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ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF THE
FIRST INITIAL BOUNDARY VALUE PROBLEMS FOR
SCHRODINGER SYSTEMS IN DOMAINS
WITH CONICAL POINTS I

NGUYEN MANH HUNG AND CUNG THE ANH

ABSTRACT. Some asymptotic formulas in a neighbourhood of a conical point
for solutions of the first initial boundary value problem for strongly Schrédinger
systems are given.

1. INTRODUCTION AND NOTATIONS

Boundary value problems for Schrodinger equations and Schrédinger systems
in a finite cylinder Q7 = Q x (0,7") have been studied by many authors (see
[3,8,9]). The existence, uniqueness and smoothness of generalized solutions of
the first initial boundary value problem for strongly Schrédinger systems in an
infinite cylinder Q. = Q x (0, 00) were given in [4,5]. The aim of this paper is to
establish some theorems on the asymptotic expansions of generalized solutions of
the problem in domains with conical points.

Let © be a bounded domain in R™. Its boundary 0f2 is assumed to be an
infinitely differentiable surface everywhere except for the coordinate origin, in a
neighbourhood of which € coincides with the cone K = {z : 2/|z| € G}, where
G is a smooth domain on the unit sphere S"~!. We begin by recalling some
notations and functional spaces which will be frequenly used in this paper :

e Qr =Qx(0,T), ST =092 x (0,T), Qoo =N x (0,00), S5 = N x (0,00),x =
(1, ,2pn) € Q, u(z,t) = (ur(z,t),... ,us(x,t)) is a vector complex function,

IDu|? = 3 |D%w2, wy = (ur /O, ... &g )OtT), uyl? = 3 |09 /08|,
=1 =1

de =dzy...dx,, r=|z|=\/2+ - + 2.
. Hé(Q) - the space consisting of all functions u(x) = (u1(z),... ,us(x)) which
have generalized derivatives D%u;, |a| <1, 1 <i < s, satisfying
l
iy = 30 [ D < +ox.
la|=0¢
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o HF (e Q) - the space consisting of all functions u(z, t) which have gener-

alized derivatives D%u;, la] <1,1<j<k,1<i<s, satisfying

I,
o’
||UHHlk (e~ Qoo / ( Z |Dau|2 +Z|u ) e~ drdt < +o0.
Qoo |al=0

In particular,
!

HUH?T—ILO(e—“/t,QOO) = Z /\Daulzezvtdxdt.
‘Ol':OQoo

o H'F(e™ Q) - the closure in HY*(e=7 Q) of the set consisting of all infin-
itely differentiable in Q0 functions which belong to H“*(e=* Q) and vanish
near Sy

. Hé’k(e*w, Qo) - the space consisting of all functions w(z,t) which have gener-

j
alized derivatives D%u;, 8—;;1, o] <1,1<j <k, 1<1i<s,satisfying
l k
b2k e = / (3 POHD DR 4 3 et < +oc.
ﬁ S Loco -
Qo lal=0 j=1

o H é(e*m‘/, ) - the space consisting of all functions u(z,t) which have general-
ized derivatives D*(u;)j, |a| +7 <1, 1<i<s, satisfying

2 2 ! -2
gy = 3 [ PO D0w, e < 4o
laf+i=0g
o Vé(e‘”t, Q) - the space consisting of all functions u(x,t) which have general-
ized derivatives D(u;)y, |of + 7 <1, 1 <1i < s, satisfying
!
HuHVl (e Qo) — Z TQ(ﬁHaHjil”Dautj|2672’ytda¢dt
lal+5=15

+ / lul2e™dxdt < oo.
Qoo

e Let X be a Banach space. Denote by L>°(0,00; X) the space consisting of all
measurable functions u : (0,00) — X, t — u(z,t), satisfying

o0 = esssup u(a, OLx < +oc.
>

Consider the differential operator of order 2m

m

L(z,t,D) = > D" (apy(x,t)D9),
Ipl,q|=0
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where a,, are s x s-matrices of measurable bounded in Qo complex functions,
apg = (—1)|p|+‘q‘a;p. Suppose that a,, are continuous in z € Q uniformly with
respect to t € [0,00) if |[p| = |gq| = m, and for each ¢ € [0,00) the operator

L(z,t,D) is uniformly elliptic in € with ellipticity constant a¢ independent of
time ¢, i.e., we have

Z apq(@, £)EPEIMT > aol¢™ |n/?,
Ip|=|q|l=m
for all £ € R™\ {0}, n € C*\ {0} and (=,t) € Quo.
In this paper we study the following problem: Find a function u(x,t) such that

(1.1) (=)™ YiL(z,t,D)u —us = f(x,t) in Qu,
(1.2) uli=o = 0,
i
(1.3) Pul o 0. m—1,

Vi I
where v is the outer unit normal to S...

