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SUFFICIENT CONDITIONS FOR STRONG STABILITY OF

NONLINEAR TIME-VARYING CONTROL SYSTEMS

WITH STATE DELAY

NGUYEN MANH LINH, VU NGOC PHAT AND TA DUY PHUONG

Abstract. This paper deals with a strong stability problem of a class of
nonlinear time-varying control systems with state delays. Under appropriate
growth conditions on the nonlinear perturbation, new sufficient conditions for
the strong stabilizability are established based on the global null-controllability
of the nominal linear system. These conditions are presented in terms of the
solution of a standard Riccati differential equation. A constructive procedure
for finding feedback stabilizing controls is also given.

1. Introduction

Consider a nonlinear time-varying control system with state delays of the form

ẋ(t) = f(t, x(t), x(t − h), u(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],(1)

where h > 0, x(t) ∈ X- the state, u(t) ∈ U - the control,

f(t, x, y, u) : [0,∞) × X × X × U → X,

and φ(t) : [−h, 0] → X- a given function.

The topic of Lyapunov stability of control systems described by a system of
differential equations is an interesting research area in the past decades. An
integral part of the stability analysis of differential equations is the existence of
inherent time delays. Time delays are frequently encountered in many physical
and chemical processes as well as in the models of hereditary systems, Lotka-
Volterra systems, control of the growth of global economy, control of epidemics,
etc. Therefore, stability problems of time-delay control systems have been the
subject of numerous investigations, see; e.g. [1, 6, 16, 24, 28, 31] and references
therein. The standard stability problem is to find a control function u(t) =
h(x(t)) in order to keep the zero solution of the closed-loop system

ẋ(t) = f(t, x(t), x(t − h), h(x(t)))
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exponentially stable in the Lyapunov sense [13, 31], i.e., the solution x(t, φ) of
the closed-loop system satisfies the condition

∃N > 0, δ > 0 : ‖x(t, φ)‖ ≤ Ne−δt‖φ‖, ∀t ≥ 0,

where

‖φ‖ = sup
s∈[−h,0]

‖φ(s)‖.

In this case one says that the system is stabilizable by the feedback control
u(t) = h(x(t)) and this control is called a stabilizing feedback control of the sys-
tem. The positive number δ > 0 depending on the stabilizing control is commonly
called a Lyapunov stability exponent. In the literature on control theory of dy-
namical systems the stabilizability is one of the important qualitative properties
and the investigation of the stabilizability has attracted the attention of many
researchers, see; e.g. [1, 7, 19, 20, 23, 26, 32] and references therein. In practice,
various stabilizability concepts have been defined to improve the efficiency of the
stability of control systems. One of the extended stability properties of control
systems is the concept of the strong (or complete) stabilizability, originally in-
troduced by Wonham [29], which plays an important role in many mechanical
and control engineering problems [1, 30, 32]. This property relates to a strong
exponential stability of the control system, namely, control system (1) is strongly
stabilizable if for every given number δ > 0, there exists a feedback control func-
tion u(t) = h(x(t)) such that the solution x(t, φ) of the closed-loop system satisfies
the condition

∃N > 0 : ‖x(t, φ)‖ ≤ Ne−δt‖φ‖, ∀t ≥ 0.(2)

This means that for any given positive number δ > 0, the system zero-input
response of the closed-loop system decays faster than e−δt. In other words, for
any given in advance Lyapunov stability exponent δ > 0, the system can be
δ−exponentially stabilizable. Such definition may arise because of controlling of
the speed of the real models in many mechanical and physical control systems
[1, 6, 30, 32]. First results on the strong stabilizability of linear time-invariant
control systems in finite-dimensional spaces can be found in [29, 30], where by
studying the spectrum of the system matrices or by solving a modified algebraic
Riccati equation, it was proved that the global-null controllability [10] implies the
strong stabilizability. Further extensions on the relationship between the strong
stabilizability and controllability of infinite-dimensional time-invariant control
systems are given in [15, 21, 27]. However, the strong stabilizability and control
design problems for time-varying control systems have not been examined fully
in the literature, which are more complicated and given results are lacking. The
difficulties increase to the same extent as passing from undelayed to delayed
time-varying control systems as well as from linear to nonlinear time-varying
delay systems.
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The aim of this paper is to study the strong stabilizability problem for the
following time-varying control delay system

