t) is the eigenfunction of the problem (2.2)-(2.3) which corresponds
to the eigenvalue λ(t), ctk ∈ L2,γ [0,∞) and (u1)tk ∈ H2m,0

m−µ−1(e
−γt,K∞) for

k ≤ 2m− 1.
Let K ′ be a domain such that K ′ ⊆ K and ϕ(ω, t) 
= 0 in K ′. Consider in K ′

a linear differential operator of the form

D1 =
1 − ϕ2

ω

−iϕ
∂

∂r
+
λ(t)ϕω

r

∂

∂ω
.

Then

riλ(t)+1D1u = λ(t)c(t) + riλ(t)+1D1u1.(3.7)

Put
c1(x, t) = riλ(t)+1D1u, c0(t) = λ(t)c(t).

Since u1 ∈ H2m,0
m−µ−1(e

−γt,K∞), it follows from (3.7) that

∫
K ′∞

r2(m−µ+Imλ(t)−2m−1)|c0 − c1|2e−2γtdxdt =
∫

K ′∞

r2(m−µ)|D1u1|2e−2γtdxdt <∞.

(3.8)

We have c1 ∈ V 2m−1
m−µ−2+Im λ(t)(e

−γt,K ′∞). Indeed, in variable x the operator
D1 has the form

D1 =
n∑

i=1

φi(ω, t)
∂

∂xi
,

where φi(ω, t) ∈ C∞(ω, t). Since (u1)tk ∈ H2m,0
m−µ−1(e

−γt,K ′∞) for k ≤ 2m− 1,

∑
0≤|α|≤2m

∫
K ′∞

r2(−m−µ−1+|α|)|Dα(u1)tk |2e−2γtdxdt <∞

for k ≤ 2m− 1. Hence it follows that

∑
1≤|α|+k≤2m−1

∫
K ′∞

r2(−µ−1+Imλ(t)+k+|α|−m)|Dα(riλ(t)+1D1u1)tk |2e−2γtdxdt <∞.

(3.9)

Since (c0)tk ∈ L2,γ [0,∞), k ≤ 2m− 1, and Imλ(t) > m+ µ− n

2
we have

∑
1≤k≤2m−1

∫
K ′∞

r2(−µ−1+Imλ(t)+k−m)|(c0)tk |2e−2γtdxdt <∞.(3.10)
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From (3.9) and (3.10) we obtain

∑
1≤|α|+k≤2m−1

∫
K ′∞

r2(−µ−1+Imλ(t)+k+|α|−m)|Dα(c1)tk |2e−2γtdxdt

(3.11)

=
∑

1≤|α|+k≤2m−1

∫
K ′∞

r2(−µ−1+Imλ(t)+k+|α|−m)|Dα(riλ(t)+1D1u1)tk |2e−2γtdxdt

+
∑

1≤k≤2m−1

∫
K ′∞

r2(−µ−1+Imλ(t)+k−m)|(c0)tk |2e−2γtdxdt <∞.

Since u ∈ H2m,0
m−µ(e−γt,K∞) and −Imλ(t) > −m− µ− 1 +

n

2
, it holds∫

K ′∞

|c1|2e−2γtdxdt =
∫

K ′∞

|riλ(t)+1D1u|2e−2γtdxdt(3.12)

≤ C

∫
K ′∞

r2(−m−µ+n/2)|Du|2e−2γtdxdt

≤ C

∫
K ′∞

r2(1−m−µ)|Du|2e−2γtdxdt ≤ C‖u‖2
H2m,0

m−µ(e−γt,K ′∞)
<∞,

where C = const. From (3.11) and (3.12) we deduce that

c1(x, t) ∈ V 2m−1
m−µ−2+Imλ(t)(e

−γt,K ′
∞).