A function u(z,t) is called a generalized solution of the problem (1.1)-(1.3) in
the space I(;Tm’o(e*w,ﬁoo) if and only if u(z,t) belongs to I(;Tm’o(e*w,ﬁoo) and
for each T' > 0 the following equality holds

m

(0™t > ()P [ apDIuDPydxdt + / uldedt = | frdedt
pl.lal=0 fr Sz b
for any test function n € I;'mvl(QT), n(z,T) = 0.
Put
m (e}
Blu,u)(t)= > (-1 / apgDIuDPudz, u(z,t) € H™(e™ 7 Q).
Ipl,lq|=0 Q

For a.e. t € [0,00), the function z +— wu(z,t) belongs to H™(). Hence by
Garding’s inequality [2, Th.5.1, p. 44|, we have

Lemma 1.1. There exist two constants po and Ao (g > 0, Ao > 0) such that

(=)™ B(u,u)(t) > ,uoHu(a:,t = )\OHu(az,t

[e]
for all u(x,t) € H™O(e77 Q).
Therefore, using the transformation u = e
that the operator L(x,t, D) satisfies

(1.4) (=)™ B(u,u)(t) = pol[ullfm o

v if necessary, we can assuie

o
for all u(x,t) € H™Y(e™7 Q). This inequality is a basic tool for proving the
existence and uniqueness of solutions of the problem under consideration.
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2. EXISTENCE, UNIQUENESS AND SMOOTHNESS OF SOLUTIONS

In this section we sumarize the known results on the existence, uniqueness and
smoothness of generalized solutions of the problem (1.1)-(1.3).

Denote by m* the number of multi-indexes which have order not exceeding m.
Let o be the constant in (1.4). By using Theorems 3.1, 3.2 in [4] and induction
we obtain the following result.

Theorem 2.1. Let

. Oa —
(i) sup{| | (@.8) € Do O Ppllgl S =i < +oxs

0 apg
otk
(i)  fu € L®°(0,00; L2(Q2)), for k < h+1;
(iii) fr(x,0) =0, for k <h.

*

(gm, w1 =const >0, for 2<k<h+1;

y, the problem (1.1)-(1.3) has exactly one gener-
Ho

alized solution u(x,t) in the space H™C (e, Q). Moreover, u(x,t) has deriv-

Then for every v > vy =

atives with respect to t up to order h belonging to Hm’o(e*@h“ht, Qo) and the
following estimate holds

h+1

[[uen ||§-]m,0(e—(2h+1)'yt7goo) < CZ (| fyx H%OO(O,OO;LQ(Q))’
k=0

where C' is a positive constant independent of u and f.

From now on, for the sake of brevity we will write ~y, instead of (2h+1)y
(h=1,2,..).

To study the smoothness with respect to (x,t) and establish asymptotic for-
mulas of solutions of the problem (1.1)-(1.3), for simplicity we assume that the
coefficients a,q(x,t) of the operator L(z,t, D) are infinitely differentiable in Q.
Moreover, we also assume that a,q(z,t) and all its derivatives are bounded in
Qoo

First, we recall two basic lemmas.

Lemma 2.1. [5] Let f, fi, fu € L°(0,00; Lo(K)) and f(z,0) = fi(x,0) = 0.
If u(z,t) € H™O(e ", Q) is a generalized solution of the problem (1.1)-(1.3)

in the space H™ (e™7 Qu.) such that u = 0 whenever |z| > R = const, then
u € H,%zm’o(efﬁt, K) and the following estimate holds

”U\\?{gnm,o(eﬂl%w) < C[HfH%oo(o,oo;LQ(K))JrHftH%oo(o,oo;Lg(K))JrHfttH%oo(o,oo;LQ(K))]v

where C' = const.
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Denote by Ly(0,t, D) the principal part of the operator L(z,t, D) at origin 0.
We consider the Dirichlet problem for the system

(2.1) (=1)™"1Ly(0,t, D)u = F(z,t), =€ K.

Lemma 2.2. [5] Let u(z,t) be a generalized solution of the Dirichlet problem for
the system (2.1) for a.e. t € [0,00) such that w = 0 whenever |x| > R = const,

and u(z,t) € HéTfl_l’O(e*Vt,Koo). Let F € Hlﬂ’o(e*Vt,Koo). Then u(z,t) €
Héerl’O(e_Vt,Koo) and

2 2 2
lullgamenog e ey < C[”F”HZ;‘J(e*vf,Koo) el e
where C' = const.
Let w be a local coordinate system on S”~!. The principal part of the operator
L(z,t,D) at origin 0 can be written in the form
i0

LO(O)taD) = TﬁzmQ(wyta’r’DT‘)Dw)a DT = a_)
T

where @ is a linear operator with smooth coefficients. From now on the following
spectral problem will play an important role

(2.2) Q(w,t, A\, Dy)v(w) =0, weQG,

(2.3) Div(w)=0, wedG, |jl=0,...,m—1.