ẋ(t) = A(t)x(t) + A1(t)x(t − h) + B(t)u(t)

+ f(t, x(t), x(t − h), u(t)), t ≥ 0,

x(t) = φ(t), t ∈ [−h, 0],(3)

where A(t), A1(t) : X → X, B(t) : U → X-are linear matrix/operator functions
and the given nonlinear perturbation term f(t, x, y, u) : [0,∞)×X ×X ×U → X
could result from errors in modelling the general linear system (1), adding pa-
rameters, or uncertainties and disturbances which exist in any realistic systems.
A common approach is to treat the stability of the nominal linear control sys-
tem. Then, when the nonlinearities satisfy some appropriate growth conditions,
one can use the Lyapunov direct method to design a stabilizing feedback con-
trol. Based on the global null-controllability assumption of the nominal linear
time-varying control system, sufficient conditions for the strong stabilizability are
established by solving a standard Riccati differential equation. These conditions
depending on the size of the delay do not involve any spectrum of the evolution
operator/matrix, and hence are easy to be verified and constructed.

For a systematic exposition of the results, we start with the case of finite-
dimensional control systems. Then, the results are directed to infinite-dimensional
control systems by extending the relationship between the global null-controllability
and the existence of the solution of a Riccati operator equation. A constructive
algorithm to find feedback stabilizing controls via the controllability and the so-
lution of certain Riccati equations is also given. The stability conditions obtained
in this paper are even new in the context of linear time-varying control systems,
and they can be considered as further extensions of [9, 15, 22, 27, 29] to nonlinear
and time-delayed systems.

The organization of this paper is as follows. Section 2 gives sufficient conditions
for the strong stabilizability of system (3) in finite-dimensional spaces. The result
is extended to infinite-dimensional control systems in Hilbert spaces in Section 3.
A step-by-step procedure for constructing feedback stabilizing controls as well as
illustrating examples are also given. Finally, conclusions are made in Section 4.

Notation. Standard notations are adapted throughout this paper. R+ denotes
the set of all real non-negative numbers; Rn denotes n finite-dimensional Euclid-
ean space, with the Euclidean norm ‖.‖ and the scalar product of two vectors
xT y; T denotes the transpose of the vector/matrix; Rn×m denotes the set of all
(n × m)-matrices; A matrix A is symmetric if A = AT ;

A matrix A is called non-negative definite (A ≥ 0) if xT Ax ≥ 0, for all x ∈
Rn;A is positive definite (A > 0) if xT Ax > 0 ∀x 6= 0; M(Rn

+) denotes the set
of all symmetric non-negative definite matrix functions in Rn×n continuous in
t ∈ R+;

Let X,U denote infinite-dimensional real Hilbert spaces with inner product
〈., .〉; L(X) (respectively, L(U,X)) denotes the Banach space of all linear bounded
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operators mapping X into X (respectively, U into X); L2([0, t],X) denotes the set
of all L2-integrable and X-valued functions on [0, t]; C([0, t],X) denotes the set
of all X−valued continuous function on [0, t]; D(A) and A∗ denotes the domain
and the adjoint of the operator A, respectively; clM denotes the closure of a set
M ; I denotes the identity operator;

An operator Q ∈ L(X) is called non-negative definite (Q ≥ 0) if 〈Qx, x〉 ≥ 0,
for all x ∈ X; Q ∈ L(X) is called self-adjoint if Q = Q∗; LO([0,+∞),X+)
denotes the set of all linear bounded set-adjoint non-negative definite operator-
valued functions in X continuous in t ∈ [0,+∞).

Sometimes, the scalar product of two vectors x, y will be used by 〈x, y〉 instead
of xT y. Furthermore, for the sake of brevity, we will omit the arguments of
matrix/operator functions, if it does not cause any confusion.

2. Finite-dimensional systems

In this section we consider the control delay system (3) in finite-dimensional
spaces: X = Rn, U = Rm, n ≥ m, A(t) ∈ Rn×n, A1(t) ∈ Rn×n, B(t) ∈ Rn×m,
φ(s) ∈ C([−h, 0], Rn). Throughout this section we consider the class of admissible
controls u(t) ∈ L2([0, T ], Rm) for every T > 0. Furthermore, to guarantee the
existence of the solution of the control system, the following conditions will be
made throughout this section:

A.1. A(.)x, A1(.)y, B(.)u, f(., x, y, u) are continuous functions on R+ for all
x ∈ Rn, y ∈ Rn, u ∈ Rm.

