THE SOLUTION OF ONE CLASS OF DUAL EQUATIONS INVOLVING HANKEL TRANSFORM

NGUYEN VAN NGOC

Abstract. The aim of the present work is to propose a method for investigating and solving one class of dual integral equations involving Hankel transfom.

1. INTRODUCTION

Let H_{μ} and $H'_{\mu}(\mu \ge -1/2)$ be the Zemanian spaces of test and generalized functions, respectively (see [8]). Denote by B_{μ} the Hankel integral transform defined on H^{\prime}_{μ} . It is known that this operator is an automorphism on H^{\prime}_{μ} with $B_{\mu}^{-1} = B_{\mu}$. For a suitable ordinary function $f(x)$ (for example, $f \in L_1(R_+),$ $R_+ = (0, \infty)$ the operator B_μ is defined by

$$
\hat{f}(t) := B_{\mu}[f](t) := \int_{0}^{\infty} \sqrt{x t} J_{\mu}(xt) f(x) dx, t \in R_{+},
$$

where $J_\mu(x)$ is the Bessel function of the first kind.

Let $J = (a, b)$ be a certain bounded interval in R_+ , $\overline{J} := [a, b]$ and m a nonnegative integer number. Consider the following dual integral equation

(1.1) $B_{\mu}[t^{-2m}\hat{u}(t)](x) = f(x), x \in \bar{J},$

(1.2)
$$
u(x) := B_{\mu}[\hat{u}](x) = 0, x \in R_+ \setminus \bar{J},
$$

where $f(x)$ is a given function, $\hat{u}(t)$ is an unknown regular generalized function in H'_{μ} . The function t^{-2m} is called the symbol of the dual equation (1.1)-(1.2).

We introduce the following definition.

Definition 1.1. Denote by H_{μ}^{-m} the class of functions $u(x)$ such that $u \in$ H'_{μ} , supp $u \subset J$, $t^{-m} B_{\mu}[u](t) \in L_2(R_+).$

It is clear that $H^0_\mu \equiv L_2(J)$. The unknown function $u(x) = B_\mu[\hat{u}](x)$ shall be sought in the class H^{-m}_{μ} . Note that the case $m = 0$ is trivial. Indeed, substituting in (1) \hat{u} by $B_{\mu}[u]$, where $u \in L_2(J)$, supp $u \in J$ we obtain

$$
(1.3) \t\t u(x) = f(x), \quad a \leq x \leq b.
$$

Received September 17, 2004.

In the sequel we shall consider the equation (1.1)-(1.2) only for $m \in N =$ $\{1, 2, \ldots\}$. Note that when $a > 0$, one can find examples of the equations (1.1)-(1.2) having an infinite number of solutions belonging to H_μ^{-m} if $m > \mu + 1$. Therefore, we shall make the following assumption

$$
(1.4) \t m \leqslant \mu + 1 \t if a > 0.
$$

Dual equations of the form $(1.1)-(1.2)$ were considered by many authors (see for example, [2, 3, 4, 6, 7]). Formal solutions of such equations have been given in [6] for $a = 0$ and in [2, 3] for $a > 0$. The validation of the case $a = 0$ may be found in [7]. The case for the symbol $t^{2m}A(t)(A(t) \neq 1)$ was considered in [4].

The aim of the present work is to propose a method for investigating and solving dual equation $(1.1)-(1.2)$. The method is based on the theory of generalized integral transformations [8] and fractional integrals of generalized functions [4].

2. Some auxiliary and integral operators

In the sequel we shall need the following differential operators [4]

$$
M_{\mu}^{m} = x^{-\mu - 1/2} \left(\frac{d}{dx} \frac{1}{x}\right)^{m} x^{m + \mu + 1/2} \varphi(x),
$$

$$
N_{\mu}^{m} = x^{m + \mu + 1/2} \left(\frac{1}{x} \frac{d}{dx}\right)^{-\mu - 1/2},
$$

where $m \in N$, $\mu \geqslant -1/2$.