From (3.8) it follows that the function c1(x, t) can be extended to an element of
V 2m−1

m−µ−2+Imλ(t)(e
−γt,K∞) (we denote the extended function also by c1(x, t)) and∫
K∞

r(m−µ+Imλ(t)−2m−1)|c0 − c1|2e−2γtdxdt <∞.(3.13)

By Lemma 2 in [6], there exists a function c̃1(x, t) such that

c̃1(x, t) ∈ V 2m
m−µ−1+Imλ(t)(e

−γt,K∞)

and

‖c̃1‖V 2m
m−µ−1+Imλ(t)

(e−γt,K∞) ≤ C‖c1‖V 2m−1
m−µ−2+Imλ(t)

(e−γt,K∞),∫
K∞

r2(m−µ+Imλ(t)−2m−1)|c1 − c̃1|2e−2γtdxdt <∞.(3.14)

From (3.13) and (3.14) we obtain∫
K∞

r2(m−µ+Imλ(t)−2m−1)|c0 − c̃1|2e−2γtdxdt <∞.(3.15)
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Put

u2 =
1
λ(t)

[
c0 − c̃1

]
r−iλ(t)ϕ(ω, t) + u1.(3.16)

By the property c̃1 ∈ V 2m
m−µ−1+Imλ(t)(e

−γt,K∞) and by (3.15), we have[
c0 − c̃1

]
r−iλ(t) ∈ H2m

m−µ−1(e
−γt,K∞).

From (3.6) and (3.16) we get

u(x, t) =
1
λ(t)

c̃1(x, t)r−iλ(t)ϕ(ω, t) + u2(x, t).(3.17)

Put

c2(x, t) =
1
λ(t)

c̃1(x, t)ϕ(ω, t).

From (3.17) it follows that

u(x, t) = c2(x, t)r−iλ(t) + u2(x, t),

where c2(x, t) ∈ V 2m
m−µ−1+Imλ(t)(e

−γt,K∞).

We will prove that u2 ∈ H2m
m−µ−1(e

−γt,K∞). On one hand, since

c̃1(x, t) ∈ V 2m
m−µ−1+Imλ(t)(e

−γt,K∞),

we have ∑
1≤|α|+k≤2m,|α|�=0

∫
K∞

r2(−m−µ−1+Imλ(t)+|α|+k)|Dα(c0 − c̃1)tk |2e−2γtdxdt

=
∑

1≤|α|+k≤2m,|α|�=0

∫
K∞

r2(−m−µ−1+Imλ(t)+|α|+k)|Dα(c̃1)tk |2e−2γtdxdt <∞.

On the other hand, since

c2 ∈ V 2m
m−µ−1+Imλ(t)(e

−γt,K∞)

and

utk ∈ H2m,0
m−µ(e−γt,K∞) for k ≤ 2m− 1,

we have ∑
1≤k≤2m

∫
K∞

r2(−m−µ−1+k)|(u2)tk |2e−2γtdxdt

=
∑

1≤k≤2m

∫
K∞

r2(−m−µ−1+k)|(u− c2r
−iλ(t))tk |2e−2γtdxdt <∞.
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Therefore ∑
1≤|α|+k≤2m

∫
K∞

r2(−m−µ−1+|α|+k)|Dα(u2)tk |2e−2γtdxdt(3.18)

≤ C1

∑
1≤|α|+k≤2m

∫
K∞

r2(−m−µ−1+Imλ(t)+|α|+k)|Dα(c0 − c̃1)tk |2e−2γtdxdt

+ C2‖u1‖2
H2m,0

m−µ−1(e−γt,K∞)
<∞,

where Ci = const, i = 1, 2. Since u1 ∈ H2m,0
m−µ−1(e

−γt,K∞), from (3.15) we deduce
that ∫

K∞

r2(−m−µ−1)|u2|2e−2γtdxdt(3.19)

≤ C

∫
K∞

r2(−m−µ−1)
(
|c0 − c̃1|2r2Imλ(t) + |u1|2

)
e−2γtdxdt

= C

∫
K∞

r2(−m−µ+Imλ(t)−2m−1)|c0 − c̃1|2e−2γtdxdt

+ C

∫
K∞

r2(−m−µ−1)|u1|2e−γtdxdt <∞, C = const.

