STRONG LAW OF LARGE NUMBERS AND L^p-CONVERGENCE FOR DOUBLE ARRAYS OF INDEPENDENT RANDOM VARIABLES

LE VAN THANH

ABSTRACT. For a double array of independent random variables $\{X_{mn}, m > n\}$ $1, n \geq 1$ }, a strong law of large numbers and the L^p -convergence are established lished for the double sums $\sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}, m \ge 1, n \ge 1.$

1. INTRODUCTION AND NOTATIONS

Pyke and Root [9] proved that if $\{X_n, n \ge 1\}$ is a sequence of independent identically distributed random variables with $E|X_1|^p < \infty$ ($1 \le p < 2$), then

$$\frac{E\left|\sum_{i=1}^{n} X_{i} - nEX_{1}\right|^{p}}{n} \to 0 \text{ as } n \to \infty.$$

By using an inequality due to von Bahr and Esseen [1], Chatterji [3] extended the result of Pyke and Root [9] to the case where $\{X_n, n \ge 1\}$ is dominated in distribution by a random variable X with $E|X|^p < \infty$ ($1 \le p < 2$). Later, using Burkholder's inequality (see [2]), Chow [4] strengthened the result of Chatterji [3] by relaxing the domination condition of [3] to uniform integrability.

The aim of this paper is to establish a version of the strong law of large numbers and the L^p -convergence for double arrays of independent random variables. From this, we obtain the result of Gut [6, Theorem 3.2]. We also generalize an earlier result of Smythe [11] for arrays of independent identically distributed random variables.

Let $\{X_{mn}, m \ge 1, n \ge 1\}$ be an array of independent random variables. Our

main result provides conditions for $\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}}{\frac{m^{\alpha} n^{\beta}}{m^{\alpha} n^{\beta}}} \to 0$ almost surely (a.s.) and in L^p as max $\{m, n\} \to \infty$, where $\alpha > 0, \beta'$

Received August 2, 2004.

Key words and phrases. Double array of independent random variables, double sums, strong law of large numbers, almost sure convergence, L^p -convergence, dominated in distribution.

Random variables $\{X_{mn}, m \ge 1, n \ge 1\}$ are said to be *dominated in distribution* by a random variable X if for some constant C it holds

$$P\{|X_{mn}| > t\} \le CP\{|X| > t\}, \quad t \ge 0, m \ge 1, n \ge 1.$$

For $a, b \in \mathbb{R}, \min\{a, b\}$ and $\max\{a, b\}$ will be denoted, respectively, by $a \wedge b$ and $a \vee b$. The number of divisors of a positive integer k will be denoted by d_k . Throughout this paper, the symbol C will denote a generic positive constant which is not necessarily the same one in each appearance. The logarithms are to basis 2.

2. Main results

We now present some lemmas which will be needed in the sequel.

Lemma 2.1. Let $\{X_{mn}, m \ge 1, n \ge 1\}$ be a double array of random variables. If

(1)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} E|X_{mn}|^p < \infty \quad for \ some \quad p > 0,$$

then

(2)
$$X_{mn} \to 0 \text{ a.s. and in } L^p \text{ as } m \lor n \to \infty$$

Proof. The L^p -convergence follows immediately from (1). For an arbitrary $\varepsilon > 0$ and for all $k \geq 1$,

$$P\{\sup_{m \lor n \ge k} |X_{mn}| > \varepsilon\} \le \sum_{m \lor n \ge k} P\{|X_{mn}| > \varepsilon\}$$
$$\le \frac{1}{\varepsilon^p} \sum_{m \lor n \ge k} E|X_{mn}|^p \quad \text{(by Markov's inequality)}$$
$$\to 0 \quad \text{as } k \to \infty \quad \text{(by (1)).}$$

This proves the almost sure convergence.

$$k = 1, 2, \cdots, m$$
, are nonnegative submartin-

Lemma 2.2. If $\{X_{kl}, \mathcal{F}_l, l \geq 1\}, k = 1, 2, \cdots, m$, are nonnegatigales, then $\{\max_{1 \leq k \leq m} X_{kl}, \mathcal{F}_l, l \geq 1\}$ is a nonnegative submartingale.

