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STRONG LAW OF LARGE NUMBERS AND

Lp-CONVERGENCE FOR DOUBLE ARRAYS OF

INDEPENDENT RANDOM VARIABLES

LE VAN THANH

Abstract. For a double array of independent random variables {Xmn, m ≥
1, n ≥ 1}, a strong law of large numbers and the Lp-convergence are estab-

lished for the double sums
m∑

i=1

n∑

j=1

Xij , m ≥ 1, n ≥ 1.

1. Introduction and notations

Pyke and Root [9] proved that if {Xn, n ≥ 1} is a sequence of independent
identically distributed random variables with E|X1|

p < ∞ (1 ≤ p < 2), then

E

∣

∣

∣

∣

n
∑

i=1
Xi − nEX1

∣

∣

∣

∣

p

n
→ 0 as n → ∞.

By using an inequality due to von Bahr and Esseen [1], Chatterji [3] extended
the result of Pyke and Root [9] to the case where {Xn, n ≥ 1} is dominated in
distribution by a random variable X with E|X|p < ∞ (1 ≤ p < 2). Later, using
Burkholder’s inequality (see [2]), Chow [4] strengthened the result of Chatterji
[3] by relaxing the domination condition of [3] to uniform integrability.

The aim of this paper is to establish a version of the strong law of large numbers
and the Lp-convergence for double arrays of independent random variables. From
this, we obtain the result of Gut [6, Theorem 3.2]. We also generalize an earlier
result of Smythe [11] for arrays of independent identically distributed random
variables.

Let {Xmn,m ≥ 1, n ≥ 1} be an array of independent random variables. Our

main result provides conditions for

m
∑

i=1

n
∑

j=1
Xij

mαnβ
→ 0 almost surely (a.s.) and in

Lp as max{m,n} → ∞, where α > 0, β > 0.
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Random variables {Xmn,m ≥ 1, n ≥ 1} are said to be dominated in distribution

by a random variable X if for some constant C it holds

P{|Xmn| > t} ≤ CP{|X| > t}, t ≥ 0,m ≥ 1, n ≥ 1.

For a, b ∈ R,min{a, b} and max{a, b} will be denoted, respectively, by a ∧ b

and a ∨ b. The number of divisors of a positive integer k will be denoted by
dk. Throughout this paper, the symbol C will denote a generic positive constant
which is not necessarily the same one in each appearance. The logarithms are to
basis 2.

2. Main results

We now present some lemmas which will be needed in the sequel.

Lemma 2.1. Let {Xmn,m ≥ 1, n ≥ 1} be a double array of random variables. If

∞
∑

m=1

∞
∑

n=1

E|Xmn|
p < ∞ for some p > 0,(1)

then

Xmn → 0 a.s. and in Lp as m ∨ n → ∞.(2)

Proof. The Lp-convergence follows immediately from (1). For an arbitrary ε > 0
and for all k ≥ 1,

P{ sup
m∨n≥k

|Xmn| > ε} ≤
∑

m∨n≥k

P{|Xmn| > ε}

≤
1

εp

∑

m∨n≥k

E|Xmn|
p (by Markov’s inequality)

→ 0 as k → ∞ (by (1)).

This proves the almost sure convergence.

Lemma 2.2. If {Xkl,Fl, l ≥ 1}, k = 1, 2, · · · ,m, are nonnegative submartin-

gales, then { max
1≤k≤m

Xkl,Fl, l ≥ 1} is a nonnegative submartingale.

Proof. For L > l ≥ 1,

E( max
1≤k≤m

XkL|Fl) ≥ max
1≤k≤m

E(XkL|Fl) ≥ max
1≤k≤m

Xkl.

The next lemma is due to von Bahr and Esseen [1].

Lemma 2.3. Let {Xi, 1 ≤ i ≤ n} be random variables such that E{Xk+1|Sk} = 0

for 0 ≤ k ≤ n − 1, where S0 = 0 and Sk =
k
∑

i=1
Xi for 1 ≤ k ≤ n. Then

E|Sn|
p ≤ 2

n
∑

i=1

E|Xi|
p for all 1 ≤ p ≤ 2.
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Note that Lemma 2.3 holds when {Xi, 1 ≤ i ≤ n} are independent random
variables with EXi = 0 for 1 ≤ i ≤ n.