It is well known [7, p. 146] that for every ¢ € [0, 00) its spectrum is discrete.
Theorem 2.2. [5] Let u(x,t) be a generalized solution of the problem (1.1)-(1.3)
in the space I?Im’o(e*”t,Qoo) and let fu € L>(0,00; H5()) for k < 2m +1+ 1,
fir(x,0) =0 for k <2m +1. In addition, supppose that the strip

m—ﬁg Im )\§2m+l—E
2 2

does not contain points of spectrum of the problem (2.2)-(2.3) for everyt € [0,00).
Then u(x,t) € HZ™ M (em2m+t Q) and the following estimate holds

2m—+I1+1
lll 2t it gy SC D Mkl 0 0oy
k=0

where C = const.

3. ASYMPTOTIC EXPANSIONS OF SOLUTIONS

In this section we will study asymptotic expansions of generalized solutions of
the problem (1.1)-(1.3) in the case the strip

m—g<1m)\<2m+l—g
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contains only one simple eigenvalue of the problem (2.2)-(2.3). From now on, for
convenience we denote

Lo [0,00) = {c(t) Le(t)e M e LQ[O,OO)}.

Lemma 3.1. Let u(z,t) be a generalized solution of the Dirichlet problem for the
system (2.1) for a.e. t € [0,00) such that u = 0 whenever |xz| > R = const, and
let u € HY" (e Koo), Fy € Hy (€7, Koo) fork < h, §' < 3 <m+1. In
addition, suppose that the straight lines

Im)\:—ﬁ+2m+l—g and Im)\:—ﬁ’+2m+l—g

do not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t € [0,00), and in the strip

—ﬂ+2m+l—g<1m)\<—ﬁ'+2m+l—g

there exists only one simple eigenvalue A(t) of the problem (2.2)-(2.3). Then the
following representation holds

w(z,t) = c@)r D pw, t) +uy (2, 1),

where ¢ is an infinitely differentiable function of (w,t) that does not depend on
the solution, cix € Lo ~[0,00) and (u1)x € Héfnﬂ’o(e_w, K) for k < h.

Proof. From Theorem 3.2 in [10, p. 37] it follows that
(3.1) u(z, t) = c(t)r~ 2D (w, t) + us (2, 1),

where ¢(w,t) is the eigenfunction of the problem (2.2)-(2.3) which corresponds
to the eigenvalue A(t), u; € Ha"M0 (e K, and

c(t) =i / F(a, t)r=MOF2m=ny, 0 4y

K
where 9 is the eigenfunction of the problem conjugating to the problem (2.2)-(2.3)
and which corresponds to the eigenvalue A(t). Since

ImA(t) >ﬁ’—2m—l+g
and

FeHy (e Ky),

we have c(t) € La ,[0,00). Hence the assertion is proved for h = 0.

Assume that the assertion is true for 0,1,...,h — 1. Denoting u;» by v. From
(2.1) we obtain

h
(3.2) (=)™ 1Lo(0,t, D)v = Fu + ( mz( >L0tk (0,t, D)ugnr,
k=1
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where

0" apq(0,1)
Low = Y —oh—Droe.
Ipl=lq|l=m

Put Sp(w,t) = r~*Bp(w, t). Since ¢(w,t) € C®(w,t) [1], from (3.1) it follows
that

Zh: ( )LOtk (0,t, D)ugh—r g:( >L0tk (0,t, D) [(cSo)en—+]

k=1 1

iy () Zos 0.6, D))

k=1
Using the induction hypothesis we obtain
h

(3.3) Zh: (Z) Lo (0,6, D)ugn—r = Fy = > (Z) -1 Lo(0, £, D) (o),

k=1 k=1
where F} € Hlﬁ’,(](e*w,[(oo). From (3.2) and (3.3) we see that

h

(—1)™ 1 Lo(0,t, D)o = Fy — (1) 3 (’;) epnr Lo(0,t, D) (So)se,

k=1

where Fy € Hé,,o (e7" K ). Hence by the arguments used in the proof of the
case h = 0 we can find

h
(3.4) Ugh =V = Z <Z> ek (S0) e + d(t)So + ua,
k=1

where d(t) € L ,[0,00), us € Hé,mﬂ’o(e*”yt,f(oo). From this equality it follows
that

h
h
5071 = uth — Z (kj) Cthfk (So)tk — (h — 1)Cth71(S())t

k=2
= Cth—1 (SO)t + dSp + us.

Now differentiate the equality (3.1) (h — 1) times by ¢. As a result we obtain

h—1
(3.5) Uth—1 = Z <h ; 1> Cth—k—l(so)tk + (ul)th—l.

k=0
We rewrite (3.5) in the form

h—1
S(),g = Uth—1 — Z <h ; 1) Cthfkfl(S())tk = C4h-1 So + (Ul)th—l.
k=1



248 NGUYEN MANH HUNG AND CUNG THE ANH

Then

h—1
h—1
(So2)t = wn — Z < 2 > |:Cth—k (S0)k + Cpp—r—1 (So)tk+1]
k=1
h

h
= uth - Z (k) Cth—k(SO)tk + Cth—l (So)t

k=1

From this equality and (3.4) we obtain
(S0,2)t = cn—1(S0)¢ + dSo + ua.