Proof. For $L > l \ge 1$,

$$E(\max_{1\leq k\leq m} X_{kL}|\mathcal{F}_l) \geq \max_{1\leq k\leq m} E(X_{kL}|\mathcal{F}_l) \geq \max_{1\leq k\leq m} X_{kl}.$$

The next lemma is due to von Bahr and Esseen [1].

Lemma 2.3. Let $\{X_i, 1 \le i \le n\}$ be random variables such that $E\{X_{k+1}|S_k\} = 0$ for $0 \le k \le n-1$, where $S_0 = 0$ and $S_k = \sum_{i=1}^k X_i$ for $1 \le k \le n$. Then $E|S_n|^p \le 2\sum_{i=1}^n E|X_i|^p \quad for \ all \quad 1 \le p \le 2.$

Note that Lemma 2.3 holds when $\{X_i, 1 \leq i \leq n\}$ are independent random variables with $EX_i = 0$ for $1 \leq i \leq n$.

Lemma 2.4. Let $\{X_{ij}, 1 \le i \le m, 1 \le j \le n\}$ be a collection of mn independent random variables. If $EX_{ij} = 0$ for all $1 \le i \le m, 1 \le j \le n$, then

(3)
$$E\left(\max_{1 \le k \le m, 1 \le l \le n} |S_{kl}|^p\right) \le C \sum_{i=1}^m \sum_{j=1}^n E|X_{ij}|^p \text{ for all } 0$$

where $S_{kl} = \sum_{i=1}^{k} \sum_{j=1}^{l} X_{ij}$; the constant *C* is independent of *m* and *n*. In the case $0 , the independence hypothesis and the hypothesis that <math>EX_{ij} = 0, 1 \le i \le m, 1 \le j \le n$ are superfluous.

Proof. If $E|X_{ij}|^p = \infty$ for some $1 \le i \le m$ and $1 \le j \le n$, then (3) is immediate. Thus, we can assume that $E|X_{ij}|^p < \infty$, $1 \le i \le m$, $1 \le j \le n$.

First, suppose that $1 and <math>m \land n \ge 2$. Set

$$Y_l = \max_{1 \le k \le m} |S_{kl}|$$

and

$$\mathcal{F}_l = \sigma(X_{ij}, \ 1 \le i \le m, \ 1 \le j \le l), \quad 1 \le l \le n$$

For each $1 \le k \le m$ and $2 \le l \le n$, we have

$$E(S_{kl}|\mathcal{F}_{l-1}) = E(S_{k,l-1} + X_{1l} + \dots + X_{kl}|\mathcal{F}_{l-1})$$

= $E(S_{k,l-1}|\mathcal{F}_{l-1}) + E(X_{1l}|\mathcal{F}_{l-1}) + \dots + E(S_{kl}|\mathcal{X}_{l-1})$
= $S_{k,l-1}$ a.s.

So $\{S_{kl}, \mathcal{F}_l, 1 \leq l \leq n\}$ is a martingale for each $k = 1, \ldots, m$. As in Scalora [10], $\{|S_{kl}|, \mathcal{F}_l, 1 \leq l \leq n\}$ is a nonnegative submartingale for each $k = 1, 2, \ldots, m$. Then, by Lemma 2.2, $\{Y_l, \mathcal{F}_l, 1 \leq l \leq n\}$ is a nonnegative submartingale. By Doob's inequality (see, e.g., Chow and Teicher [5], p. 255),

(4)
$$E\left(\max_{1\le k\le m, 1\le l\le n} |S_{kl}|^p\right) = E\left(\max_{1\le l\le n}\right)^p \le \left(\frac{p}{p-1}\right)^p EY_n^p$$