Lemma 2.4. Let {Xij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} be a collection of mn independent

random variables. If EXij = 0 for all 1 ≤ i ≤ m, 1 ≤ j ≤ n, then

E
(

max
1≤k≤m,1≤l≤n

|Skl|
p
)

≤ C

m
∑

i=1

n
∑

j=1

E|Xij |
p for all 0 < p ≤ 2,(3)

where Skl =
k
∑

i=1

l
∑

j=1
Xij ; the constant C is independent of m and n. In the case

0 < p ≤ 1, the independence hypothesis and the hypothesis that EXij = 0, 1 ≤
i ≤ m, 1 ≤ j ≤ n are superfluous.

Proof. If E|Xij |
p = ∞ for some 1 ≤ i ≤ m and 1 ≤ j ≤ n, then (3) is immediate.

Thus, we can assume that E|Xij |
p < ∞, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

First, suppose that 1 < p ≤ 2 and m ∧ n ≥ 2. Set

Yl = max
1≤k≤m

|Skl|

and
Fl = σ(Xij , 1 ≤ i ≤ m, 1 ≤ j ≤ l), 1 ≤ l ≤ n.

For each 1 ≤ k ≤ m and 2 ≤ l ≤ n, we have

E(Skl|Fl−1) =E (Sk,l−1 + X1l + · · · + Xkl|Fl−1)

=E(Sk,l−1|Fl−1) + E(X1l|Fl−1) + · · · + E(Skl|Xl−1)

=Sk,l−1 a.s.

So {Skl,Fl, 1 ≤ l ≤ n} is a martingale for each k = 1, . . . ,m. As in Scalora [10],
{|Skl|,Fl, 1 ≤ l ≤ n} is a nonnegative submartingale for each k = 1, 2, . . . ,m.
Then, by Lemma 2.2, {Yl,Fl, 1 ≤ l ≤ n} is a nonnegative submartingale. By
Doob’s inequality (see, e.g., Chow and Teicher [5], p. 255),

E

(

max
1≤k≤m,1≤l≤n

|Skl|
p

)

= E
(

max
1≤l≤n

)p
≤

(

p

p − 1

)p

EY p
n .(4)

Set Gk = σ(Xij , 1 ≤ i ≤ k, 1 ≤ j ≤ n), 1 ≤ k ≤ m. Since {|Skn|,Gk, 1 ≤ k ≤ m}
is a submartingale, applying Doob’s inequality once more, we have

EY p
n = E( max

1≤k≤m
|Skn|)

p(5)

≤
( p

p − 1

)p
E|Smn|

p

≤ 2
( p

p − 1

)p
m
∑

i=1

n
∑

j=1

E|Xij |
p ( by Lemma 2.3).

The conclusion (3) follows immediately from (4) and (5).

Next, if 1 < p ≤ 2 and m ∧ n = 1 then (3) is obtained similarly as in the case
m ∧ n ≥ 2.
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Finally, if 0 < p ≤ 1, then we have

E

(

max
1≤k≤m,1≤l≤n

|Skl|
p

)

≤ E



 max
1≤k≤m,1≤l≤n

k
∑

i=1

l
∑

j=1

|Xij |
p





= E





m
∑

i=1

n
∑

j=1

|Xij |
p





=

m
∑

i=1

n
∑

j=1

E|Xij |
p,

which establishes (3).

Lemma 2.5. Let {Xmn,m ≥ 1, n ≥ 1} be a double array of random variables.

Suppose that {Xmn,m ≥ 1, n ≥ 1} is dominated in distribution by a random

variable X. If

E
(

|X|p log+ |X|
)

< ∞ for some p > 0,(6)

then

(i)
∞
∑

m=1

∞
∑

n=1

E

(
|Xmn|qI

(

|Xmn|≤(mn)
1
p

)

)

(mn)
q
p

< ∞ for all q > p,

(ii)
∞
∑

m=1

∞
∑

n=1

E

(
|Xmn|rI

(

|Xmn|>(mn)
1
p

)

)

(mn)
r
p

< ∞ for all 0 < r < p.