From (3.18) and (3.19) it follows that∑
0≤|α|+k≤2m

∫
K∞

r2(−m−µ−1+|α|+k)|Dα(u2)tk |2e−2γtdxdt <∞,

i.e., u2 ∈ H2m
m−µ−1(e

−γt,K∞). The proof of the lemma is completed.

Proposition 3.1. Let u(x, t) be a generalized solution of the problem (1.1)-(1.3)

in the spaces
◦
Hm,0(e−γt,Ω∞) such that u ≡ 0 whenever |x| > R = const, and let

ftk ∈ L∞(0,∞;L2(K)) for k ≤ 2m + 1, ftk(x, 0) = 0 for k ≤ 2m. Assume that
in the strip m− n

2
≤ Imλ ≤ m+ µ+ 1− n

2
, 0 ≤ µ ≤ m− 1, there exists only one

simple eigenvalue λ(t) of the problem (2.2)-(2.3) such that

m+ µ− n

2
< Imλ(t) < m+ µ+ 1 − n

2
.

Then the representation

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m
m−µ−1+Imλ(t)(e

−γ2mt,K∞) and u1 ∈ H2m
m−µ−1(e

−γ2mt,K∞), holds

Proof. We distinguish the following cases:
Case 1: µ ≤ 1. Rewrite the system (1.1) in the form

(−1)m−1L0(0, t,D)u = F,(3.20)
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where F (x, t) = −i(ut + f) + (−1)m−1
[
L0(0, t,D)−L(x, t,D)

]
u. From Theorem

2.1 and Lemma 2.1 it follows that F ∈ H0,0
m−µ(e−γ1t,K∞). Since the strip

m− n

2
< Imλ < m+ µ− n

2
does not contain any point belonging to the spectrum of the problem (2.2)-(2.3)
for every t ∈ [0,∞), from Theorem 2.1 and the results on elliptic problems [11,12],
we deduce that u ∈ H2m,0

m−µ(e−γ1t,K∞).
Since ftk ∈ L∞(0,∞;L2(K)) for k ≤ 2m + 1, ftk(x, 0) = 0 for k ≤ 2m, it

follows from Theorem 2.1 and Lemma 2.1 that utk ∈ H2m,0
m−µ(e−γk+1t,K∞) for

k ≤ 2m− 1. Therefore

Ftk ∈ H0,0
m−µ(e−γk+1t,K∞), k ≤ 2m− 1.(3.21)

Put v = utk . By (3.20) we have

(−1)m−1L0(0, t,D)v = Ftk (x, t) + L0tk ,(3.22)

where

L0tkutk =
k∑

s=1

(
k
s

) ∑
|p|=|q|=m

∂kapq(0, t)
∂tk

DpDqutk−s .

Let utj ∈ H2m,0
m−µ(e−γj+1t,K∞), j ≤ k − 1. Then

k∑
s=1

(
k
s

) ∑
|p|=|q|=m

∂kapq(0, t)
∂tk

DpDqutk−s ∈ H0,0
m−µ(e−γkt,K∞).

