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ON CASTELNUOVO-MUMFORD REGULARITY OF

PRODUCTS OF MONOMIAL IDEALS

NGUYEN CONG MINH

Abstract. In this paper, we prove the formula

reg(IJ) ≤ reg(I) + reg(J),

where I is generated by a regular sequence consisting of two monomials and
J is generated by an arbitrary regular sequence of monomials.

1. Introduction

Let R = k[x1, x2, . . . , xu] be a polynomial ring over a field k and I ⊂ R
a homogeneous ideal. The Castelnuovo-Mumford regularity of I governs the
degrees appearing in a minimal graded free resolution of I. Conca and Herzog
([C-H]) raised the following question: Whether it is true that

reg(I1I2 . . . Id) ≤ reg(I1) + reg(I2) + . . . + reg(Id),(*)

when each Ii is generated by a regular sequence? In the case I is an arbitrary
monomial ideal, Hoa and Trung used the polarization method to find bounds for
reg(Id) (see [H-T]). Based on this method and a formula reduced by Hochster’s
Theorem, we prove (*) in the case d = 2, I1 is generated by two monomials and
I2 is an arbitrary monomial ideal (see Main Theorem).

2. Preliminaries

First, we introduce some conventions. There are several characterizations for
the Castelnuovo-Mumford regularity of a finitely generated graded R-module M
(see [E-G]). We use here the following definition

reg(M) := min{t | H i
m
(M)n−i = 0 for all n > t and i ≥ 0},

where H i
m
(M)n−i denotes the (n − i)-th graded part of the i-th cohomology

module of M with respect to the maximal graded ideal m of R.
Let I be a monomial ideal in R. To estimate reg(I), we will need the technique

of polarization to reduce I to a squarefree monomial ideal (see [S-V, Chap. 2]).
Let S := k[X], where X = {xij | 1 ≤ i ≤ u and 1 ≤ j ≤ Ni} and Ni � 0. Let h
be a monomial xµ1

1 xµ2
2 . . . xµu

u of R. Then we define the polarization of h to be a
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squarefree monomial

p(h) :=
u∏

i=1

µi∏

j=1

xij .

Let m1, m2, . . . ,ms form a minimal basis of I. Then the polarization of I is the
squarefree monomial ideal of S defined by

p(I) :=
(
p(m1), p(m2), . . . , p(ms)

)
.

The following result gives a relation between the regularity of I and p(I) (see
[P, Chap. 3, Proposition 5]).

Proposition 2.1. reg(I) = reg(p(I)).

We may view S/p(I) as the Stanley-Reisner ring k[∆] of a simplicial complex
∆, where

∆ :=
{
{xi1 , xi2 , . . . , xir} ⊆ X | xi1xi2 . . . xir /∈ p(I)

}
.

Note that k[∆] is a Zq-graded algebra and

k[∆]s =
⊕

a∈Zq , |a|=s

k[∆]a

for all s ∈ Z, where |a| = a1 + a1 + . . . + aq and q = ]X. If F is a subset of X,
then we define a subcomplex of ∆ as follow:

lk∆F := {G ⊆ X | F ∩ G = ∅, F ∪ G ∈ ∆}.

The local cohomology modules of k[∆] with respect to the maximal graded ideal
m of S can be computed by reduced homology groups of simplicial complexes
with values in k from a formula due to Hochster [B-H, Theorem 5.3.8]. From
this, we can deduce the following characterization for the Castelnuovo-Mumford
regularity of k[∆].

Proposition 2.2. Let ∆ be a simplicial complex on X and α a non-negative

integer number. Then

reg(k[∆]) = min{α | H̃t(lk∆F ) = 0 for all t ≥ α,F ⊆ X}.

Corollary 2.1. reg(k[∆]) ≤ dim (∆) + 1.

3. main theorem

The main result of the present paper is:

Main Theorem. Let I, J be two ideals generated by regular sequences of mono-

mials in R and µ(I) = 2. Then

reg(IJ) ≤ reg(I) + reg(J).

Lemma 3.1. Let I = (f1, f2, . . . , fn) and J = (g1, g2, . . . , gm) be two ideals

generated by regular sequences of monomials in R. Then

reg(p(p(I)p(J))) = reg(IJ).
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Proof. For each of 1 ≤ t ≤ u let at (resp. bt) be the maximal degree of xt in
f1, f2, . . . , fn (resp. g1, g2, . . . , gm). Let mt := min (at, bt) and Mt := max (at, bt).
We may assume that

p(IJ) ⊆ S = k[X1,1,X1,2, . . . ,X1,a1+b1 ; . . . ;Xu,1,Xu,2, . . . ,Xu,au+bu
]

and

p(I), p(J) ⊆ k[X1,1,X1,2, . . . ,X1,M1 ; . . . ;Xu,1,Xu,2, . . . ,Xu,Mu ].