Proof. Let F be the distribution function of X. By using the fact that

∞
∑

k=j

dk

k
q

p

= O

(

log j

j
q

p
−1

)

,

we obtain

∞
∑

m=1

∞
∑

n=1

E
(

|Xmn|
qI(|Xmn| ≤ (mn)

1

p )
)

(mn)
q

p

≤ C

∞
∑

m=1

∞
∑

n=1

1

(mn)
q

p

∫ (mn)
1
p

0
xqdF (x)

= C

∞
∑

k=1

dk

k
q

p

∫ k
1
p

0
xqdF (x)

= C

∞
∑

k=1

dk

k
q

p

k
∑

j=1

∫ j
1
p

(j−1)
1
p

xqdF (x)

= C

∞
∑

j=1

∞
∑

k=j

dk

k
q

p

∫ j
1
p

(j−1)
1
p

xqdF (x)
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≤ C

∞
∑

j=1

log j

j
q

p
−1

∫ j
1
p

(j−1)
1
p

xqdF (x)

≤ C

∞
∑

j=2

∫ j
1
p

(j−1)
1
p

xp log xdF (x)

≤ CE
(

|X|p log+ |X|
)

,

which proves (i). Noting that

n
∑

k=1

dk

k
r
p

= O
( log n

n
r
p
−1

)

(0 < r < p),

we can obtain (ii) by the same method.

We are now in a position to establish the main result which provides conditions
for almost sure convergence and Lp-convergence for double sum of independent
random variables. This theorem in the particular case α = β = 1 and p = 2 is the
two-dimensional version of Kolmogorov’s theorem (see, e.g., Chow and Teicher
[5], pp. 121).

Theorem 2.1. Let {Xmn,m ≥ 1, n ≥ 1} be a double array of independent ran-

dom variables with EXmn = 0,m ≥ 1, n ≥ 1. If

∞
∑

m=1

∞
∑

n=1

E|Xmn|
p

mαpnβp
< ∞ for some 0 < p ≤ 2 and α > 0, β > 0(7)

then
m
∑

i=1

n
∑

j=1
Xij

mαnβ
→ 0 a.s. and in Lp as m ∨ n → ∞.(8)

Proof. Since

∞
∑

k=1

∞
∑

l=1

E

∣

∣

∣

∣

2k
∑

i=1

2l
∑

j=1
Xij

2αk2βl

∣

∣

∣

∣

p

≤ C

∞
∑

k=1

∞
∑

l=1

2k
∑

i=1

2l
∑

j=1
E|Xij |

p

(2αk2βl)p
(by Lemma 2.4)(9)

≤ C

∞
∑

i=1

∞
∑

l=1

E|Xij |
p

(iαjβ)p

< ∞ (by (7)),

Lemma 2.1 ensures that

2k
∑

i=1

2l
∑

j=1
Xij

2αk2βl
→ 0 a.s. and in Lp as k ∨ l → ∞.(10)
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Set

Smn =
m
∑

i=1

n
∑

j=1

Xij , m ≥ 1, n ≥ 1

and

Tkl = max
2k≤m<2k+1,2l≤n<2l+1

∣

∣

∣

∣

Smn

mαnβ
−

S2k2l

2αk2βl

∣

∣

∣

∣

, k ≥ 1, l ≥ 1.

By Lemma 2.4, for all k ≥ 1 and l ≥ 1, we have

E|Tkl|
p ≤C

(

E

∣

∣

∣

∣

S2k2l

2αk2βl

∣

∣

∣

∣

p

+ E
(

max
2k≤m<2k+1,2l≤n<2l+1

∣

∣

∣

∣

Smn

mαnβ

∣

∣

∣

∣

p
)

)

≤C

(

E

∣

∣

∣

∣

S2k2l

2αk2βl

∣

∣

∣

∣

p

+
1

2αk2βl
E
(

max
1≤m≤2k+1,1≤n≤2l+1

|Smn|
p
)

)

≤CE

∣

∣

∣

∣

S2k2l

2αk2βl

∣

∣

∣

∣

p

+ C

2k+1
∑

i=1

2l+1
∑

j=1
E|Xij |

p

2(k+1)αp2(l+1)βp

whence
∞
∑

k=1

∞
∑

l=1

ET
p
kl < ∞ by (9). Then by Lemma 2.1,

Tkl → 0 a.s. and in Lp as k ∨ l → ∞.(11)

Note that for 2k ≤ m < 2k+1 and 2l ≤ n < 2l+1 it holds

|Smn|

mαnβ
≤

∣

∣

∣

∣

Smn

mαnβ
−

S2k2l

2αk2βl

∣

∣

∣

∣

+

∣

∣

∣

∣

S2k2l

2αk2βl

∣

∣

∣

∣

≤ Tkl +

∣

∣

∣

∣

S2k2l

2αk2βl

∣

∣

∣

∣

,

so the conclusion (8) follows from (10) and (11).

