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A SHORT PROOF OF THE SNAKE THEOREM OF KARLIN

NGUYEN MINH DUC

Abstract. New results on surjective mappings on simplexes are given. Based
on the results, a short proof of the snake theorem of Karlin is obtained.

1. Introduction

The snake theorem of Karlin (see [1], Chapter II) is one of the deepest theorems
of the theory of T -systems. Two proofs on the existence of the snake are known
in the literature: the first one of Karlin based essentially the Brouwer fixed-point
theorem and the possibility of approximating of T -systems by differentiable T -
systems, and the second one in [2] (Chapter IX) which is derived from a deep
result on the best approximation due to M. G. Krein.

The aim of this paper is to give a short proof of the snake theorem. Our
approach follows essentially the same line as the proof of Karlin, but it has two
advantages:

(i) Based on our results on surjective mappings on simplexes (Theorem 2.1),
the proof can neglect the approximation techniques used in the proof of Karlin
and thus considerably simplifies the arguments.

(ii) The existence of a snake with a finite number of boundary curves (Corollary
3.1) follows at once from our proof.

2. The Brouwer fixed-point theorem and surjective mappings on

simplexes

We denote respectively by Σn and Bn the n-dimensional simplex and its rela-
tive interior:

Σn = {x = (x0, x1, . . . , xn) : xi ≥ 0 i = 0, 1, . . . , n,

n
∑

0

xi = 1},

Bn = {x = (x0, x1, . . . , xn) : xi > 0 i = 0, 1, . . . , n,

n
∑

0

xi = 1}.

Theorem 2.1. The following conclusions are equivalent:

1. The simplex Σn has the fixed-point property, i.e., for every continuous map-

ping f from Σn into itself there is a point x ∈ Σn such that f(x) = x.
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2. Let f = (f0, f1, . . . , fn) be a continuous mapping from Σn into itself such

that:

For each i = 0, 1, . . . , n, if xi = 0 then fi(x) = 0.(1)

Then f is surjective, i.e., f(Σn) = Σn.

3. Let f = (f0, f1, . . . , fn) be a continuous mapping from Bn into itself such

that:

For each i = 0, 1, . . . , n, if xi → 0 then fi(x) → 0.(2)

Then f is surjective.

Proof. 1) ⇒ 2). For every fixed point k = (k0, k1, . . . , kn) ∈ Bn, put

hi(x) =
k−1

i fi(x)
n
∑

j=0
k−1

j fj(x)

(i = 0, 1, . . . , n; x ∈ Σn).

It is clear that h = (h0, h1, . . . , hn) is a continuous mapping from Σn into itself
and also satisfies to the condition like (1), i.e.,

For each i = 0, 1, 2, . . . , n, if xi = 0 then hi(x) = 0.(3)

Therefore, as observed by Karlin (see [1], p. 68), it follows from the conclusion 1
and from the condition (3) that there exists a point x ∈ Σn such that

h0(x) = h1(x) = · · · = hn(x) =
1

n + 1
.

Consequently,

f0(x)

k0
=

f1(x)

k1
= · · · =

fn(x)

kn

=

n
∑

0
fi(x)

n
∑

0
ki

=
1

1
= 1.

In other words, f(x) = k or equivalently, Bn ⊂ f(Σn). On the other hand, since
f is continuous, the image f(Σn) is compact, hence f(Σn) = Σn.

2) ⇒ 3). Suppose that f = (f0, f1, · · · , fn) is continuous mapping from Bn into
itself, satisfying the property (2). Let P be the centre of the simplex Σn, i.e.,

P =

(

1

n + 1
,

1

n + 1
, . . . ,

1

n + 1

)

.