A.2. There are non-negative continuous functions a(t), a1(t), b(t) : R+ → R+

such that

‖f(t, x, y, u)‖ ≤ a(t)‖x‖ + a1(t)‖y‖ + b(t)‖u‖, ∀(t, x, y, u) ∈ R+ × X × X × U.

Definition 2.1. Let δ > 0 be a positive number. Control system (3) is said to
be δ− stabilizable if there is a feedback control u = h(x) such that the solution
of the closed-loop system satisfies the condition (2).

Definition 2.2. Control system (3) is said to be strongly stabilizable if it is
δ−stabilizable for every δ > 0.

In order to study the strong stabilizability problem, it is important to intro-
duce the global null-controllability definition given by Kalman [10]. Consider the
nominal linear time-varying control system [A(t), B(t)] of system (3):

ẋ(t) = A(t)x(t) + B(t)u(t), t ∈ R+.(4)

Definition 2.3. Linear control system (4) is said to be globally null-controllable
(GNC) in finite time if for every state x ∈ Rn, there exist a finite time T > 0 and
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an admissible control u(t) ∈ L2([0, T ], Rm) such that

U(T, 0)x +

T
∫

0

U(T, s)B(s)u(s)ds = 0,

where U(t, s) is the fundamental matrix of the linear system ẋ(t) = A(t)x(t).

The following well-known controllability criteria will be used later.

Proposition 2.1. [1] Linear time-varying control system (4) is GNC in finite
time if and only if one of the following conditions holds:

(i) ∃T > 0 : The matrix
∫ T

0 U(T, s)B(s)BT (s)UT (T, s)ds is positive definite,

(ii) ∃t0 > 0 : rank [M0(t0),M1(t0), . . . ,Mn−1(t0)] = n, where

M0(t) = B(t)

Mk+1(t) = −A(t)Mk(t) +
d

dt
Mk(t), k = 0, 1, 2, ..., n − 1,

and A(t), B(t) are assumed to be analytical functions on [0,∞).

In the sequel, the solution to the stabilizability problem involves a Riccati
differential equation (RDE) of the form

Ṗ (t) + AT (t)P (t) + P (t)A(t) − P (t)B(t)BT (t)P (t) + Q(t) = 0, P (0) = P0,

(5)

where P (t) is an unknown matrix function. Before proceeding to the main result,
a sufficient condition for the existence of non-negative positive solution of the
RDE (5) is provided in the following proposition.

Proposition 2.2. [10] Assume that the linear control system [A(t), B(t)] is GNC.
Then for every no-negative positive definite bounded function Q(t) > 0 and for
every initial matrix P0 > 0, the RDE (5) has a solution P (t) ∈ M(Rn

+), which is
a bounded function on [0,∞).

For every δ > 0, we denote Ã(t) = A(t) + δI, and consider the following RDE

Ṗ (t) + ÃT (t)P (t) + P (t)Ã(t) − P (t)B(t)BT (t)P (t) + I = 0.(6)

Let us set

b = sup
t∈R+

b(t), B = sup
t∈R+

‖B(t)‖,

p = sup
t∈R+

‖P (t)‖, a1 = sup
t∈R+

a1(t), A1 = sup
t∈R+

‖A1(t)‖.

The following theorem gives a sufficient condition for δ−stabilizability of the
nonlinear control delay system (3).
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Theorem 2.1. Assume that the conditions A.1, A.2 hold and the linear control
system [A(t), B(t)] is GNC in finite time. Nonlinear control delay system (3) is
δ-stabilizable if

0 < b <
1

2Bp2
,(7)

a1 + A1 <

√

1 − 2p2bB

2peδh
,(8)

sup
t∈R+

a(t) <
1

4p
−

1

2
pbB − p(a1 + A1)

2,(9)

and the stabilizing feedback control is given by

u(t) = −
1

2
BT (t)P (t)x(t),(10)

where P (t) ∈ M(Rn
+) is the solution of the RDE (6) with any initial condition

P0 ≥ 0.