Note that the operators M^1_μ, N^1_μ have been introduced in [8] and denoted there by M_{μ}, N_{μ} , respectively. By induction one gets the relations

(2.1)
$$
M_{\mu}^{m} = \prod_{j=0}^{m-1} M_{\mu+j}, \qquad N_{\mu}^{m} = \prod_{j=0}^{m-1} N_{\mu+m-j-1}.
$$

It is not difficult to show that

(2.2)
$$
M_{\mu}^{m}[x^{-\mu-m+1/2}P_{m-1}(x^{2})] = N_{\mu}^{m}[x^{\mu+1/2}P_{m-1}(x^{2})],
$$

where $P_{m-1}(x)$ is an arbitrary polynomial of degree $m-1$.

Using (2.1) and Lemma 5.3.3 in [8] one can prove that M_{μ}^{m} (respectively, N_{μ}^{m}) is a continuous mapping (an isomorphism) from $H_{\mu+m}$ into H_{μ} (from H_{μ}) onto $H_{\mu+m}$). These operators may be extended to generalized functions by the equations

(2.3)
$$
\langle M_{\mu}^{m} f, \varphi \rangle := \langle f, (-1)^{m} N_{\mu}^{m} \varphi \rangle, \quad \varphi \in H_{\mu}, f \in H'_{\mu+m},
$$

(2.4)
$$
\langle N_{\mu}^{m} f, \varphi \rangle := \langle f, (-1)^{m} M_{\mu}^{m} \varphi \rangle, \quad \varphi \in H_{\mu+m}, f \in H_{\mu}',
$$

where $\langle f, \varphi \rangle$ denotes a value of a generalized function f on a test function φ [4].

Let $D'(J)$ be the space of distributions on the interval J [8] and let $C_0^{\infty}(J)$ denote the set of infinitely differentiable functions with a support contained in J. For $f \in D'(J)$ the operators M_{μ}^{m} and N_{μ}^{m} are defined by (2.3) and (2.4) , respectively, where φ belongs the set $C_0^{\infty}(J)$. For the generalized operators M_{μ}^m, N_{μ}^m

the relations (2.2) are also valid. By means of these relations and Theorem 5.5.2 in [8] one can establish the following equalities

(2.5)
$$
B_{\mu}M_{\mu}^{m}[f](x) = t^{m}B_{\mu+m}[f](x), \quad f \in H'_{\mu+m},
$$

(2.6)
$$
N_{\mu}^{m} B_{\mu}[f](x) = B_{\mu+m}[(-t)^{m}f](x), \quad f \in H'_{\mu}.
$$

Let $t^{-m-\mu+1/2}f(t) \in L_1(J)$, $J = (a, b)$. Denote by $N_{\mu,J}^{-m}[f](x)$ the following fractional integral

$$
(2.7) \quad N_{\mu,J}^{-m}[f](x) := \frac{(-1)^m x^{\mu+1/2}}{2^{m-1} \Gamma(m)} \int_x^b f(t) t^{-m-\mu+1/2} (t^2 - x^2)^{m-1} dt, \quad x \in J,
$$

$$
N_{\mu,J}^{-0}[f] = f.
$$

where $m \in N$, $\Gamma(m)$ is the gamma-function. This operator has the properties:

(2.8)
$$
N_{\mu}^{m} N_{\mu,J}^{-m}[f](x) = f(x),
$$

(2.9)
$$
N_{\mu,J}^{-m} N_{\mu}^{m}[f](x) = (-1)^{m} f(x) + x^{\mu+1/2} F_{m-1}[f](x^{2}),
$$

where

(2.10)

$$
F_{m-1}[f](x^2) = \sum_{k=1}^m (-1)^{k-1} \left[\left(\frac{1}{x} \frac{d}{dx} \right)^{m-k} x^{-\mu-1/2} f(x) \right]_{x=b} \frac{(b^2 - x^2)^{m-k}}{2^{m-k} \Gamma(m-k+1)}.
$$

We introduce the following function class.

Definition 2.1. Denote by $L^m_\mu(a, b)$ the class of functions $f(x)$ such that $N^k_\mu[f](x) \in$ $C[a, b]$ $(k = 0, 1, \ldots, m - 1), N_{\mu}^{m}[f](x) \in L_2(a, b).$

In the sequel we shall need the following formula [1]

(2.11)
$$
\int_{0}^{\infty} J_{\mu}(xy)J_{\nu}(ty)y^{\nu-\mu+1}dy = \frac{x^{\mu}t^{-\nu}(t^{2}-x^{2})^{\nu-\mu-1}}{2^{\nu-\mu-1}\Gamma(\nu-\mu)}\vartheta(t-x),
$$

where $\text{Re}\nu > \text{Re}\mu > -1$, $\vartheta(x)$ is the Heaviside function.