For every 0 < t < 1
n+1 , put

Σn
t = {x = (x0, x1, . . . , xn) : xi ≥ t for all i = 0, 1, . . . , n;

n
∑

0

xi = 1}

and call Πt the homothetic, with centre P , which transforms the simplex Σn

onto the simplex Σn
t . Note that Πt is a homomorphism satisfying the following

property

For each i = 0, 1, . . . , n, xi = 0 if and only if Πt
i(x) = t.(4)
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Now we define a continuous mapping T t = (T t
0 , T

t
1, . . . , T

t
n) from Σn into Σn

t such
that

For each i = 0, 1, . . . , n, if xi ≤ t then T t
i (x) = t(5)

and

T t(x) = x for all x ∈ Σn
t .

In fact, for each i = 0, 1, . . . , n, T t
i can be defined explicitly by the formula

T t
i (x) =















t if xi ≤ t,

t +
(xi − t)
∑

xj>t

(xj − t)
(1 − (n + 1)t) if xi > t.

It follows from (2) that for every 0 < t <
1

n + 1
there exists s ∈ (0,

1

n + 1
) such

that

For each i = 0, 1, . . . , n, if xi ≤ s then fi(x) ≤ t.

If we put g = (Πt)−1 ◦ T t ◦ f ◦ Πs, then g is a continuous mapping from Σn into
itself such that for each i = 0, 1, 2, . . . , n if xi = 0 then gi(x) = 0. Therefore, we
deduce from the conclusion 2 that g(Σn) = Σn.

But (4) gives again (T t ◦ f)(Σn
s ) = Σn

t and it follows at once from (5) that

Σn
t ⊂ f(Σn

s ) ⊂ f(Bn).

The above assertion is true for every 0 < t <
1

n + 1
. Hence f(Bn) = Bn.

3) ⇒ 1). Let f = (f0, f1, . . . , fn) be a continuous mapping from Σn into itself.
For t > 0 let us define the mapping f t = (f t

0, f
t
1, . . . , f

t
n) from Bn into itself as

follows

f t
i (x) =

xi(fi(x) + t)−1

n
∑

j=0
xj(fj(x) + t)−1

, i = 0, 1, . . . , n;x ∈ Bn.

Clearly, f t is continuous and it satisfies the condition (2), i.e., for each i =
0, 1, 2, · · · , n if xi → 0 then f t

i (x) → 0. It should be noted that the mapping

x 7→
n
∑

0
xj(fj(x) + t)−1 (from Σn into R) is continuous and strictly positive on

the simplex Σn, Σn is a compact set. Hence

min
x∈Σn

(

n
∑

0

xj(fj(x) + t)−1

)

> 0.

It follows from the conclusion 3 that f t(Bn) = Bn, thus there exists a point
xt ∈ Bn such that

f t
0(x

t) = f t
1(x

t) = · · · = f t
n(xt) =

1

n + 1
.
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Consequently,

xt
0

f0(xt) + t
=

xt
1

f1(xt) + t
= · · · =

xt
n

fn(xt) + t
=

n
∑

0
xt

i

n
∑

0
fi(xt) + (n + 1)t

=
1

1 + (n + 1)t
.

It follows that

fi(x
t) =

(

1 + (n + 1)t
)

xt
i − t for all i = 0, 1, . . . , n.

Since Σn is a compact set and f is continuous, there exists an accumulation point

x̄ of the set {x
1
m | m = 1, 2, 3, . . . }. Then we have fi(x̄) = x̄i for all i = 0, 1, . . . , n,

i.e., f(x̄) = x̄.

Remark. The conclusion 1 in Theorem 2.1 is nothing else than the Brouwer fixed
point theorem, whereas the conclusion 2 is implicity showed in Karlin’s proof of
the snake theorem.

3. A short proof of the existence of the snake

Let {ui}
n
0 be (n + 1) continuous functions defined on the closed interval [a, b].