Proof. Let us set y(t) = eδtx(t). The nonlinear control system (3) is transformed
into the following system

ẏ(t) = Ã(t)y(t) + Ã1(t)y(t − h) + B̃(t)u(t) + f̃(t, y(t), y(t − h), u(t)), t ∈ R+,

(11)

y(t) = φ̃(t) = eδtφ(t), ∀t ∈ [−h, 0],

where

Ã1(t) = eδhA1(t), B̃(t) = eδtB(t),

f̃(t, y(t), y(t − h), u(t)) = eδtf(t, e−δty(t), e−δ(t−h)y(t − h), u(t)).

By the assumption that the linear control system [A(t), B(t)] is GNC, it is to

verify that the linear control system [Ã(t), B(t)] is also GNC. Indeed, we first
note that the fundamental matrix UÃ(t, s) of linear differential equation ẋ(t) =

Ã(t)x(t) is given by

UÃ(t, s) = eδ(t−s)UA(t, s),

where UA(t, s) is the fundamental matrix of the former system ẋ(t) = A(t)x(t).
Hence, from the GNC of the system [A(t), B(t)] it follows, by Definition 2.3,
that for every x ∈ Rm, there exist a finite time T > 0 and admissible control
u(t) ∈ L2([0, T ), Rm) such that

UA(T, 0)x +

T
∫

0

UA(T, s)B(s)u(s)ds = 0.
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Multiplying both sides of the above equation with eδT > 0 we obtain that

eδT UA(T, 0)x +

T
∫

0

eδ(T−s)UA(T, s)B(s)eδsu(s)ds

= UÃ(T, 0)x +

T
∫

0

UÃ(T, s)B(s)ũ(s)ds = 0,

which implies that the system [Ã(t), B(t)] is GNC in the time T > 0 with the
admissible control ũ(t) = eδtu(t). Therefore, by Proposition 2.2., the RDE (6)
with any initial condition P0 > 0 has a bounded solution P (t) ∈ M(Rn

+). Let

p = sup
t∈R+

‖P (t)‖ < +∞.

Note that RDE (6) cannot have the zero solution. Then we have p > 0. Let us
consider a Lyapunov-like function for the closed-loop system of the system (11):

V (t, yt) = yT (t)P (t)y(t) +
1

2

t
∫

t−h

‖y(s)‖2ds.(12)

Observe that

‖f̃(t, y(t), y(t − h), u(t))‖ = eδt‖f(t, e−δty(t), e−δ(t−h)y(t − h), u(t))‖

6 eδt[a(t)e−δt‖y(t)‖ + a1(t)e
−δ(t−h)‖y(t − h)‖

+ b(t)‖u(t)‖]

= a(t)‖y(t)‖ + a1(t)e
δh)‖y(t − h)‖ + b(t)eδt‖u(t)‖.

Taking the feedback control (10):

u(t) = −
1

2
BT (t)P (t)x(t) = −

1

2
e−2δtB̃T (t)P (t)y(t),

the derivative of the Lyapunov function V (t, yt) along the solution y(t) is defined
as

V̇ (t, yt) = 〈Ṗ (t)y(t), y(t)〉 + 2〈P (t)ẏ(t), y(t)〉 +
1

2
[‖y(t)‖2 − ‖y(t − h)‖2]

= 〈[−ÃT P − PÃ + e−2δtPB̃B̃TP − I]y, y〉

+ 2〈P [Ãy + Ã1y(t − h) + B̃u + f̃(.)], y〉 +
1

2
[‖y(t)‖2 − ‖y(t − h)‖2]
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= −〈Py, Ãy〉 − 〈PÃy, y〉 + e−2δt〈PB̃B̃TPy, y〉 − 〈Iy, y〉 + 2〈PÃy, y〉

+ 2〈PB̃u, y〉 + 2〈PÃ1y(t − h), y〉 + 2〈P f̃(.), y〉 +
1

2
[‖y(t)‖2 − ‖y(t − h)‖2]

= −〈Py, Ãy〉 − 〈PÃy, y〉 + e−2δt〈PB̃B̃TPy, y〉 − 〈Iy, y〉 + 2〈PÃy, y〉

+ 2〈PB̃[−
1

2
e−2δtB̃TPy], y〉 + 2〈PÃ1y(t − h), y〉 + 2〈P f̃(.), y〉

+
1

2
‖y(t)‖2 −

1

2
‖y(t − h)‖2

= −〈Py, Ãy〉 − 〈PÃy, y〉 + e−2δt〈PB̃B̃TPy, y〉 − 〈Iy, y〉 + 2〈PÃy, y〉

− e−2δt〈PB̃B̃TPy, y〉 + 2〈PÃ1y(t − h), y〉 + 2〈P f̃(.), y〉

+
1

2
[‖y(t)‖2 − ‖y(t − h)‖2].