Since Xt,r appears in figj with the degree at most one for each r > mt, we may
assume that

p(p(I)p(J)) ⊆ S′ = k[X1,1, Y1,1, . . . ,X1,m1 , Y1,m1 ,X1,m1+1, . . . ,X1,M1 ; . . . ;

Xu,1, Yu,1, . . . ,Xu,mu , Yu,mu ,Xu,mu+1, . . . ,Xu,Mu ].

Note that at + bt = mt + Mt for all t. Define an isomorphism ϕ : S −→ S′ as
follows:

ϕ(Xt,i) =

{
Xt,i for i = 1, . . . ,Mt

Yt,i−Mt for i = Mt + 1, . . . ,Mt + mt

Let i 6= i′, j 6= j′. By the condition of regular sequence, gcd(fi, fi′) = gcd(gj , gj′) =
1. Since fi′gj′ | figj if and only if fi′ | gj and gj′ | fi, it follows that figj

is a minimal generator of IJ if and only if p(fi)p(gj) is a minimal generator
of p(I)p(J). Moreover, if xt appears both in fi and gj then we must have
degxt

(fi) = at and degxt
(gj) = bt. From this statement if Xt,r | p(figj) then

ϕ(Xt,r) | p(p(fi)p(gj)). This implies that ϕ(p(figj)) = p(p(fi)p(gj)) for all i, j.
Thus ϕ(p(IJ)) = p(p(I)p(J)). So the assertion is proved by virtue of Proposi-
tion 2.1.

We put deg fi = ai and deg gj = bj. Then

reg(I) = a1 + a2 − 1

reg(J) = b1 + b2 + · · · + bm − m + 1.

By Lemma 3.1, we only need to study product of squarefree monomial ideals.
Moreover, it would not make any difference if we replace p(IJ) by the ideal of
k[X] generated by p(figj) for all i, j. We may assume that each of variable
appears in p(figj) for some i, j. Then

]X = a1 + a2 + b1 + b2 + · · · + bm.

For i = 1, 2, let Ji be the ideal generated by the monomials
p(figj)

p(fi)
, j =

1, 2, . . . ,m. We may view Ji as a copy of J . In particular, reg(Ji) = reg(J). Let
∆I be the simplicial complex corresponding to the squarefree monomial ideal I.

Lemma 3.2. Let ∆1 = ∆(p(f1)), ∆2 = ∆(p(f2)), ∆3 = ∆J1 and ∆4 = ∆J2. Then

∆p(IJ) = (∆1 ∪ ∆3) ∩ (∆2 ∪ ∆4).
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Proof. It is obvious that

p(IJ) =
(
p(f1)J1, p(f2)J2

)
.

Let h be a squarefree monomial in S. Then h /∈ p(IJ) iff h /∈ p(f1)J1 and
h /∈ p(f2)J2. From this the statement immediately follows.

To compute the reduced homology of ∆p(IJ), we need to use the reduced

Mayer-Vietoris sequence.

Lemma 3.3 (see [St]). Let δ be a simplicial complex and δ1, δ2 subcomplexes of

δ. Then there is an exact sequence

· · · → H̃q(δ1 ∩ δ2) → H̃q(δ1) ⊕ H̃q(δ2) → H̃q(δ1 ∪ δ2) → H̃q−1(δ1 ∩ δ2) → · · ·

We shall prove the vanishing of some reduced homology groups. Let

d := a1 + a2 + b1 + b2 + · · · + bm − m − 2.

Lemma 3.4. H̃t(lk(∆1∪∆2)∩∆3
F ) = 0 and H̃t(lk(∆1∪∆2)∩∆4

F ) = 0 for t ≥ d + 1,
F ⊆ X.

Proof. We will only prove H̃t(lk(∆1∪∆2)∩∆3
F ) = 0. Let

J ′ :=
(
p(f1)p(f2),

p(f1g1)

p(f1)
, . . . ,

p(f1gm)

p(f1)

)
·

By [H-T, Theorem 3.4], we have

reg(J ′) ≤ (a1 + a2) + b1 + . . . + bm − m = d + 2.

Note that ∆J ′ = (∆1 ∪ ∆2) ∩ ∆3. From this and Proposition 2.2, we obtain the
result.