Put 51 = Sal(U1)th—1, Sy = Saluz - SEQ(SO)t(Ul)thfl. It is easy to check that
Sy 'S0z = cp-1 + 81, (S5 'S02)t = d+ Sa.
It follows that

I(8) = epnr (t) — e (0) — / d(r)dr
0

t
= /SQ(IE, T)dr — Si(x,t) + Si(x,0).

0
Since (u1)pn-1 € Hay (e Koo), up € H" (e Koo); so 1,8, € HY,
2
(e7, K& ). Therefore I(t) € H® , (K), i.e., I(t) = 0. Hence ¢y = d € Ly [0, 00),

2

and (uy)m = ug € H2"M0(e™ K_.). The proof is completed. O
Lemma 3.2. Let u(x,t) be a generalized solution of the Dirichlet problem for the
system (2.1) for a.e. t € [0,00) such that u = 0 whenever |x| > R = const, and

let um € Hﬁiﬁ(e‘”t,Koo), Fy € H&gufl(e_wt,Koo) fork <2m—1,0<pu <
m — 1. In addition, suppose that the straight lines

Im)\:m—i—u—g and Im)\:m—i—u—i—l—g

do not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t € [0,00), and in the strip

m—i—,u—g<hn)\<m+,u+1—g

there exists only one simple eigenvalue A(t) of the problem (2.2)-(2.3). Then the
representation

w(x,t) = ez, t)r~ 0 4 ouy(z,t),

where c(x,t) € VT?LTM—I-l—Im )\(t)(e_Vt,Koo) and u(z,t) € H?,fi“,l(e_wt,Koo),
holds.
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Proof. From Lemma 3.1 it follows that
(3.6) u(z,t) = c(t)r~*Dop(w, 1) + ui (z, 1),

where p(w,t) is the eigenfunction of the problem (2.2)-(2.3) which corresponds
to the eigenvalue A(t), ¢y € Lo4[0,00) and (u1)p, € anrf’gfl(e_w,Koo) for
k<2m —1.

Let K’ be a domain such that K’ C K and ¢(w,t) # 0 in K'. Consider in K’
a linear differential operator of the form

1-— (pczu g )‘(t)()pw 0

Dy =

—ip Or r  Ow
Then
(3.7) O D = A(t)e(t) + O Dy,
Put

ez, t) = r O Diu, co(t) = ME)c(t).
Since uy € H>™ (e, K4), it follows from (3.7) that

m—pu—1
(3.8)
/ r2(m_”+lm)‘(t)_2m_1)]co — PP drdt = / r2(m_”)\D1u1]2e_27tdxdt < 0.
K K
We have c¢; € Vri"f;iz +Im A(t)(e*Vt,Kéo). Indeed, in variable = the operator

Dy has the form
- 0
Dl == ;(bz(wvt)a—xlv

where ¢;(w,t) € C(w,t). Since (u1)% € Hé"i’g_l(e*w,f(éo) for k <2m —1,

Z pAemmp=itlal)| Do) e~ dadt < oo
0<al<2mg_
for £k < 2m — 1. Hence it follows that
(3.9)
Z r2(7u71+1m)\(t)+k+|a\fm) ‘Da (ri/\(t)Jrl Dlul)tk ’26727tdxdt < 0.

1<]a]+k<2m—1g
o0

Since (cg) € L24[0,00),k < 2m — 1, and ImA(¢) > m + u — g we have

(3.10) > P I ImA@OFR=m) | (00) e dadt < oo,
1<k<2m—1z
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From (3.9) and (3.10) we obtain
(3.11)
Z r2(—u—1+lm)\(t)+k+|oz\—m) ‘Da (Cl)tk ‘Qe—QWtdxdt

1<]a]+k<2m—1g
o0

_ § : r2(7u71+1m)\(t)+k+|a\fm) ‘Da (ri/\(t)JrlDlul)tk lzefzvtdxdt
1<]a]+k<2m—1z,
oo

+ > p2(CHm AW =M (), [Pe ™27 dadt < oo,
1<k<2m—15
Since u € anri’g(e*w, Ko ) and —ImA(t) > —m —p—1+ g, it holds

(3.12) /|cl|2e_27tdxdt: / PO+ D) 2e 2 dadt
K! K!

SC/r2(_m_“+”/2)]Du\Qe_%tdxdt

Ko
< C / T2(1*mfﬂ)|Du|26727td‘fpdt < CHU||§{72”@’2(67W,K{,O) < 00,
K
where C' = const. From (3.11) and (3.12) we deduce that

C1 (.’IJ, t) € Vfri?il;in’,Im)\(t) (e_7t7 Kc/>o)

From (3.8) it follows that the function ¢;(z,t) can be extended to an element of

Vé@;; +Im /\(t)(e_%, K) (we denote the extended function also by ¢ (x,t)) and
(3.13) / pm=pt A =2m=1)1 0 1262 dadt < oo.
Ko