Since P (t) is symmetric:

〈Py, Ãy〉 = 〈y, P Ãy〉,

we have

V̇ (t, yt) = −〈Iy, y〉 + 2〈PÃ1y(t − h), y〉 + 2〈P f̃(.), y〉

+
1

2
‖y(t)‖2 −

1

2
‖y(t − h)‖2

= −‖y(t)‖2 + 2〈PÃ1y(t − h), y〉 + 2〈P (t)f̃ (t, y(t), y(t − h)), u(t))〉

+
1

2
[‖y(t)‖2 − ‖y(t − h)‖2].

On the other hand,

‖Ã1(t)‖ 6 A1e
δh,

2〈PÃ1y(t − h), y〉 6 2pA1e
δh‖y(t − h)‖‖y(t)‖,

2〈P (t)f̃(t, y(t), y(t − h), u(t)), y(t)〉 6 2p‖f̃(t, y(t), y(t − h), u(t))‖‖y(t)‖.

Therefore

V̇ (t, yt) 6 −
1

2
‖y(t)‖2 + 2pA1e

δh‖y(t − h)‖‖y(t)‖

+ 2p‖f̃(t, y(t), y(t − h), u(t))‖‖y(t)‖

6 −
1

2
‖y(t − h)‖2 −

1

2
‖y(t)‖2

+ 2pA1e
δh‖y(t − h)‖‖y(t)‖ −

1

2
‖y(t − h)‖2

+ 2p[a(t)‖y(t)‖ + a1(t)e
δh‖y(t − h)‖ + eδtb(t)‖u(t)‖]‖y(t)‖
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6 −
1

2
‖y(t)‖2 + 2pA1e

δh‖y(t − h)‖‖y(t)‖ −
1

2
‖y(t − h)‖2

+ 2pa(t)‖y(t)‖2 + 2pa1e
δh‖y(t − h)‖‖y(t)‖ + 2pbeδt‖u(t)‖‖y(t)‖,

6

[

−
1

2
+ 2pa(t) + p2Bb

]

‖y(t)‖2 + 2p(a1 + A1)e
δh‖y(t − h)‖‖y(t)‖

−
1

2
‖y(t − h)‖2.

By completing the square, we obtain that

V̇ (t, yt) 6

[

−
1

2
+ 2pa(t) + p2Bb + 2p2(A1 + a1)

2e2δh
]

‖y(t)‖2.

Taking the conditions (7), (8), (9) into account, there is a number γ > 0 such
that

V̇ (t, yt) 6 −γ‖y(t)‖2, ∀t ∈ R+.(13)

Integrating both side of (12) from 0 to t we have

〈P (t)y(t), y(t)〉 +
1

2

t
∫

t−h

‖y(s)‖2ds − 〈P (0)y(0), y(0)〉 −
1

2

0
∫

−h

‖y(s)‖2ds

6 − γ

t
∫

0

‖y(s)‖2ds,

which implies

t
∫

0

‖y(s)‖2ds 6 −
1

γ
〈P (t)y(t), y(t)〉 −

1

2γ

t
∫

t−h

‖y(s)‖2ds

+
1

γ
〈P (0)y(0), y(0)〉 +

1

2γ

0
∫

−h

‖y(s)‖2ds

6
1

γ
〈P (0)y(0), y(0)〉 +

1

2γ

0
∫

−h

‖y(s)‖2ds.

Taking P (0) = I, and since y(s) = eδsx(s) = eδsφ(s) for all t ∈ [−h, 0] we have

‖y(s)‖ ≤ eδs‖φ(s)‖ 6 eδs sup
s∈[−h,0]

‖φ(s)‖ := M.