Set $\mathcal{G}_k = \sigma(X_{ij}, 1 \leq i \leq k, 1 \leq j \leq n), 1 \leq k \leq m$. Since $\{|S_{kn}|, \mathcal{G}_k, 1 \leq k \leq m\}$ is a submartingale, applying Doob's inequality once more, we have

(5)
$$EY_n^p = E(\max_{1 \le k \le m} |S_{kn}|)^p$$
$$\leq \left(\frac{p}{p-1}\right)^p E|S_{mn}|^p$$
$$\leq 2\left(\frac{p}{p-1}\right)^p \sum_{i=1}^m \sum_{j=1}^n E|X_{ij}|^p \quad (\text{ by Lemma 2.3}).$$

The conclusion (3) follows immediately from (4) and (5).

Next, if $1 and <math>m \land n = 1$ then (3) is obtained similarly as in the case $m \land n \ge 2$.

Finally, if 0 , then we have

$$E\left(\max_{1\leq k\leq m, 1\leq l\leq n} |S_{kl}|^p\right) \leq E\left(\max_{1\leq k\leq m, 1\leq l\leq n} \sum_{i=1}^k \sum_{j=1}^l |X_{ij}|^p\right)$$
$$= E\left(\sum_{i=1}^m \sum_{j=1}^n |X_{ij}|^p\right)$$
$$= \sum_{i=1}^m \sum_{j=1}^n E|X_{ij}|^p,$$

which establishes (3).

Lemma 2.5. Let $\{X_{mn}, m \ge 1, n \ge 1\}$ be a double array of random variables. Suppose that $\{X_{mn}, m \ge 1, n \ge 1\}$ is dominated in distribution by a random variable X. If

(6)
$$E(|X|^p \log^+ |X|) < \infty \quad for \ some \quad p > 0,$$

then

(i)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E\left(|X_{mn}|^{q}I\left(|X_{mn}| \le (mn)^{\frac{1}{p}}\right)\right)}{(mn)^{\frac{q}{p}}} < \infty \quad for \ all \quad q > p,$$

(ii) $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E\left(|X_{mn}|^{r}I\left(|X_{mn}| > (mn)^{\frac{1}{p}}\right)\right)}{(mn)^{\frac{r}{p}}} < \infty \quad for \ all \quad 0 < r < p.$

Proof. Let F be the distribution function of X. By using the fact that

$$\sum_{k=j}^{\infty} \frac{d_k}{k^{\frac{q}{p}}} = O\left(\frac{\log j}{j^{\frac{q}{p}-1}}\right),$$

we obtain

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E\left(|X_{mn}|^q I(|X_{mn}| \le (mn)^{\frac{1}{p}})\right)}{(mn)^{\frac{q}{p}}} \le C \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{1}{(mn)^{\frac{q}{p}}} \int_0^{(mn)^{\frac{1}{p}}} x^q dF(x)$$
$$= C \sum_{k=1}^{\infty} \frac{d_k}{k^{\frac{q}{p}}} \int_0^{k^{\frac{1}{p}}} x^q dF(x)$$
$$= C \sum_{k=1}^{\infty} \frac{d_k}{k^{\frac{q}{p}}} \sum_{j=1}^k \int_{(j-1)^{\frac{1}{p}}}^{j^{\frac{1}{p}}} x^q dF(x)$$
$$= C \sum_{j=1}^{\infty} \sum_{k=j}^{\infty} \frac{d_k}{k^{\frac{q}{p}}} \int_{(j-1)^{\frac{1}{p}}}^{j^{\frac{1}{p}}} x^q dF(x)$$

228

$$\leq C \sum_{j=1}^{\infty} \frac{\log j}{j^{\frac{q}{p}-1}} \int_{(j-1)^{\frac{1}{p}}}^{j^{\frac{1}{p}}} x^{q} dF(x)$$
$$\leq C \sum_{j=2}^{\infty} \int_{(j-1)^{\frac{1}{p}}}^{j^{\frac{1}{p}}} x^{p} \log x dF(x)$$
$$\leq C E(|X|^{p} \log^{+}|X|),$$

which proves (i). Noting that

$$\sum_{k=1}^{n} \frac{d_k}{k^{\frac{r}{p}}} = O\left(\frac{\log n}{n^{\frac{r}{p}-1}}\right) \quad (0 < r < p),$$

we can obtain (ii) by the same method.