Hence from (3.21) and (3.22) it follows that

(−1)m−1L0(0, t,D)v = F1,

where F1 ∈ H0,0
m−µ(e−γk+1t,K∞). Then v ∈ H2m,0

m−µ(e−γk+1t,K∞), i.e.,

utk ∈ H2m,0
m−µ(e−γk+1t,K∞), k ≤ 2m− 1.(3.23)

By Theorem 2.1, (ut + f)tk ∈ H0,0
m−µ−1(e

−γk+1t,K∞), k ≤ 2m − 1. On the other
hand,

[
L0(0, t,D) − L(x, t,D)

]
=

∑
|α|=2m

[bα(x, t) − bα(0, t)]Dα +
∑

|α|≤2m−1

bα(x, t)Dα,

(3.24)

and |bα(x, t) − bα(0, t)| ≤ C|x|, C = const. Hence from (3.23) it follows that

Ftk(x, t) ∈ H0,0
m−µ−1(e

−γk+1t,K∞), k ≤ 2m− 1.(3.25)

By Lemma 3.2, from (3.23) and (3.25) we obtain

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m
m−µ−1+Im λ(t)(e

−γ2mt,K∞), u1(x, t) ∈ H2m
m−µ−1(e

−γ2mt,K∞).
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Case 2: µ = m0 + µ0, 0 < µ0 ≤ 1,m0 ∈ Z+. Let m0 = 0. By the arguments used
in Case 1 we have

utk ∈ H2m,0
m−µ0

(e−γk+1t,K∞), Ftk(x, t) ∈ H0,0
m−µ0−1(e

−γk+1t,K∞),(3.26)

for k ≤ 2m− 1. Assume that (3.26) is true for µ = m0 − 1 + µ0, i.e.

utk ∈ H2m,0
m−m0−µ0+1(e

−γk+1t,K∞), Ftk (x, t) ∈ H0,0
m−m0−µ0

(e−γk+1t,K∞),(3.27)

for k ≤ 2m− 1. Let k = 0. From (3.27) it follows that

F (x, t) ∈ H0,0
m−m0−µ0

(e−γ1t,K∞).

Since in the strip

m+m0 + µ0 − 1 − n

2
≤ Imλ ≤ m+m0 + µ0 − n

2
there are no points belonging to the spectrum of the problem (2.2)-(2.3) for every
t ∈ [0,∞), by the arguments analogous to those used in Case 1, we obtain

u ∈ H2m,0
m−m0−µ0

(e−γ1t,K∞).

Hence it follows from (3.24) that

F (x, t) ∈ H0,0
m−m0−µ0−1(e

−γ1t,K∞).

By induction on k and the arguments analogous to those used in the proof of
(3.23) and (3.25), we obtain

utk ∈ H2m,0
m−m0−µ0

(e−γk+1t,K∞), Ftk (x, t) ∈ H0,0
m−m0−µ0−1(e

−γk+1t,K∞), k ≤ 2m−1,

i.e., (3.26) is true for µ = m0 + µ0. Hence

utk ∈ H2m,0
m−µ(e−γk+1t,K∞), Ftk(x, t) ∈ H0,0

m−µ−1(e
−γk+1t,K∞), k ≤ 2m− 1.

(3.28)

Since m+ µ− n/2 < Imλ(t) < m+ µ + 1 − n/2, from (3.28) and Lemma 3.2 it
follows that

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),
where c(x, t) ∈ V 2m

m−µ−1+Im λ(t)(e
−γ2mt,K∞), u1(x, t) ∈ H2m

m−µ−1(e
−γ2mt,K∞).

The proof is completed.

Lemma 3.3. Let u(x, t) be a generalized solution of the Dirichlet problem for the
system (2.1) for a.e. t ∈ [0,∞) such that u ≡ 0 whenever |x| > R = const, and
let utk ∈ H2m+l

µ (e−γt,K∞), k ≤ 1, F ∈ H l
µ−1(e

−γt,K∞), 0 ≤ µ ≤ 1. In addition,
suppose that the straight lines

Imλ = −µ+ 2m+ l − n

2
and Imλ = −µ+ 2m+ l + 1 − n

2
do not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t ∈ [0,∞), and in the strip

−µ+ 2m+ l − n

2
< Imλ < −µ+ 2m+ l + 1 − n

2
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there exists only one simple eigenvalue λ(t) of the problem (2.2)-(2.3). Then the
representation

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m+l
µ−1+Im λ(t)(e

−γt,K∞) and u1(x, t) ∈ H2m+l
µ−1 (e−γt,K∞), holds.