3. Solution of the dual equation

Suppose that $u(x) \in H^{-m}_{\mu}(a, b), f(x) \in L^{m}_{\mu}(a, b)$. We find the function $u(x)$ in the form

(3.1)
$$
u(x) = M_{\mu}^{m} v(x), v(x) \in L_{2}(R_{+}) \subset H'_{\mu+m},
$$

where M_{μ}^{m} in general is taken in the sense of generalized functions.

Taking the Hankel transformation B_{μ} in (3.1), by virtue of (2.5), we have

(3.2)
$$
\hat{u}(t) = B_{\mu}[u](t) = t^{m} B_{\mu+m}[v](t).
$$

Substituting for $u(x)$ and $\hat{u}(t)$ from (3.1) and (3.2) in (1.2) and (1.1) respectively, we get

(3.3)
$$
B_{\mu}[t^{-m}B_{\mu+m}[v](t)](x) = f(x), \quad x \in [a, b],
$$

(3.4)
$$
M_{\mu}^{m}[v](x) = 0, \quad x \notin [a, b].
$$

Applying the operator N_{μ}^{m} to the equality (3.3), by virtue of (2.6) we have

(3.5)
$$
v(x) = (-1)^m N_{\mu}^m[f](x), \quad a < x < b.
$$

From (3.4) it follows

(3.6)
$$
v(x) = \begin{cases} \sum_{k=0}^{m-1} a_k x^{2k-m-\mu+1/2}, & 0 < x < a, \\ \sum_{k=0}^{m-1} b_k x^{2k-m-\mu+1/2}, & b < x < \infty, \end{cases}
$$

where a_k and b_k are arbitrary constants. If $a = 0$ then $a_k = 0$ $(k = 0, 1, \ldots, m-1)$. When $a > 0$, according to the condition (1.4) in order $v(x) \in L_2(0, a)$ it is necessary and sufficient that $a_k = 0$ $(k = 0, 1, \ldots, m - 1)$. Denote by m_0, m_1 the integer numbers defined by

(3.7)
$$
m_1 = \begin{cases} \min \left\{ m - 1, \frac{m + \mu - 1}{2} - 1 \right\}, & \text{if } \frac{m + \mu - 1}{2} \text{ is integer,} \\ \min \left\{ m - 1, \left[\frac{m + \mu - 1}{2} \right] \right\}, & \text{if } \frac{m + \mu - 1}{2} \text{ is not integer,} \end{cases}
$$

(3.8)
$$
m_0 = \begin{cases} \min\{m_1, \mu - 1\}, & \text{if } \mu \text{ is integer,} \\ \min\{m_1, [\mu]\}, & \text{if } \mu \text{ is not integer.} \end{cases}
$$

In addition, we assume that the function $v(x)$ possesses the property: $v(x) \in$ $L_2(b,\infty), x^{m-\mu-3/2}v(x) \in L_1(b,\infty)$. The set of such functions $v(x)$ is denoted by $V_{\mu}^{m}(R_{+})$. Thus, we have

(3.9)
$$
v(x) = \begin{cases} 0, & 0 < x < a, \\ (-1)^m N_{\mu}^m[f](x), & a < x < b, \\ \sum_{k=0}^{m_0} b_k x^{2k - m - \mu + 1/2}, & b < x < \infty. \end{cases}
$$

Taking into account (2.7) and (3.9) we can reduce the equation (3.3) to the form

(3.10)
$$
N_{\mu,J}^{-m}[v](x) + \frac{x^{\mu+1/2}}{2^{m-1}\Gamma(m)} \sum_{k=0}^{m_0} b_k J_{\mu}^{m,k}(x^2) = f(x), \quad a \in [a,b],
$$

where

(3.11)
$$
J_{\mu}^{m,k}(x^2) = \frac{\Gamma(m)}{2b^{2m+2\mu-2k}} \sum_{j=1}^m \frac{(-1)^j (b^2 - x^2)^{m-j} b^{2j}}{(-m - \mu + k + 1)_j \Gamma(m - j + 1)},
$$

$$
(c)_j = c(c+1)...(c+j-1).
$$

If $m_0 < 0$ then the sum on the left-hand side of (3.10) is replaced by zero. For determining b_k and conditions putted on the function $f(x)$, substitute for $v(x)$ from (3.5) in (3.10) . By virtue of (2.8) , (2.9) , after some transformations we get