Therefore,
t
∫

0

‖y(s)‖2ds 6 β +
1

2γ
hM2,
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where β =
1

γ
〈y(0), y(0)〉. Letting t → ∞ gives

∞
∫

0

‖y(s)‖2ds < +∞,

which implies that the solution y(t, φ̃) of the system (11) belongs to L2([0,+∞), Rn)

and hence there is a number N > 0 such that ‖y(t)‖ 6 N‖φ̃‖, or

‖x(t, φ)‖ 6 Ne−δt‖φ‖.

The proof of the theorem is completed.

Note that if A1(t) = 0, f(t, x, y, u) = 0, i.e., a(t) = a1(t) = b(t) = 0, the
conditions (7)-(9) automatically hold and then Theorem 2.1 can be applied to
the linear control system [A(t), B(t)] in finite-dimensional spaces as follows.

Corollary 2.1. The finite-dimensional linear control system [A(t), B(t)] is strongly
stabilizable if it is GNC in finite time.

Remark 2.1. Corollary 2.1 extends a result of [29] to time-varying case and it
improves a result of [9], where the controllability assumption was assumed to be
more strict: the uniform global controllability.

From the proof of Theorem 2.1, the following procedure of finding stabilizing
feedback control can be applied:

Step 1. Verify the GNC of linear control system [A(t), B(t)] by Proposition 2.1.

Step 2. For given δ > 0, find the solution P (t) ∈ M(Rn
+) of RDE (6).

Step 3. Compute the numbers p, b,B,A1, a1 and check the conditions (7)-(9).

Step 4. The stabilizing feedback control u(t) is given by (10).

Example 2.1. Consider the nonlinear control delay system (3) in R2, where

h =
1

8
, δ = 2 and

A(t) =







1

20
e−4t sin2 t − 5e4t 0

0
1

20
e−4t cos2 t − 5e4t






,

A1(t) =

(

e−
1

2
t sin t 0

0 e−
1

2
t cos t

)

, B(t) =

(

sin t 0
0 cos t

)

,

f(t, x(t), x(t − h), u(t)) = x(t) sin2 t + e−
1

2
tx(t − h) + e−

9

2
tu(t), ∀t > 0.

We have

a(t) = sin2 t, a1(t) = e−
1

2
t, b(t) = e−

9

2
t.
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We can easily verify the GNC of the linear control system [A(t), B(t)] by Propo-
sition 2.1 (ii), where

M0(t) = B(t) =

(

sin t 0
0 cos t

)

,

M1(t) =







−
[ 1

20
e−4t sin2 t − 5e4t

]

sin t + cos t 0

0 −
[ 1

20
e−4t cos2 t − 5e4t

]

cos t − sin t






,

and hence, rank [M0(t2),M1(t2)] = 2, with t0 =
π

2
. On the other hand, for δ = 2,

and for the defined matrices Ã(t), B(t), upon some computations we can find
that the solution P (t) of the RDE (6) is given by

P (t) =







1

10
e−4t 0

0
1

10
e−4t






.

Thus, computing the numbers b,B, p, a1, A1, we verify the conditions (7)-(9). The
system is then 2-stabilizable with the feedback control

u(t) = −
1

2







1

10
e−4t sin t 0

0
1

10
e−4t cos t






.

3. Infinite-dimensional systems

We now consider the system (3) in infinite-dimensional spaces: x ∈ X, u ∈ U ;
X,U -are real Hilbert spaces, for every t ∈ R+, A(t) : X → X is a linear operator,
A1(t) ∈ L(X), B(t) ∈ L(U,X), f(t, x, y, u) : R+ ×X ×X ×U → X. Throughout
this section we consider the class of admissible controls u(t) ∈ L2([0, T ], U) for
every T > 0. As in [2, 7], for guarantying the existence of the solution of infinite-
dimensional control system (3), throughout this section we assume that

B.1. The operator functions A(.)x, A1(.)x ∈ L(X), B(.)u ∈ L(U,X), f(., x, y, u)
are continuous on [0,∞) for every x ∈ X, y ∈ X, u ∈ U .

B.2. The linear operator function A(t) : X → X, cl(D(A(t))) = X, generates an
evolution semigroup operator U(t, s) [18].