Proof. We will use the same symbols as in the proof of Lemma 3.2. Repeating
the arguments used in the proof of Lemma 3.2, we obtain

u(x, t) = c(t)r−iλ(t)ϕ(ω, t) + u1(x, t),(3.29)

where ϕ(ω, t) is the eigenfunction of the problem (2.2) - (2.3) which corresponds
to the eigenvalue λ(t), c(t) ∈ L2,γ [0,∞), u1(x, t) ∈ H2m+l,0

µ−1 (e−γt,K∞).
We have

riλ(t)+1D1u = λ(t)c(t) + riλ(t)+1D1u1.

Put

c1(x, t) =
1
λ(t)

riλ(t)+1D1u.

Since u1 ∈ H2m+l,0
µ−1 (e−γt,K∞), from (3.29) it follows that∫

K ′∞

r2(µ+Imλ(t)−2m−l−1)|c− c1|2e−2γtdxdt

=
∫

K ′∞

|λ(t)|−2r2(µ−2m−l)|D1u1|2e−2γtdxdt <∞.

Since ut ∈ H2m+l
µ (e−γt,K ′∞),∑

0≤|α|+k≤2m+l

∫
K ′∞

r2(µ+k+|α|−2m−l)|Dαutk+1 |2e−2γtdxdt <∞.

Therefore ∑
0≤|β|+1+k≤2m+l

∫
K ′∞

r2(µ+k+|β|+1−2m−l)|DβD1utk+1 |2e−2γtdxdt <∞.

Hence ∑
0≤|β|+s≤2m+l,s≥1

∫
K ′∞

r2(µ+s+|β|−2m−l)|DβD1uts |2e−2γtdxdt <∞.(3.30)

Since u ∈ H2m+l
µ (e−γt,K ′∞), we have∑
0≤|β|≤2m+l

∫
K ′∞

r2(µ+1+|β|−2m−l)|DβD1u|2e−2γtdxdt <∞.(3.31)
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Since
Dα(c1)tk =

∑
|β|≤|α|,s≤k

ds,β(t)riλ(t)+1−|α|+|β|lnk−srDβD1uts ,

where ds,β(t) ∈ C∞[0,∞), from (3.30) and (3.31) we obtain

∑
1≤|α|+k≤2m+l−1,k≥1

∫
K ′∞

r2(µ+Imλ(t)+|α|+k−2m−l−1)|Dα(c1)tk |2e−2γtdxdt

(3.32)

≤ C1

∑
1≤|α|+k≤2m+l−1,k≥1

∑
|β|≤|α|,s≤k

∫
K ′∞

r2(µ+|β|+k−2m−l)|DβD1uts |2e−2γtdxdt

≤ C2

∑
|β|+s≤2m+l−1

∫
K ′∞

r2(µ+|β|+s−2m−l)|DβD1uts |2e−2γtdxdt

+ C3

∑
|β|≤2m+l−1

∫
K ′∞

r2(µ+1+|β|−2m−l)|DβD1u|2e−2γtdxdt <∞,

where Ci = const, i = 1, 2, 3.

For k = 0, since u1 ∈ H2m+l,0
µ−1 (e−γt,K ′∞) we have∑

1≤|α|≤2m+l−1

∫
K ′∞

r2(µ+Imλ(t)+|α|−2m−l−1)|Dαc1|2e−2γtdxdt(3.33)

≤ C
∑

1≤|β|≤2m+l

∫
K ′∞

r2(µ+|β|−2m−l−1)|Dβu1|2e−2γtdxdt

≤ C‖u1‖2
H2m+l,0

µ−1 (e−γt,K ′∞)
, C = const.