(3.12)
$$
\sum_{k=0}^{m_0} b_k J_{\mu}^{m,k}(x^2) + (-1)^m 2^{m-1} \Gamma(m) F_{m-1}[f](x^2) = 0, \quad x \in [a, b],
$$

where $F_{m-1}[f](x)$ and $J_{\mu}^{m,k}(x^2)$ are defined by (2.10) and (3.11), respectively. In the case $m_0 < 0$ it follows from (3.12) that

(3.13)
$$
N_{\mu}[f]^{k}(b) = 0 \quad (k = 0, 1, ..., m - 1).
$$

If $m_0 \geq 0$ then from (3.12) it follows:

(3.14)
$$
\sum_{k=0}^{m_0} b_k \frac{b^{2k}}{(-m - \mu + k + 1)_j} = (-1)^m 2^j b^{m + \mu - j - 1/2} N_{\mu}^{m - j}[f](b)
$$

$$
(j = 1, 2, \ldots, m_0 + 1),
$$

(3.15)
$$
N_{\mu}^{m-j}[f](b) = 0 \quad (j = m_0 + 2, m_0 + 3, ..., m).
$$

Using the problem 336 in [5] one can show that the constants b_k are one-valued determined from the system (3.13).

Thus, we have proved

Theorem 3.1. Let $f(x) \in L^m_\mu(a, b)$ and conditions (1.4), (3.15) be fulfilled. Then the dual integral equation (1.1)-(1.2) has a unique solution $u(x) \in H^{-m}_{\mu}(a, b)$ defined by the formula (3.1) , where the function $v(x)$ is given by (3.9) . The constants b_k are determined by the system (3.14).

To obtain the structure of the function $u(x)$ we need the following lemma.

Lemma 3.2. Assume that the function $g(x) \in H_\lambda(x \in R_+)$ has ordinary "derivatives" $\{M_{\lambda-j}^j[g]\}(x)$ almost everywhere up to order k $(j = 0, 1, \ldots, k; \lambda - k >$ $-1/2$) inclusive, except possibly, for a point $x_0 > 0$. Denote by $\langle \{M_{\lambda-j}^j[g]\}\rangle_{x_0}$ the jump of $\{M_{\lambda-j}^j[g]\}(x)$ at the point x_0 :

$$
\langle \{M_{\lambda-j}^j[g]\}\rangle_{x_0} = \{M_{\lambda-j}^j[g]\}(x_0+0) - \{M_{\lambda-j}^j[g]\}(x_0-0).
$$

Then the following formula holds

(3.16)

$$
M_{\lambda-k}^k[g](x) = \{M_{\lambda-k}^k[g]\}(x) + \sum_{j=0}^{k-1} \langle \{M_{\lambda-j}^j[g]\}\rangle_{x_0} M_{\lambda-k}^{k-j-1} \delta(x - x_0), \quad x \in R_+,
$$

where $\delta(x-x_0)$ is the Dirac delta function, $M^j_{\lambda-j}$ is taken in the sense of generalized functions.

Proof. First we prove (3.16) for the case $k = 1$. For every $\varphi(x) \in H_{\lambda-1}(\lambda > 1/2)$ we have

$$
\langle M_{\lambda-1}[g], \varphi \rangle = -\langle g, N_{\lambda-1}[g] \rangle
$$

= $-\lim_{\varepsilon \to 0} \Big[\int_{0}^{x_0 - \varepsilon} g(x) x^{\lambda - 1/2} \Big(\frac{d}{dx} x^{-\lambda + 1/2} \varphi(x) \Big) dx$
(3.17) $+ \int_{x_0 + \varepsilon}^{\infty} g(x) x^{\lambda - 1/2} \Big(\frac{d}{dx} x^{-\lambda + 1/2} \varphi(x) \Big) dx \Big].$