We are now in a position to establish the main result which provides conditions for almost sure convergence and L^p -convergence for double sum of independent random variables. This theorem in the particular case $\alpha = \beta = 1$ and p = 2 is the two-dimensional version of Kolmogorov's theorem (see, e.g., Chow and Teicher [5], pp. 121).

Theorem 2.1. Let $\{X_{mn}, m \ge 1, n \ge 1\}$ be a double array of independent random variables with $EX_{mn} = 0, m \ge 1, n \ge 1$. If

(7)
$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E|X_{mn}|^p}{m^{\alpha p} n^{\beta p}} < \infty \quad for \ some \quad 0 < p \le 2 \quad and \quad \alpha > 0, \beta > 0$$

then

(8)
$$\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}}{m^{\alpha} n^{\beta}} \to 0 \text{ a.s. and in } L^{p} \text{ as } m \lor n \to \infty.$$

Proof. Since

$$(9) \qquad \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} E \left| \frac{\sum_{i=1}^{2^{k}} \sum_{j=1}^{2^{l}} X_{ij}}{2^{\alpha k} 2^{\beta l}} \right|^{p} \le C \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{\sum_{i=1}^{2^{k}} \sum_{j=1}^{2^{l}} E |X_{ij}|^{p}}{(2^{\alpha k} 2^{\beta l})^{p}} \quad \text{(by Lemma 2.4)} \\ \le C \sum_{i=1}^{\infty} \sum_{l=1}^{\infty} \frac{E |X_{ij}|^{p}}{(i^{\alpha} j^{\beta})^{p}} \\ < \infty \quad \text{(by (7))},$$

Lemma 2.1 ensures that

(10)
$$\frac{\sum_{i=1}^{2^k} \sum_{j=1}^{2^l} X_{ij}}{2^{\alpha k} 2^{\beta l}} \to 0 \text{ a.s. and in } L^p \text{ as } k \lor l \to \infty.$$

229

 Set

$$S_{mn} = \sum_{i=1}^{m} \sum_{j=1}^{n} X_{ij}, \quad m \ge 1, n \ge 1$$

and

$$T_{kl} = \max_{2^k \le m < 2^{k+1}, 2^l \le n < 2^{l+1}} \left| \frac{S_{mn}}{m^{\alpha} n^{\beta}} - \frac{S_{2^k 2^l}}{2^{\alpha k} 2^{\beta l}} \right|, \quad k \ge 1, l \ge 1.$$

By Lemma 2.4, for all $k \ge 1$ and $l \ge 1$, we have

$$E|T_{kl}|^{p} \leq C \left(E \left| \frac{S_{2^{k}2^{l}}}{2^{\alpha k}2^{\beta l}} \right|^{p} + E \left(\max_{2^{k} \leq m < 2^{k+1}, 2^{l} \leq n < 2^{l+1}} \left| \frac{S_{mn}}{m^{\alpha} n^{\beta}} \right|^{p} \right) \right)$$

$$\leq C \left(E \left| \frac{S_{2^{k}2^{l}}}{2^{\alpha k}2^{\beta l}} \right|^{p} + \frac{1}{2^{\alpha k}2^{\beta l}} E \left(\max_{1 \leq m \leq 2^{k+1}, 1 \leq n \leq 2^{l+1}} |S_{mn}|^{p} \right) \right)$$

$$\leq C E \left| \frac{S_{2^{k}2^{l}}}{2^{\alpha k}2^{\beta l}} \right|^{p} + C \frac{\sum_{i=1}^{2^{k+1}} \sum_{j=1}^{2^{l+1}} E |X_{ij}|^{p}}{2^{(k+1)\alpha p}2^{(l+1)\beta p}}$$

whence $\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} ET_{kl}^p < \infty$ by (9). Then by Lemma 2.1, (11) $T_{kl} \to 0$ a.s. and in L^p as $k \lor l \to \infty$.