We recall that {ui}
n
0 is called a T -system (Tchebycheff system) of order n on [a, b]

if every non-zero polynomial u (i.e., u is a non-trivial linear combination of the
u′

is) has no more than n zeros in [a, b]. This condition is equivalent to the fact
that the determinant

det

(

u0 u1 · · · un

t0 t1 · · · tn

)

= det
(

ui(tj)
)

(n+1)×(n+1)

keeps a fixed sign on the set of all partitions

a ≤ t0 < t1 < · · · < tn ≤ b of [a, b].

The given T -system is called a T+ or T− system according to the above mentioned
sign is positive or negative.

We formulate the snake theorem as follows.

Theorem 3.1 (Karlin [1]). Let {ui}
n
0 be a T -system and f and g two continuous

functions on [a, b] such that there exists a polynomial v(t) with the property that

f(t) > v(t) > g(t) for all t ∈ [a, b]. Then there exists a unique polynomial P (t)
satisfying the properties:

(i) f(t) ≥ P (t) ≥ g(t) for all t ∈ [a, b].

(ii) There exist (n + 1) points a ≤ t0 < t1 · · · < tn ≤ b such that

P (ti) =

{

f(ti) i = 0, 2, 4, . . .

g(ti) i = 1, 3, 5, . . .

P (t) is usually called the snake and f, g the gates.
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Proof of the existence of the snake. The proof of the unicity of the snake can be
proceeded exactly as in the original proof of Karlin. We give only the proof of
the existence of the snake.

We can assume without loss of generality that the given system {ui}
n
0 is a

T+-system and that v ≡ 0. (It should be noted that v is also a polynomial.)

For every x belonging to the simplex

(b − a)Bn =

{

x = (x0, x1, . . . , xn) : xi > 0 for i = 0, 1, . . . , n;

n
∑

0

xi = b − a

}

we put

ux(t) = λdet

(

u0 u1 · · · un

t s1 · · · sn

)

,

where {si}
n
1 is a partition of the interval [a, b]. We can choose λ and {si}

n
i so that

ux(t) can be described as follows: ux(t) is a polynomial (for the given T+-system)
of the form

ux(t) =
n
∑

0

ai(x)ui(t)

and furthermore it satisfies to the following properties:

(i) ux(t) vanishes at each of the points

si = a +
i−1
∑

0

xj, i = 1, 2, · · · , n,

(ii) ux(a) > 0 and
n
∑

0
a2

i (x) = 1.

Indeed, the coefficients {ai(x)}n
0 of ux(t) can be computed explicitly as follows

ai(x) =
(−1)iBi
√

n
∑

0
B2

j

,

where

Bi = det

(

u0 · · · ui−1 ui+1 · · · un

s1 · · · si si+1 · · · sn

)

.

It is clear that

a0(x), a1(x), . . . , an(x) are continuous functions in (b − a)Bn.(6)

(Note that in the original proof, Karlin constructed the polynomials ux(t) on
the simplex (b − a)Σn, therefore he has to suppose first that the {ui}

n
0 is an

ET -system, i.e., a T -system such that the functions u0, u1, . . . , un are n times
differentialbe in [a, b] and satisfy some other constraints.) Now for i = 0, 2, 4, . . .
we define

di(x) = min{d : d > 0, d f(t) ≥ ux(t) for all t ∈ [si, si+1]},
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where s0 = a, sn+1 = b. For i = 1, 3, . . . , we put

di(x) = min{d : d > 0;ux(t) ≥ d g(t) for all t ∈ [si, si+1]}.(7)

On one hand, d0(x), d1(x), . . . , dn(x) are positive. On the other hand, it follows
from the remark following (6) that

d0(x), d1(x), . . . , dn(x) are continuous in (b − a)Bn.(8)

Now let {x(m)}∞1 be a sequence in (b−a)Bn converging to a point x ∈ (b−a)Σn

and let {ux(m)(t)}∞1 be a sequence converging (in C[a, b] equipped with ‖.‖-sup)
to a polynomial R(t) of the form

R(t) =
n
∑

0

ai(x)ui(t).