From (3.32) and (3.33) it follows that∑
1≤|α|+k≤2m+l−1

∫
K ′∞

r2(µ+Imλ(t)+|α|+k−2m−l−1)|Dα(c1)tk |2e−2γtdxdt <∞.(3.34)

Since −Imλ(t) > µ− 1 − 2m− l + n/2,∫
K ′∞

|c1|2e−2γtdxdt ≤ C

∫
K ′∞

r2(1−Imλ(t))|D1u|2e−2γtdxdt(3.35)

≤
∫

K ′∞

r2(µ−2m−l+n/2)|D1u|2e−2γtdxdt

≤ C

∫
K ′∞

r2(µ−2m−l+1)|D1u|2e−2γtdxdt

≤ C‖u‖2
H2m+l

µ (e−γt,K ′∞)
<∞.
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From (3.34) and (3.35) we deduce that c1 ∈ V 2m+l−1
µ−2+Imλ(t)(e

−γt,K ′∞). Hence it

follows that the function c1(x, t) can be extended to an element of V 2m+l−1
µ−2+Imλ(t)(e

−γt,

K∞) (we denote the extended function by c1(x, t)) and

(3.36)
∫

K∞

r2(µ+Imλ(t)−2m−l−1)|c− c1|2e−2γtdxdt <∞.

By Lemma 2 in [6], there exists a function c̃1(x, t) ∈ V 2m+l
µ−1+Imλ(t)(e

−γt,K∞) such
that

‖c̃1‖V 2m+l
µ−1+Imλ(t)

(e−γt,K∞) ≤ C‖c1‖V 2m+l−1
µ−2+Imλ(t)

(e−γt,K∞),∫
K∞

r2(µ+Imλ(t)−2m−l−1)|c1 − c̃1|2e−2γtdxdt <∞.(3.37)

From (3.36) and (3.37) we have∫
K∞

r2(µ+Imλ(t)−2m−l−1)|c− c̃1|2e−2γtdxdt <∞.(3.38)

Put

u2 = [c− c̃1]r−iλ(t)ϕ(ω, t) + u1.(3.39)

From (3.29) we have

u(x, t) = c̃1(x, t)r−iλ(t)ϕ(ω, t) + u2(x, t).(3.40)

We will prove that u2(x, t) ∈ H2m+l
µ−1 (e−γt,K∞). Since utk ∈ H2m+l

µ (e−γt,K∞),
it follows that

∑
1≤k+|α|≤2m+l

∫
K∞

r2(µ−1+k+|α|−2m−l)|Dα(u2)tk |2e−2γtdxdt

(3.41)

≤
∑

1≤k+|α|≤2m+l

∫
K∞

r2(µ−1+k+|α|−2m−l)|Dαutk |2e−2γtdxdt

+ C1

∑
1≤k+|α|≤2m+l

∫
K∞

r2(µ−1+k+|α|−2m−l)|Dα(r−iλ(t)c̃1)tk |2e−2γtdxdt

≤ C1

∑
1≤k+|α|≤2m+l

∫
K∞

r2(µ−1+k+|α|−2m−l)|Dα(r−iλ(t)c̃1)tk |2e−2γtdxdt

+ C2

∑
1≤k+|α|≤2m+l

∫
K∞

r2(µ+k+|α|−2m−l)|Dα(ut)tk |2e−2γtdxdt

+ C3

∑
1≤|α|≤2m+l

∫
K∞

r2(µ+|α|−2m−l)|Dαu|2e−2γtdxdt
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≤ C4

[
‖ut‖2

H2m+l
µ (e−γt,K∞)

+ ‖u‖2
H2m+l

µ (e−γt,K∞)
+ ‖c̃1‖2

V 2m+l−1
µ−2+Imλ(t)

(e−γt,K∞)

]
,

where Ci = const, i = 1, 2, 3, 4.
Let |α| = k = 0. From (3.38) and (3.39) we obtain∫

K∞

r2(µ−1−2m−l)|u2|2e−2γtdxdt(3.42)

≤ C5

∫
K∞

r2(µ+Imλ(t)−1−2m−l)|c− c̃1|2e−2γtdxdt

+ C6

∫
K∞

r2(µ−1−2m−l)|u1|2e−2γtdxdt <∞,

where Ci = const, i = 5, 6. From (3.41) and (3.42) we obtain∑
0≤k+|α|≤2m+l

∫
K∞

r2(µ−1+k+|α|−2m−l)|Dα(u2)tk |2e−2γtdxdt.