Note that for $2^k \le m < 2^{k+1}$ and $2^l \le n < 2^{l+1}$ it holds

$$\frac{|S_{mn}|}{m^{\alpha}n^{\beta}} \le \left|\frac{S_{mn}}{m^{\alpha}n^{\beta}} - \frac{S_{2^{k}2^{l}}}{2^{\alpha k}2^{\beta l}}\right| + \left|\frac{S_{2^{k}2^{l}}}{2^{\alpha k}2^{\beta l}}\right| \le T_{kl} + \left|\frac{S_{2^{k}2^{l}}}{2^{\alpha k}2^{\beta l}}\right|,$$

so the conclusion (8) follows from (10) and (11).

Remark 2.1. The argument used for proving in Theorem 2.1 reveals that if $0 , then the independence hypothesis and the hypothesis that the random variables <math>\{X_{mn}, m \ge 1, n \ge 1\}$ have mean 0 are not needed for the validity of the conclusion of the theorem.

Corollary 2.1. Let $\{X_{mn}, m \ge 1, n \ge 1\}$ be a double array of independent random variables. Suppose that $\{X_{mn}, m \ge 1, n \ge 1\}$ are dominated in distribution by a random variable X. If

(12)
$$E(|X|^p \log^+ |X|) < \infty \quad for \ some \quad 1 \le p < 2,$$

then

(13)
$$\frac{\sum_{i=1}^{m}\sum_{j=1}^{n}(X_{ij}-EX_{ij})}{(mn)^{\frac{1}{p}}} \to 0 \text{ a.s. and in } L^{p} \text{ as } m \lor n \to \infty.$$

Proof. For $m \ge 1$ and $n \ge 1$, set

$$X'_{mn} = X_{mn} I\left(|X_{mn}| \le (mn)^{\frac{1}{p}}\right)$$

and

$$X''_{mn} = X_{mn} I(|X_{mn}| > (mn)^{\frac{1}{p}}).$$

By Lemma 2.5,

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E(X'_{mn} - EX'_{mn})^2}{(mn)^{\frac{2}{p}}} \le \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E(X'_{mn})^2}{(mn)^{\frac{2}{p}}} < \infty$$

and

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E|X_{mn}'' - EX_{mn}''|^r}{(mn)^{\frac{r}{p}}} \le C \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{E|X_{mn}''|^r}{(mn)^{\frac{r}{p}}} < \infty$$

for all 0 < r < p. Then by Theorem 2.1,

(14)
$$\frac{\sum_{i=1}^{m}\sum_{j=1}^{n}(X'_{ij}-EX'_{ij})}{(mn)^{\frac{1}{p}}} \to 0 \text{ a.s. and in } L^2 \text{ as } m \lor n \to \infty,$$

(15)
$$\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij}'' - EX_{ij}'')}{(mn)^{\frac{1}{p}}} \to 0 \text{ a.s. as } m \lor n \to \infty.$$

Since $E|X|^p < \infty$ (by (12)),

(16)
$$E|X''_{mn}|^{p} \leq C \int_{(mn)^{\frac{1}{p}}}^{\infty} x^{p-1} P\{|X_{mn}| > x\} dx$$
$$\leq C \int_{(mn)^{\frac{1}{p}}}^{\infty} x^{p-1} P\{|X| > x\} dx$$
$$\to 0 \quad \text{as} \quad m \lor n \to \infty.$$