By Lemma 2 in [6], there exists a function ¢ (z,t) such that

ci(z,t) € Vrirfu—l—f—hn)\(t)(e_’yt’ Ko

and
lexllvzm e k) < Clla ||v7i’f;i2+lm(t)(e*”,f<oo)’
(3.14) / pAm—p A =2m=1) 7 1262 drdt < oo,

Ko
From (3.13) and (3.14) we obtain

(3.15) / pHm—pHImAO=2m=1)| 7 26Dt drdt < oo.
Koo
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Put

(3.16) ug = m[ 0— 61] M o(w, 1) +uy.
By the property ¢; € V2™ n 1+Im/\(t)( e ", Ko) and by (3.15), we have
[CO - 51} Tﬁi/\(t) S H?n@ufl(eifyt, Koo)

From (3.6) and (3.16) we get

(3.17) u(z, t) = ﬁa(az,t)r_i’\(t)go(w,t) us(a, b).
Put
e, ) = %t)’cvl(:c,t)go(w,t).

From (3.17) it follows that
’U,(.%', t) - 02('%.7 t)rii/\(t) + UQ(.’IJ, t)a

where cy(z,t) € V2™ J 1 ImA(t )(e_Vt,KOO).
We will prove that ug € H2™ , (e, Ku). On one hand, since

ale,t) € Vol (€7 Koo,

we have
Z ,r2(7mf,ufl+1m/\(t)+‘a|+k) |Da(CO — El)tk |2672’ytdxdt
1<|e|+k<2m,|a|#0g
_ Z pAommp= I ImA@Hal+k)| Do) o Pem D dadt < co.

1<]al+k<2m,|al#0p
On the other hand, since

e € V" —p— 1+Im>\(t)( T K)
and
Uk € H?nni’g(e_%,Koo) for k<2m—1,
we have

Z / 2(—m—p—1+k) |(U2)Ic|2 2’ytdmdt

1<l<;<2mK

= S [ R O Pt < .

1<k<2mK
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Therefore

(3.18) > / pAommp= et k)| Do (yy) 1 2e 2 dadt
1§|o¢\+k§2mKoo

< Z / T2(7M7u*1+1m)\(t)+|a‘+k) |Da (CO _ 51)1&’“ |2€727td$dt
1§|o¢\+k§2mKoo

+ C2Hu1||§{2m,0 < 00,
m—p—

1(eiwt=K00)

2m,0

where C; = const, i = 1,2. Since u; € H (e, Ku), from (3.15) we deduce

m—p—1
that
(3.19) / P2 M=) o e dadt
Koo
<C / p2(=m—p-1) (‘CO _ 51‘2r21mx(t) 4 ]u1]2>e_27tdxdt
Koo
—C / T2(—m—u+lm)\(t)—2m—1) |CO -7 |2€—2'ytdxdt
Koo

+C / p2em=n= |y Pe dadt < 0o,  C = const.
K
From (3.18) and (3.19) it follows that

Z / r2(_m_”_1+|“‘+k)\Do‘(ug)tk]26_27tdxdt < 00,
0<|a|+k<2mp
ie., us € Hf,:ﬁu_l(e*w, K). The proof of the lemma is completed. O

Proposition 3.1. Let u(z,t) be a generalized solution of the problem (1.1)-(1.3)

in the spaces H™O(e™7 Q) such that u = 0 whenever x| > R = const, and let
fir € L®(0,00; Lo(K)) for k <2m+1, fi(x,0) =0 for k < 2m. Assume that
i the strip m—g <ImA<m4+pu+1-— g,O < u<m—1, there exists only one
simple eigenvalue A(t) of the problem (2.2)-(2.3) such that

m+u—g<lm/\(t) <m+u+1—g.
Then the representation
w(z,t) = c(z, ) r~® £y (2,1),
where c(x,t) € Vé’fuilﬂm)\(t)(e*“ymt, Koo) and uy € HZ™ (7! K.), holds
Proof. We distinguish the following cases:
Case 1: u < 1. Rewrite the system (1.1) in the form

(3.20) (=1)™'Ly(0,t, D)u = F,
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where F(z,t) = —i(us + f) + (=1)™ 1| Lo(0,t, D) — L(z,t, D) |u. From Theorem

2.1 and Lemma 2.1 it follows that F € H&gu(e_“t, K). Since the strip
m—g<Im)\<m+u—g
does not contain any point belonging to the spectrum of the problem (2.2)-(2.3)
for every t € [0, 00), from Theorem 2.1 and the results on elliptic problems [11,12],
we deduce that u € anrf’g(e_wt, Ko).
Since fu € L%(0,00; Ly(K)) for k < 2m + 1, fu(z,0) = 0 for & < 2m, it
follows from Theorem 2.1 and Lemma 2.1 that wu € an@g(e’%ﬂt,[(oo) for
k < 2m — 1. Therefore

(3.21) Fpo€ HYY (71! Ko), k< 2m-—1.
Put v = uw. By (3.20) we have

(3.22) (=)™ Lo(0,t, D)v = Fy(z,t) + Lo,

where

k
k *a,y(0,1)
LOtkutk - Z <8) Z #Dquutk—s.

s=1 Ip|=lgl=m
Let uy € Havp(e7 41t Koo),j < k— 1. Then

k
k 8kapq(0’t) 0,0 / —~pt
> < > > g DD s € Hyl (67, Kog).

s
lpl=lql=m
Hence from (3.21) and (3.22) it follows that
(-=1)™'Lo(0,t, D)v = Fy,

s=1

where Fy € ng’(lu(e*WHt, Ko). Then v € Hi@’g(e*%Jrlt,Koo), ie.,
(3.23) upe € H20 (e w1 K), k< 2m — L.