Integrating by parts, taking into account that $\varphi(x) = 0(x^{\lambda-1/2})$ $(x \to +0)$, $\varphi(x) = 0(x^{-\infty})$ $(x \to \infty)$, passing to the limit $(\varepsilon \to +0)$ in (3.17), we have

$$
\langle M_{\lambda-1}[g], \varphi \rangle = \langle \{M_{\lambda-1}[g]\}, \varphi \rangle + \langle g \rangle_{x_0} \delta(x-x_0).
$$

From here it follows:

(3.18)
$$
M_{\lambda-1}[g](x) = \{M_{\lambda-1}[g]\}(x) + \langle g \rangle_{x_0} \delta(x - x_0).
$$

Now we apply $M_{\lambda-2}$ to (3.18) and use this formula again. Taking (2.1) into account we obtain the formula (3.16) for $k = 2$. Continuing this process, step by step for $M_{\lambda-3}, \ldots, M_{\lambda-k}$ we arrive finally to the formula (3.16). The proof of Lemma 3.2 is complete. \Box

The following theorem gives the structure of the solution of the dual equation $(1.1)-(1.2).$

Theorem 3.3. Let the function $v(x)$ defined by (3.9) have ordinary "derivatives" ${M}^j_{\mu+m-j}[v](x)$ almost everywhere on R_+ up to order m inclusive, except possibly for the points $x = a$ and $x = b$, and let $\mu > -1/2$. Then the function $u(x)$ defined by (3.1) may be represented in the form

(3.19)
$$
u(x) = F(x) + \sum_{j=0}^{m-1} [\alpha_j M_{\mu}^{m-j-1} \delta(x-a) + \beta_j M_{\mu}^{m-j-1} \delta(x-b)],
$$

where

(3.20)
$$
F(x) = \begin{cases} (-1)^m \{M_{\mu}^m N_{\mu}^m[f]\}(x), & x \in (a, b), \\ 0, & x \in R_+ \setminus [a, b], \end{cases}
$$

(3.21)
$$
\alpha_j = (-1)^m \{ M_{\mu+m-j}^j N_{\mu}^m[f] \} (a+0),
$$

(3.22)

$$
\beta_j = \sum_{k=0}^{m_0} b_k \frac{2^j \Gamma(k+1)}{\Gamma(k+1-j)} b^{-\mu-m-j+2k+1/2} - (-1)^m \{M_{\mu+m-j}^j N_{\mu}^m[f]\}(b-0).
$$

Proof. Replacing in (3.16) $k = m$, $\lambda = \mu + m$, $q(x) = v(x)$, where the function $v(x)$ is defined by the formula (3.9) and taking into account that

$$
M^j_{\mu+m-j}[x^{-\mu-m+2k+1/2}] = \frac{2^j \Gamma(k+1)}{\Gamma(k+1-j)} x^{-\mu-m-j+2k+1/2}
$$

we obtain (3.19), where $F(x)$, α_j and β_j are defined by (3.20), (3.21) and (3.22), respectively. The proof of Theorem 3.3 is complete. \Box

Remark 3.4. If $a = 0$ then in (3.19) it is necessary to put $\alpha_i = 0$ (j = $0, 1, \ldots, m - 1$. If in (3.22) $j \geq k + 1$, there are absent members coresponding to the set (j, k) by virtue of $\Gamma(-n) = \infty$ $(n = 0, 1, \dots)$.

We now consider some examples.

Example 1. Consider the dual equation

(3.23)
$$
B_0[t^{-2}\hat{u}(t)](x) = \sqrt{x}(b^2 - x^2) \quad (0 < a \leq x \leq b),
$$

(3.24)
$$
u(x) := B_0[\hat{u}(t)](x) = 0 \quad (0 < x < a, b < x < \infty).
$$

In this case we have $\mu = 0, m = 1$. Obviously $m_0 = -1$ and conditions (1.4), (3.15) are fulfilled. According to formula (3.19) we have

(3.25)
$$
v(x) = x^{3/2} [\theta(x-a) - \theta(x-b)], \quad 0 < x < \infty,
$$

where $\theta(x)$ is the Heaviside step function. According to (3.19)-(3.22) and (3.25) the function $u(x)$ has the form