It implies that

(17)
$$\frac{E\left|\sum_{i=1}^{m}\sum_{j=1}^{n}(X_{ij}''-EX_{ij}'')\right|^{p}}{mn} \leq C\frac{\sum_{i=1}^{m}\sum_{j=1}^{n}E|X_{ij}''-EX_{ij}''|^{p}}{mn} \quad \text{(by Lemma 2.4)}$$
$$\leq C\frac{\sum_{i=1}^{m}\sum_{j=1}^{n}E|X_{ij}''|^{p}}{mn}$$
$$\to 0 \quad \text{as} \quad m \lor n \to \infty \quad \text{(by (16))}.$$

Combining (14), (15) and (17) we get (13).

Remark 2.2. The generalization to *d*-dimensional arrays of random variables can be obtained by the same method under the condition $E(|X|^p(\log^+ X|)^{d-1}) < \infty$. **Remark 2.3.** A part of Corollary 2.1 is due to Smythe [11] who proved that if $\{X_k, k \in \mathbb{N}^d\}$ be a *d*-dimensional array of independent identically distributed random variables with zero mean, $E(|X_k|(\log^+ |X_k|)^{d-1}) < \infty$, then $\frac{\sum_{j \leq k} X_j}{|k|} \to 0$ a.s. as $|k| \to \infty$, where $k = (k_1, k_2, \dots, k_d) \in \mathbb{N}^d, |k| = k_1 k_2 \cdots k_d$.

Remark 2.4. When $\{X_{mn}, m \ge 1, n \ge 1\}$ are pairwise independent random variables which are dominated in distribution by a random variable X, the almost $\sum_{n=1}^{m} \sum_{i=1}^{n} (X_{in} - FX_{in})$

sure convergence of $\frac{\sum_{i=1}^{m} \sum_{j=1}^{n} (X_{ij} - EX_{ij})}{(mn)^{\frac{1}{p}}}$ was obtained by Hong and Hwang [7,

Theorem 2.3] under a stronger condition that $E(|X|^p(\log^+ |X|^3)) < \infty$ (1 < p < 2). More general results were proved by Hong and Volodin [8].

Acknowledgments

The author is grateful to Professor Andrew Rosalsky (University of Florida, USA) for helpful remarks and the references [6] and [10]. He also wishes to thank Professor Andrei Volodin (University of Regina, Canada) for the reference [11].

References

- [1] B. von Bahr and C. G. Esseen, Inequalities for the rth absolute moment of a sum of random variables, $1 \le r \le 2$, Ann. Math. Statist. **36** (1965), 299-303.
- [2] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
- [3] S. D. Chatterji, An L^p-convergence theorem, Ann. Math. Statist. 40 (1969), 1068-1070.
- [4] Y. S. Chow, On the L^p -convergence for $n^{\frac{1}{p}}S_n$, (0 , Ann. Math. Statist.**42**(1971), 393-394.
- Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, 3rd Edition, Springer-Verlag, New York, 1997.
- [6] A. Gut, Marcinkiewicz laws and convergence rates in the law of large numbers for random variables with multidimensional indices, Ann. Probability. 6 (1978), 469-482.
- [7] D. H. Hong and S. Y. Hwang, Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables, Int. J. Math. Math. Sci. 22 (1999), 171-177.
- [8] D. H. Hong and A. I. Volodin, Marcinkiewicz-type law of large numbers for double arrays, J. Korean Math. Soc. 36 (1999), 1133-1143.
- R. Pyke and D. Root, On convergence in r-mean of normalized partial sums, Ann. Math. Statist. 39 (1968), 397-381.
- [10] F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374.
- R. T. Smythe, Strong laws of large numbers for r-dimensional arrays of random variables, Ann. Probability 1 (1973), 164-170.

DEPARTMENT OF MATHEMATICS VINH UNIVERSITY NGHE AN PROVINCE, VIETNAM