For each of i = 1, 2 let Xi be the set of variables appearing in

Mij :=
p(figj)

lcm(p(fi), p(gj))

for j = 1, 2, . . . ,m.

Lemma 3.5. Suppose that X1 ∪ X2 6= ∅. Then

H̃t(lk(∆1∪∆2)∩∆3∩∆4
F ) = 0

for t ≥ d, F ⊆ X.

Proof. Let ∆ := (∆1 ∪ ∆2) ∩ ∆3 ∩ ∆4. Let h be the squarefree monomial corre-
sponding to a face of ∆. Then h /∈ L := ((p(f1))∩ (p(f2)))∪ J1 ∪ J2 = ((p(f1))∪
J1 ∪ J2)∩ ((p(f2))∪ J1 ∪ J2). We may assume that h /∈ ((p(f1))∪ J1 ∪ J2). Hence

p(f1) - h and
p(f1gj)

p(f1)
- h for j = 1, 2, . . . ,m. Since p(f1),

p(f1g1)

p(f1)
, . . . ,

p(f1gm)

p(f1)
form a regular sequence, it follows that

deg h ≤ ]X − m − 1 = d + 1.
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Note that the dimension of the face corresponding to h is deg h−1. So dim(∆) ≤

d. Thus we only need to prove H̃d(∆) = 0 (i. e. F = ∅ and t = d) when
dim(∆) = d.

We will compute H̃d(∆) by the augmented oriented chain complex C̃•(∆) of ∆

over k, where C̃•(∆) is the chain complex of k-vector spaces with the differential
map δi (see [B-H, Chap. 5])

0 → Cd(∆)
δd−→ Cd−1(∆)

δd−1
−−−→ . . . → C1(∆)

δ1−→ C0(∆) → 0.

Fix the squarefree monomial h corresponding to a maximal face of ∆. Then
deg h = d + 1 and h /∈ L. Let

wij = gcd(p(fi), p(gj)) and hj =
p(gj)

w1jw2j
.

We have
p(f1gj)

p(f1)
= hjM1jw2j and

p(f2gj)

p(f2)
= hjM2jw1j .

Since h /∈ L, p(f1)p(f2) - h, hjM1jw2j - h and hjM2jw1j - h for all j. Let
T := {j| h ∈ (hj)} and ]T = t. We consider several cases:

(i) t = 0. Since deg h = d + 1 and p(f1)p(f2), h1, . . . , hm form a regular
sequence, all variables but one in each of p(f1)p(f2), h1, . . . , hm are contained in
h.

(ii) t ≥ 1. Then M1jw2j - h and M2jw1j - h for all j ∈ T . Note that M1jw2j

and M2jw1j do not have a common variable. So for each j ∈ T at least two
variables of M1jw2jM2jw1j are not contained in h. Note that hj for j /∈ T and
M1jw2jM2jw1j , j ∈ T form a regular sequence. Hence

d + 1 = deg h ≤ ]X − (2t + (m − t)) = d + 2 − t.

So t = 1. Assume that T = {r}. Then hj - h for each j 6= r, M1rw2r -
h and M2rw1r - h. Assume that M1r - h and M2r - h. Since p(f1)p(f2),
h1, . . . , hr−1,M1r,M2r, hr+1, . . . , hm form a regular sequence, we have

d + 1 = deg h ≤ ]X − (3 + (m − 1)) = d,

a contradiction. If M1r | h, then w2r - h. As above, all variables but one in
each of h1, . . . , hr−1, w2r,M2rw1r, hr+1, . . . , hm are contained in h. If M2r | h,
then w1r - h. Similarly, all variables but one in each of h1, . . . , hr−1, w1r,M1rw2r,
hr+1, . . . , hm are contained in h.

Let Yi be the set of variables appear in p(fi) and

Ω = {F ∈ ∆| ]F = d + 1}.

According to the above cases, we divide Ω into three disjoint subsets:

- Ω0 consists of subsets F such that: in each of the monomials p(f1)p(f2), h1,
. . . , hm there is only one variable in X\F or in each of h1, . . . , hr−1, w1r, w2r,
hr+1, . . . , hm there is only one variable in X\F for some r. Hence X1∪X2 ⊂
F .
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- Ω1 consists of subsets F such that: in each of the monomials w2r, M2r and
h1, . . . , hr−1, hr+1, . . . , hm there is only one variable in X \ F for some r.
Hence X1 ⊂ F,X2 6⊂ F, Y1 ⊂ F and Y2 6⊂ F for F ∈ Ω1.