(3.26)

$$
u(x) = 4x^{1/2}[\theta(x-a) - \theta(x-b)] + 2a^{3/2}\delta(x-a) - 2b^{3/2}\delta(x-b), \quad 0 < x < \infty.
$$

Using the formulas

$$
B_0[\delta(x-c)](t) = \sqrt{ct}J_0(ct)(c>0)
$$
 (see [7])

$$
2nz^{-1}J_n(z) - J_{n-1}(z) = J_{n+1}(z)
$$
 (see [1])

we can show that

(3.27)
$$
\hat{u}(t) = B_0[u](t) = 2\sqrt{t}[b^2 J_2(bt) - a^2 J_2(at)].
$$

Using the following propreties of Bessel functions:

$$
J\mu(x) = 0(x^{\mu}) (x \to +0), \quad J_{\mu}(x) = 0(x^{1/2}) (x \to \infty)
$$

one can show that the function $u(x)$ defined by (3.26) belongs to the class $H_0^{-1}(a, b)$. Besides, by means of (2.11) it is not difficult to get the following formula

$$
B_0[t^{-2}\hat{u}(t)](x) = \sqrt{x}[(b^2 - x^2)\theta(b - x) - (a^2 - x^2)\theta(a - x)],
$$

where $\hat{u}(t)$ is defined by (3.27). This means that equations (3.23), (3.24) are fulfilled.

Example 2. Consider the homogeneous dual equation

(3.28)
$$
B_0[t^{-4}\hat{u}(t)](x) = 0, \quad (0 < a \leq x \leq b),
$$

(3.29)
$$
u(x) := B_0[\hat{u}(t)](x) = 0, \quad (0 < x < a, \ b < x < \infty).
$$

In this case the condition (1.4) is not fulfilled and we have $m_0 = -1$ (see (3.7), (3.8)). Putting

$$
u(x) = M_0^2[v](x), \quad \hat{u}(t) = t^2 B_2[v](t),
$$

where $v(x) \in L_2(R_+), x^{1/2}v(x) \in L_1(b, \infty)$ into (3.28), (3.29) we get

$$
v(x) = \begin{cases} \alpha x^{1/2}, & 0 \leqslant x \leqslant a, \\ 0, & x > a. \end{cases}
$$

Here α is an arbitrary constant. Therefore we have

$$
u(x) = -\frac{5\alpha}{2\sqrt{a}}\delta(x-a) - \alpha\sqrt{a}\delta'(x-a),
$$

$$
B_0[t^{-4}\hat{u}(t)](x) = \alpha\left(\frac{a^2 - x^2}{2} - x^2\ln\frac{a}{x}\right)\theta(a-x), \quad x > 0.
$$

Thus, the homogeneous dual equation (3.28)-(3.29) has an infinite number of solutions in the class $H_0^{-2}(a, b)$.

REFERENCES

- [1] H. Bateman and A. Erdelyi, Higher transcendental functions, Volume 2, Nauka, Moscow, 1966 (Russian translat.).
- [2] H. M. Borodachev, On one class of solutions of triple integral equations, PMM 40 (1976), 655-661.
- [3] J. C. Cooke, The solution of triple integral equations in operational form, Quart. J. Mech. and App. Math. 18 (1965), 57-60.
- [4] Nguyen Van Ngoc, The solution of a class of dual integral equations involving Hankel transform, Acta Math. Vietnam. 18 (1993), 251-263.
- [5] I. V. Proskuriakov, Problems of linear algebra, Nauka, Moscow, 1967 (in Russian).
- [6] I. N. Sneddon, Dual equations in elasticity, Proc. of Inter. Symposium in Tbilisi 1 (1963), 76-94.
- [7] J. R. Walton, A distributional approach to dual integral equations of Tichmarsh type, SIAM J. Math. Anal. 6 (1975), 628-643.
- [8] A. H. Zemanian, Generalized integral transformations, Nauka, Moscow, 1974 (Russian translat.).

HANOI INSTITUTE OF MATHEMATICS 18 HOANG QUOC VIET 10307, Hanoi, Vietnam

E-mail address: nvngoc@math.ac.vn