Remark 2.1. The argument used for proving in Theorem 2.1 reveals that if
0 < p ≤ 1, then the independence hypothesis and the hypothesis that the random
variables {Xmn,m ≥ 1, n ≥ 1} have mean 0 are not needed for the validity of the
conclusion of the theorem.

Corollary 2.1. Let {Xmn,m ≥ 1, n ≥ 1} be a double array of independent ran-

dom variables. Suppose that {Xmn,m ≥ 1, n ≥ 1} are dominated in distribution

by a random variable X. If

E(|X|p log+ |X|) < ∞ for some 1 ≤ p < 2,(12)

then
m
∑

i=1

n
∑

j=1
(Xij − EXij)

(mn)
1

p

→ 0 a.s. and in Lp as m ∨ n → ∞.(13)

Proof. For m ≥ 1 and n ≥ 1, set

X ′
mn = XmnI

(

|Xmn| ≤ (mn)
1

p
)

and

X ′′
mn = XmnI

(

|Xmn| > (mn)
1

p
)

.
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By Lemma 2.5,

∞
∑

m=1

∞
∑

n=1

E(X ′
mn − EX ′

mn)2

(mn)
2

p

≤

∞
∑

m=1

∞
∑

n=1

E(X ′
mn)2

(mn)
2

p

< ∞

and
∞
∑

m=1

∞
∑

n=1

E|X ′′
mn − EX ′′

mn|
r

(mn)
r
p

≤ C

∞
∑

m=1

∞
∑

n=1

E|X ′′
mn|

r

(mn)
r
p

< ∞

for all 0 < r < p. Then by Theorem 2.1,

m
∑

i=1

n
∑

j=1
(X ′

ij − EX ′
ij)

(mn)
1

p

→ 0 a.s. and in L2 as m ∨ n → ∞,(14)

m
∑

i=1

n
∑

j=1
(X ′′

ij − EX ′′
ij)

(mn)
1

p

→ 0 a.s. as m ∨ n → ∞.(15)

Since E|X|p < ∞ (by (12)),

E|X ′′
mn|

p ≤ C

∫ ∞

(mn)
1
p

xp−1P{|Xmn| > x}dx(16)

≤ C

∫ ∞

(mn)
1
p

xp−1P{|X| > x}dx

→ 0 as m ∨ n → ∞.

It implies that

E
∣

∣

m
∑

i=1

n
∑

j=1
(X ′′

ij − EX ′′
ij)
∣

∣

p

mn
≤ C

m
∑

i=1

n
∑

j=1
E|X ′′

ij − EX ′′
ij |

p

mn
(by Lemma 2.4)(17)

≤ C

m
∑

i=1

n
∑

j=1
E|X ′′

ij |
p

mn

→ 0 as m ∨ n → ∞ ( by (16)).

Combining (14), (15) and (17) we get (13).

Remark 2.2. The generalization to d-dimensional arrays of random variables can
be obtained by the same method under the condition E

(

|X|p(log+ X|)d−1
)

< ∞.

Remark 2.3. A part of Corollary 2.1 is due to Smythe [11] who proved that
if {Xk, k ∈ N

d} be a d-dimensional array of independent identically distributed

random variables with zero mean, E
(

|Xk|(log
+ |Xk|)

d−1
)

< ∞, then

∑

j≤k

Xj

|k|
→ 0

a.s. as |k| → ∞, where k = (k1, k2, . . . , kd) ∈ N
d, |k| = k1k2 · · · kd.
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Remark 2.4. When {Xmn,m ≥ 1, n ≥ 1} are pairwise independent random
variables which are dominated in distribution by a random variable X, the almost

sure convergence of

m
∑

i=1

n
∑

j=1
(Xij − EXij)

(mn)
1

p

was obtained by Hong and Hwang [7,

Theorem 2.3] under a stronger condition that E
(

|X|p(log+ |X|3)
)

< ∞ (1 <

p < 2). More general results were proved by Hong and Volodin [8].
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