By Theorem 2.1, (uz + f)ux € H&gu_l(e*WHt,KOO),k < 2m — 1. On the other
hand,

(3.24)
Lo(0,, D) — L(z, 1, D)] = Y [bala,t) = ba(0,D% + S bulz,t)D?,
|a|=2m || <2m—1
and [by(x,t) — by (0,t)| < Clz|,C = const. Hence from (3.23) it follows that
(3.25) Fy(z,t) € Hy | (71" Koo), k < 2m — 1.

By Lemma 3.2, from (3.23) and (3.25) we obtain
U(CC, t) = C(‘T’ t)rii/\(t) +up (:Ca t)a

where c(z,t) € V2™ (e7m!, Koo), un(x,t) € HZ™ | (e72m! Kop).

m—p—1+Im A(t)
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Case 2: pp=mg~+ po,0 < pg < 1,mg € Z4. Let mg = 0. By the arguments used
in Case 1 we have

(3.26) up € Hoo (e 01t Ko), Fu(,t) € Hy

m—po—1

(e*%ﬂt’ Koo)7
for k < 2m — 1. Assume that (3.26) is true for p = mgo — 1 + pyo, i.e.
(3.27) up € HY™,) (€71 Koo, Fu(w,8) € Hp e (€710 Koy,

—mo—po+1 m—mo—uo
for kK <2m — 1. Let k = 0. From (3.27) it follows that
Fa,t)e Hy (e Ky).

Since in the strip
n n
m+mo+uo—1—§SIm)\Sm+mo+M0—§

there are no points belonging to the spectrum of the problem (2.2)-(2.3) for every
t € [0,00), by the arguments analogous to those used in Case 1, we obtain

we H™ (et KL).

m—mo—[o

Hence it follows from (3.24) that
F(x,t) € HY’ (et Koo).

m—mo—po—1
By induction on k£ and the arguments analogous to those used in the proof of
(3.23) and (3.25), we obtain

upge € H2™O  (e7Wnt K, Fo(w,t) € HYY (e ht K ),k < 2m—1,

—mo—Ho m—mo—po—1
i.e., (3.26) is true for p = mgy + po. Hence

(3.28)

Uk € H?n@g(e*%*lt, Ky), Fi(x,t) € Hgl’(lu_l(e*%*lt, Ky), k<2m-1.
Since m + p—n/2 <ImA(t) < m+ p+1—n/2, from (3.28) and Lemma 3.2 it
follows that

w(x,t) = ez, t)r~M 4oy (z,t),
where c(z,t) € Vé’fuilﬂm )\(t)(e*Vth, Koo), ui(z,t) € HE™ j(e7mt K).
The proof is completed. O

Lemma 3.3. Let u(x,t) be a generalized solution of the Dirichlet problem for the
system (2.1) for a.e. t € [0,00) such that uw = 0 whenever |z| > R = const, and
let uy € Hﬁm+l(6_7t,Koo),k <1, Fe HL_I(G_W,KOO),O < u < 1. In addition,
suppose that the straight lines

Im)\:—u—l—Qm—i—l—g and Im)\:—u—i—Qm—i—l—i—l—g

do not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t € [0,00), and in the strip

—,u—i-2m+l—g<Im)\<—,u+2m+l+1—g
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there exists only one simple eigenvalue A(t) of the problem (2.2)-(2.3). Then the
representation

w(z, t) = ez, t)r~ M 4 ou(z,t),

where c(z,t) € Vii”lfrllm /\(t)(e*Vt,Koo) and uy(x,t) € Hﬁr_"fl(e*ﬁ,Koo), holds.

Proof. We will use the same symbols as in the proof of Lemma 3.2. Repeating
the arguments used in the proof of Lemma 3.2, we obtain

(3.29) u(z,t) = c(t)r D p(w, t) +uy(z,t),

where p(w, t) is the eigenfunction of the problem (2.2) - (2.3) which corresponds
to the eigenvalue A(t), ¢(t) € La4[0,00), ui(z,t) € HZTfrl’O(e*Wt’KOO).
We have

rAOH Dy = At)e(t) + PO Dy
Put

1 .
c1(z,t) = mrl’\(t)HDlu.

Since u; € HﬁTfZ’O(e*W, K), from (3.29) it follows that

/ 742(u+1m)\(t)72m7171) ‘C — ‘2672'ytdxdt
K,
= / ()| 22020 Dy |Pe 2 dadt < oo.