Then the polynomial R(t) vanishes at each of the points

si = a +

i−1
∑

0

xj (i = 1, 2, . . . , n).

Note that the points si could be multiple zeros. Furthermore, if we put s0 =
a, sn+1 = b, and

di(R) =

{

min{d : d ≥ 0, d f(t) ≥ R(t) for all t ∈ [si, si+1]}, i = 0, 2, . . . ,

min{d : d ≥ 0, R(t) ≥ d g(t) for all t ∈ [si, si+1]}, i = 1, 3, . . . ,

then we have di(R) = 0 if and only if xi = 0 (for each i = 0, 1, . . . , n) and for each

i = 0, 1, . . . , n the sequence di(x
(m)) converges to di(R) as m → +∞. It follows

that

For each i = 0, 1, . . . , n if xi → 0 then di(x) → 0(9)

and, for all t > 0 and i = 0, 1, . . . , n,

inf{di(x) : x ∈ (b − a)Bn xi ≥ t} > 0.(10)

Since for every x = (x0, x1, . . . , xn) ∈ (b − a)Bn it holds

max
0≤i≤n

xi ≥
b − a

n + 1
,

we can deduce from (10) that

inf

{

n
∑

0

di(x), x ∈ (b − a)Bn

}

> 0.(11)

Put

fi(x) =
di(x)

n
∑

0
dj(x)

(b − a) (i = 0, 1, . . . , n; x ∈ (b − a)Bn).
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It follows from (8) (9) and (11) that the mapping f∗ = (f0, f1, . . . , fn) from
(b− a)Bn into itself is continuous and satisfies to the condition (2). By Theorem
2.1, f∗ is surjective; hence there is a point x ∈ (b − a)Bn such that

f0(x) = f2(x) = · · · = fn(x) =
b − a

n + 1
.

Therefore, d0(x) = d1(x) = · · · = dn(x) = d > 0 and P (t) = 1
d
ux(t) is the desired

polynomial.

Corollary 3.1. In the snake theorem, if instead of the functions f and g we

consider (n + 1) continuous functions F0, F1, . . . , Fn satisfying

Fi(t) > v(t) for all i = 0, 2, 4, . . . and t ∈ [a, b],

Fi(t) < v(t) for all i = 1, 3, 5, . . . and t ∈ [a, b],

then there exists a polynomial P such that

(i) There exist n points (a <) < s1 < s2 < · · · < sn(< b) such that P (si) =
v(si) for all i = 1, 2, 3, . . . ;

(ii) For each i = 0, 1, 2, 3, . . . , n,

Fi(t) ≥ P (t) ≥ v(t) for all t ∈ [si, si+1] if i is even,

Fi(t) ≤ P (t) ≤ v(t) for all t ∈ [si, si+1] if i is odd,

and there exists ti ∈ (si, si+1) such that Fi(ti) = P (ti), where s0 = a, sn+1 = b.

Proof. We can assume that v ≡ 0. Now we replace the definition (7) of di(x),
i = 0, 1, · · · , n, by the following

di(x) =

{

min{d : d > 0, dFi(t) ≥ ux(t) for all t ∈ [si, si+1]}, i = 0, 2, 4, . . . ,

min{d : d > 0, ux(t) ≥ dFi(t) for all t ∈ [si, si+1]}, i = 1, 3, 5, . . . ,

i.e.,

di(x) = max
si≤t≤si+1

ux(t)

Fi(t)
for all i = 0, 1, 2, . . . , n.

The same arguments as in the above proof work and the assertion (8)-(11) are true
for the case under consideration. Hence there exists a polynomial P (t) vanishing
at each of the points (a <)s1 < s2 < · · · < sn(< b) and satisfying

max
si≤t≤si+1

P (t)

Fi(t)
= 1 for all i = 0, 1, 2, . . . , n.

Note that we have no more the unicity of the snake as in the original snake
theorem where only two gates are considered.
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