Put c2 = c̃1(x, t)ϕ(ω, t). Then (3.40) implies that

u(x, t) = c2(x, t)r−iλ(t) + u2(x, t),

where c2 ∈ V 2m+l
µ−1+Im λ(t)(e

−γt,K∞), u2 ∈ H2m+l
µ−1 (e−γt,K∞). The lemma is proved.

Proposition 3.2. Let u(x, t) be a generalized solution of the problem (1.1)-(1.3)

in the spaces
◦
Hm,0(e−γt,Ω∞) such that u ≡ 0 whenever |x| > R = const, and

let ftk ∈ L∞(0,∞;H l
0(K)) for k ≤ l + 2m + 1, ftk(x, 0) = 0 for k ≤ l + 2m.

Assume that in the strip m− n

2
≤ Imλ ≤ 2m+ l− n

2
, there exists only one simple

eigenvalue λ(t) of the problem (2.2)-(2.3) such that

2m+ l − 1 − n

2
< Imλ(t) < 2m+ l − n

2
.

Then the representation

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m+l
Imλ(t)(e

−γ2m+lt,K∞) and u1(x, t) ∈ H2m+l
0 (e−γ2m+lt,K∞), holds.

Proof. Rewrite the system (1.1) in the form

(−1)m−1L0(0, t,D)u = F (x, t),

where F (x, t) = −i(ut + f) + (−1)m−1[L0(0, t,D) − L(x, t,D)]u.
Since ftk ∈ L∞(0,∞;H l

0(K)) for k ≤ l + 2m+ 1, ftk(x, 0) = 0 for k ≤ l + 2m,
and the strip

m− n

2
≤ Imλ ≤ 2m+ l − 1 − n

2
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does not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t ∈ [0,∞), from Theorem 2.2 it follows that

(3.43) utk ∈ H2m+l−1
0 (e−γ2m+lt,K∞), k ≤ 1.

Since [i(ut +f)]tk ∈ L∞(0,∞;H l
0(K)), k ≤ 1, from (3.43) and the arguments used

in the proof of Lemma 2.2 [5] we obtain

utk ∈ H2m+l
1 (e−γ2m+lt,K∞), k ≤ 1.

Hence from (3.24) it follows that

[L0(0, t,D) − L(x, t,D)]u ∈ H l
0(e

−γ2m+lt,K∞).

Therefore
F (x, t) ∈ H l

0(e
−γ2m+lt,K∞).

Since 2m+ l − 1 − n

2
< Imλ(t) < 2m+ l − n

2
, the straight lines

Imλ = −1 + 2m+ l − n

2
and Imλ = 2m+ l − n

2
do not contain points of spectrum of problem (2.2)-(2.3) for every t ∈ [0,∞), and
in the strip

−1 + 2m+ l − n

2
< Imλ < 2m+ l − n

2
there exists only one simple eigenvalue λ(t) of the problem (2.2)-(2.3). By Lemma
3.3,

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m+l
Imλ(t)(e

−γ2m+lt,K∞), u1 ∈ H2m+l
0 (e−γ2m+lt,K∞). The proposi-

tion is proved.

From Propositions 3.1, 3.2 and the arguments used in the proof of Theorem
3.1 in [5], we obtain the following results.