K,

Since u; € Hﬁm+l(€_7t,Kéo)’
Z T2(u+k+\a|—2m—l)|Dautk+1|26_27td:cdt < 00.
O§|o¢\+k§2m+lK/

Therefore

g P2tk =2m=0) DB Dy [2e™ 2 drdt < oo
0<|Bl+1+k<2m+g
o0

Hence

(3.30) > P2t HBI=2m=0| DB Dy 2o~ P dadt < co.
0<|B|+s<2m+1s>1g

; 2mA+-l ( ,—t /
Since u € Hi™ (e, KI,), we have

(3.31) Z p2e1HB1=2m=0) DB Dy |2e =2 dadt < oo.
0<|B<2m gy
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Since
D= Y dsOr O A5 DD
|B|<lal,s<k
where d; 5(t) € C*°[0, 00), from (3.30) and (3.31) we obtain
(3.32)
Z r2(u+Im>\(t)+\a|+k—2m—l—1) ’Da(cl)tk ’26—27tdxdt

1<]a|+k<2m+—1,k>15
o0

< Z Z T2(u+\ﬁ|+k—2m—l) |DﬁD1uts |2672'ytdxdt
1<l +k<2mA1-1,k>1 | B]<|al,s<kg/

<o, r20t1Bls=2m=0) DB D) 4y, 26~ 2T dpdlt
|Bl+s<2mtl=1g,

4y Z Pt IH1B=2m=0) DB Dy e~ dadt < oo,
|BI<2mH-1p7

where C; = const, i =1,2,3.

: 2 _
For k = 0, since u; € HMT_”le’O(e 7 K! ) we have

(3'33) Z 742(u+1m)\(t)+|a\f2mflfl) ’Dacl ‘2672'ytdxdt
1<|a|<2m+1-1

<C Z TZ(*H'W‘_%”_Z_D|D6u1|26_27td:cdt
1<I81<2m g

2 —_—
< C”uluHinl’o(e—W,Kgo)’ C' = const.

From (3.32) and (3.33) it follows that
(334) Z ,r2(,u+Im/\(t)+\a|+k72mfl71) |Da(01)tk |2€72'ytdxdt < 0o,
1<]al+h<2m+—15_

Since —ImA(t) > u—1—-2m — 1+ n/2,

(3.35) / ler[Pe™ P dzdt < C / p2A=ImAD)| Dy 262 dardt
Kl Ko
< / T2(uf2mfl+n/2) |D1u|2€727td$dt
Ko

§C/TZ(“_Qm_lH)|D1u|2e_27td:cdt
K&
< 0.

< CHUH?J;%mJ'_l(e*'Yt,K{,O)
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From (3.34) and (3.35) we deduce that ¢; € Vigﬂi&/\(t)(e_w,lf&). Hence it

follows that the function ¢; (x, t) can be extended to an element of V;i”;jrlﬂnl)\( 9 (e,
K ) (we denote the extended function by ¢;(x,t)) and

(3.36) / pARATmAO=2m==1) 10 ) 12672 rdt < oo
K
By Lemma 2 in [6], there exists a function ¢ (z,t) € Viﬂﬂlm)\(t)(e*w, K) such
that
”El”Vi:nlillmA(t)(e_wt’K(’o) = CHCl”Vi:n2+~klfrr}A(t)(e_7t’K°°)7
(3.37) / pHuA MA@ =2m=1=1) 1 _ 7 126~ Pt drdt < oo
Ko

From (3.36) and (3.37) we have

(3.38) / P mA@G) =2m=l=1) 1 _ 7 2= dpdt < oo,
K

Put

(3.39) uy = e — a]r P Oop(w, ) +uy.

From (3.29) we have

(3.40) w(x,t) = & (z, 1) r 2 p(w, t) + ug(z, t).

We will prove that us(z,t) € Hﬁ’ffrl(e_%, Koo). Since up € H2™ (e Ky),
it follows that

(3.41)
Z T2(u—1+k+|o¢\—2m—1)|Da(u2)tk|26—27tdxdt
1<k-+Ha|<2m+g
< Z 742(”71+k+|a\72mfl) ‘Dautk ‘2672'ytdxdt

1<k+|a|<2m+g,

1+ Z T2(u—1+k+|o¢\—2m—1) ‘Da (r—iA(t)El)tk ‘26—27tdxdt
1<k+|a| <2m+lg,

<0 Z TQ(u71+k+|a\72mfl) |Da (Tfi/\(t)gl)tk |2€72'ytdxdt
1<k+|a|<2m+ig

1+ Oy § : 742(u+k+|a\f2mfl) ‘Da(ut)tk lzefzvtdxdt
1<k-+|a|<2m+lg_

+ Cs Z p2utlal=2m—1) |D%ul?e= 2 dxdt
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< (4 [Huz‘/”2 2m+1 + ||UH2 2m+1 + HElH2 2m+1—1
= HIm (=7 Koo) H2mH (e=7 K oo) V() (6771 Ks) |7
where C; = const, 1 = 1,2, 3,4.
Let |a| = k = 0. From (3.38) and (3.39) we obtain