- Ω2 consists of subsets F such that: in each of w1r, M1r and h1, . . . , hr−1,
hr+1, . . . , hm there is only one variable in X \ F for some r. Hence X2 ⊂
F,X1 6⊂ F, Y2 ⊂ F and Y1 6⊂ F for F ∈ Ω2.

Let

Z :=
∑

F∈Ω1
α∈k

αF +
∑

F∈Ω2
β∈k

βF +
∑

F∈Ω0
γ∈k

γF ∈ Ker(δd).

We distinguish two cases.

(1) X1 6= ∅ and X2 6= ∅. If F ∈ Ω1 then there exists u ∈ X1 ⊂ F and
v ∈ (X2−F ). Hence the face (F−u) appears in δd(αF ). By definition, v /∈ (F−u)
and Y1 ⊂ (F −u). Assume that there is a face G 6= F in Ω such that (F −u) ⊂ G.
If G ∈ Ω1 ∪ Ω0, then u ∈ G. Hence F = G, a contradiction. If G ∈ Ω2, then
Y1 ⊂ (F − u) ⊂ G, contrary to our assumption. So the face (F − u) is not
contained in another face of Ω. It implies α = 0. Next, if F ∈ Ω2 then we also
have β = 0. Similarly, if F ∈ Ω0 then X1 ∪X2 ⊂ F . It also implies γ = 0. Hence
Z = 0.

(2) We may assume that X1 6= ∅ and X2 = ∅. In this case Ω1 = ∅. Now, we
can proceed analogously to the proof of (1) to show that Z = 0.

Lemma 3.6. Suppose that X1 ∪ X2 6= ∅. Then

H̃t(lk(∆1∪∆3)∩(∆2∪∆4)F ) = 0

for t ≥ d + 1, F ⊆ X .

Proof. Applying Lemma 3.4, Lemma 3.5 and Lemma 3.3 to lk(∆1∪∆2)∩∆3
F and

lk(∆1∪∆2)∩∆4
F , we have

H̃t(lk(∆1∪∆2)∩(∆3∪∆4)F ) = 0

for t ≥ d + 1. As in the proof of Lemma 3.5, we get dim(∆3 ∪ ∆4) ≤ d + 1.

So H̃t(lk(∆3∪∆4)F ) = 0 for t ≥ d + 2. As in the proof of Lemma 3.4, we have

H̃t(lk(∆1∪∆2)F ) = 0 for t ≥ d + 2. Applying Lemma 3.3 to lk(∆1∪∆2)F and
lk(∆3∪∆4)F implies

H̃t(lk(∆1∪∆2∪∆3∪∆4)F ) = 0

for all t ≥ d + 2. Note that

reg(p(fi)Ji) = reg(Ji(−ai)) = ai + b1 + b2 + . . . + bm − m + 1.

Moreover,

∆(p(fi)Ji) = ∆(p(fi)) ∪ ∆Ji
.

On the other hand, reg(k[∆1∪∆3]) = a1+b1+b2+. . .+bm−m. By Proposition 2.2,
we get

H̃t(lk(∆1∪∆3)F ) = 0
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for t ≥ d + 1 ≥ a1 + b1 + b2 + . . . + bm − m. Similarly, H̃t(lk(∆2∪∆4)F ) = 0 for
t ≥ d + 1. Applying Lemma 3.3 again to lk(∆1∪∆3)F and lk(∆2∪∆4)F , we obtain
the statement.

Now we are ready to prove Main Theorem.

Proof of Main Theorem. If X1 ∪ X2 6= ∅, then by Lemma 3.6 we have

H̃t(lk(∆1∪∆3)∩(∆2∪∆4)F ) = 0

for t ≥ d + 1, F ⊆ X. By Lemma 3.2,

H̃t(lk∆p(IJ)
F ) = 0

for t ≥ d + 1, F ⊆ X. So the result follows from Proposition 2.2. If X1 ∪X2 = ∅,
then p(figj) = p(fi)p(gj). Hence

∆p(IJ) = ∆I ∪ ∆J .

It is clear that dim(∆I∩∆J) ≤ d−1. Hence H̃t(lk∆I∩∆J
F ) = 0 for t ≥ d, F ⊆ X.

Using again the Mayer-Vietoris sequence of reduced homology groups associated

with lk∆I
F and lk∆J

F , we obtain H̃t(lk∆p(IJ)
F ) = 0 for all t ≥ d+1 and F ⊆ X.

Hence the conclusion follows from Proposition 2.2.
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