Theorem 3.1. Let u(x, t) be a generalized solution of the problem (1.1)-(1.3)

in the spaces
◦
Hm,0(e−γt,Ω∞), and let ftk ∈ L∞(0,∞;L2(Ω)) for k ≤ 2m + 1,

ftk(x, 0) = 0 for k ≤ 2m. Assume that in the strip m − n

2
< Imλ < m + µ +

1− n

2
, 0 ≤ µ ≤ m− 1, there exists only one simple eigenvalue λ(t) of the problem

(2.2)-(2.3) such that

m+ µ− n

2
< Imλ(t) < m+ µ+ 1 − n

2
.

Then the representation

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m
m−µ−1+Imλ(t)(e

−γ2mt,Ω∞) and u1 ∈ H2m
m−µ−1(e

−γ2mt,Ω∞), holds.
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Theorem 3.2. Let u(x, t) be a generalized solution of the problem (1.1)-(1.3) in

the spaces
◦
Hm,0(e−γt,Ω∞), and let ftk ∈ L∞(0,∞;H l

0(Ω)) for k ≤ l + 2m + 1,
ftk(x, 0) = 0 for k ≤ l+2m. Assume that in the strip m− n

2
≤ Imλ ≤ 2m+ l− n

2
there exists only one simple eigenvalue λ(t) of the problem (2.2)-(2.3) such that

2m+ l − 1 − n

2
< Imλ(t) < 2m+ l − n

2
.

Then the representation

u(x, t) = c(x, t)r−iλ(t) + u1(x, t),

where c(x, t) ∈ V 2m+l
Imλ(t)

(e−γ2m+lt,Ω∞) and u1 ∈ H2m+l
0 (e−γ2m+lt,Ω∞), holds.

References

[1] V. M. Eni, On the stability of number of solution of an analytic operator - function and
pertubation of eigenvalues and eigenvectors, DAN SSSR 173 (1967), N◦ 6, 1251-1254 (in
Russian).

[2] G. Fichera, Existence Theorems in Elasticity Theory, Mir, Moscow 1974.
[3] N. M. Hung, The first initial boundary value problem for Schrödinger systems in non-smooth

domains, Diff. Urav. 34 (1998), 1546-1556 (in Russian).
[4] N. M. Hung and C. T. Anh, On the solvability of the first initial boundary value problem

for Schrödinger systems in infinite cylinders, Vietnam J. Math. 32 (2004), 41-48.
[5] N. M. Hung and C. T. Anh, On the smoothness of solutions of the first initial boundary

value problem for Schrödinger systems in domains with conical points, Vietnam J. Math.
33 (2005), 135-147.

[6] V. A. Kondratiev, Singularities of a solution of the Dirichlet problem for second elliptic
equations in a neighbourhood of an edge, Diff. Urav. 13 (1977), 2026 - 2032 (in Russian).

[7] V. A. Kozlov, V. G. Mazya, J. Rossmann, Elliptic Boundary Value Problems in Domains
with Points Singularities, Math. Surveys and Monographs, Vol. 52, Amer. Math. Society,
1997.

[8] O.A. Ladyzhenskaya, On the non-stationary operator equations and its application to linear
problems of mathematical physics, Mat. Sbornik. 45 (1958) 123-158 (in Russian).

[9] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, Moscow,
1973 (in Russian).

[10] V. G. Mazya, B. A. Plamenevsky, On the coefficients in the asymptotic of solutions of the
elliptic boundary problem in domains with conical points, Math Nachr. 76 (1977), 29-60 (in
Russian).

[11] V. G. Mazya, B. A. Plamenevsky, Elliptic boundary value problems on manifolds with
singularities, Problems Math. Anal. LGU, 1977, 85-145 (in Russian).

[12] S. A. Nazarov, B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise - Smooth
Boundary, Nauka, Moscow 1991 (in Russian).

Department of Mathematics
Hanoi University of Education
136 Xuan Thuy, Cau Giay
Hanoi, Vietnam