(3.42) /7«2(M_1—2m—l)|u2|26—27tdxdt
Koo
=G / p2r A== e -3 P ddt
Koo
o / 2= 1=2meD g Pem 0 dadt < oo,
Koo

where C; = const, ¢ = 5,6. From (3.41) and (3.42) we obtain

Z T2(u—1+k+|o¢\—2m—1) |Da(u2)tk |2€_2'ytdxdt.
0<k+|al<2m+1g._
Put co = ¢1(z,t)p(w,t). Then (3.40) implies that
U(J), t) =C2 (1‘, t)r_i)\(t) + ’U,Q(J), t)v
where ¢p € Viﬁ”lfrlIm /\(t)(e*w, Ky), ug € Hﬁ’ffrl(e*”t,[(oo). The lemma is proved.
U
Proposition 3.2. Let u(z,t) be a generalized solution of the problem (1.1)-(1.3)

in the spaces H™9(e™ 7 Q) such that u = 0 whenever |z| > R = const, and
let fue € L=(0,00; HY(K)) for k < 1+2m+1, fu(z,0) = 0 for k < 1+ 2m.
Assume that in the strip m — 5 <ImA <2m+41[— 5 there exists only one simple
eigenvalue A(t) of the problem (2.2)-(2.3) such that

2m+l—1—g<lm)\(t) <2m+l—g.
Then the representation
U(IE, t) = C(‘T’ t)rii/\(t) +uy (:Ca t)a

where c¢(x,t) € Vlfn”f\al) (e72m+t Koo) and uy(z,t) € Ha™ (e 2m+it K), holds.

Proof. Rewrite the system (1.1) in the form
(=1)™ "' Ly(0,t, D)u = F(x,1),

where F(x,t) = —i(us + f) + (=1)™"[Lo(0,¢, D) — L(x,t, D)]u.

Since fr € L>®(0, 00; HY(K)) for k <1+ 2m + 1, fu(x,0) =0 for k <+ 2m,

and the strip
m—gglm)\§2m+l—1—g
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does not contain any point from the spectrum of the problem (2.2)-(2.3) for every
t € [0,00), from Theorem 2.2 it follows that

(3.43) upe € HE T (e emrtt KLY k< 1.

Since [i(u;+ f)]px € L®(0,00; HY(K)), k < 1, from (3.43) and the arguments used
in the proof of Lemma 2.2 [5] we obtain

wpe € HIM e emttt K ), k<1
Hence from (3.24) it follows that
[Lo(0,t, D) — L(x,t, D)Ju € Hj(e 2+, K).
Therefore
F(x,t) € Hy(e 2+t K ).
Since 2m +1—1— g <ImA(t) <2m+1— g, the straight lines

Im)\:—l-l—Qm—f—l—g and Im)\:2m+l—g

do not contain points of spectrum of problem (2.2)-(2.3) for every ¢ € [0, 00), and
in the strip

—1+2m+l—g<lm)\<2m+l—g

there exists only one simple eigenvalue A(t) of the problem (2.2)-(2.3). By Lemma
3.3,

w(z,t) = ez, t)r= 4 uy(z,t),

where c(xz,t) € Vlfnr';\”(:l)(e_WmHt,Koo),ul € HI"H(emmut K). The proposi-

tion is proved. O

From Propositions 3.1, 3.2 and the arguments used in the proof of Theorem
3.1 in [5], we obtain the following results.

Theorem 3.1. Let u(z,t) be a generalized solution of the problem (1.1)-(1.3)
in the spaces H™%(e™ " Qu), and let fu € L°°(0,00; L2(Q)) for k < 2m + 1,
fir(x,0) = 0 for k < 2m. Assume that in the strip m — g <ImA <m+4+p+

1- ﬁ, 0 < pu <m-—1, there exists only one simple eigenvalue \(t) of the problem
(2.2)-(2.3) such that

m+u—g<1m)\(t)<m+,u+l—g.

Then the representation
U(CC, t) = C(‘T’ t)rii/\(t) +up (:Ca t)a

where c(z,t) € Vé’f“_lﬂm/\(t)(e*”mt, Qo) and uy € Hgl”iu,l(e*”mmt, Qoo ), holds.
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Theorem 3.2. Let u(x,t) be a generalized solution of the problem (1.1)-(1.3) in
the spaces Ic—ifm’o(e*Vt,Qoo), and let fi € L°(0,00; H\(Q)) for k <1+ 2m + 1,
fir(2,0) =0 for k < 1+2m. Assume that in the strip m—g <Im) < 2m+l—g
there exists only one simple eigenvalue \(t) of the problem (2.2)-(2.3) such that

2m+l—1—g<1m)\(t)<2m+l—g.

Then the representation
’UJ(IE, t) = C(‘Tz t)rii/\(t) +uy (:Ca t)a

where ¢(x,t) € Vlfn”f\J(;l) (e72m+t Q) and uy € HE™ (e 2mtit Q), holds.
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