B.3. The nonlinear function f(t, x, y, u) satisfies the condition: there exist non-
negative continuous functions a(t), a1(t), b(t) : R+ → R+ such that

‖f(t, x, y, u)‖ ≤ a(t)‖x‖ + a1(t)‖y‖ + b(t)‖u‖, ∀(t, x, y, u) ∈ R+ × X × X × U.
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In this case, the mild solution of the nonlinear system (1) in Hilbert space is given
by

x(t, φ) = U(t, 0)φ(t)

+

t
∫

0

U(t, τ)
[

A1x(τ − h) + B(τ)u(τ) + f(τ, x(τ), x(τ − h), u(τ))
]

dτ.

Before proceeding further, we state the following well-known infinite-dimensional
controllability criterion, which will be used later.

Proposition 3.1. [5, 32] Infinite-dimensional linear control system [A(t), B(t)]
is GNC iff

∃T > 0, c > 0 :

T
∫

0

‖B∗(s)U∗(T, s)x∗‖2ds > c‖U∗(T, 0)x∗‖2, ∀x∗ ∈ X∗.

Associated with the infinite-dimensional linear control system [A(t), B(t)], we
consider a Riccati operator equation (ROE) described formally by the form

Ṗ (t) + A∗(t)P (t) + P (t)A(t) − P (t)B(t)B∗(t)P (t) + Q(t) = 0.(14)

Since A(t), t ∈ R+ is an unbounded operator, the solution of ROE will be defined
as follows.

Definition 3.1. The solution of ROE (13) is a linear operator function P (t) ∈
L(X) satisfying the following two conditions:

(i) The scalar function 〈P (·)x, y〉 is continuously differentiabe on [0,∞) for
every x, y ∈ D(A(.)).

(ii) For all x, y ∈ D(A(t)), t ∈ R+ :

d

dt
〈P (t)x, y〉 + 〈P (t)x,A(t)y〉 + 〈P (t)A(t)x, y〉

− 〈P (t)B(t)B∗(t)P (t)x, y〉 + 〈Q(t)x, y〉 = 0.

The existence problem of the solution of ROE (13) in infinite-dimensional case
was studied (see; e.g. [4, 8, 17] and references therein). We first state the following
sufficient condition guaranteed the existence of a bounded solution P (t) of ROE
(13), which is given in [2, 25] as follows.

Proposition 3.2. Let Q(t) ∈ LO([0,∞),X+) be a bounded operator function.
If the linear control system [A(t), B(t)] is Q(t)-stabilizable in the sense that for
every initial state x0, there is an admissible control u(t) ∈ L2([0,+∞), U) such
that the cost function

J(u) =

∞
∫

0

[‖u(t)‖2 + 〈Q(t)x(t, x0), x(t, x0)〉]dt,(15)
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exists and is finite, then the ROE (13) with any initial condition P0 > 0 has the
solution P (t) ∈ LO([0,∞),X+), which is also a bounded function:

sup
t∈R+

‖P (t)‖ < +∞.

The following proposition will play a key role in the derivation of the existence
of the solution of ROE (13) from the global null-controllability of the system
[A(t), B(t)].

Proposition 3.3. If linear control system [A(t), B(t)] is GNC in finite time,
then for any bounded operator function Q(t) ∈ LO([0,∞),X+), the ROE (13)
with P0 > 0 has a bounded solution P (t) ∈ LO([0,∞),X+).

Proof. Assume that the system [A(t), B(t)] is globally null-controllable in some
time T > 0. Let us take any operator Q(t) ∈ LO([0,∞),X+) and consider the
cost function (14). Due to the global null-controllability, for every initial state
x0 ∈ X there is a control u(t) ∈ L2([0, T ], U) such that the solution x(t, x0) of
the system, according to the control u(t), satisfies

x(0) = x0, x(T, x0) = 0.

Let us denote by ux(t) an admissible control according to the solution x(t, x0) of
the system. Define

ũ(t) =

{

ux(t), t ∈ [0, T ],

0 t > T.

If x̃(.) is the solution corresponding to ũ(.), then x̃(t) = 0 for all t > T .
Therefore, for every initial state x0, there is a control ũ(t) ∈ L2([0,∞), U) such
that

J(ũ) =

∞
∫

0

[

〈Q(s)x̃(s, x0), x̃(s, x0)〉 + ‖ũ(s)‖2
]

ds

=

T
∫

0

[

〈Q(s)x(s, x0), x(s, x0)〉 + ‖u(s)‖2
]

ds < +∞

which means that the system [A(t), B(t)] is Q(t)-stabilizable and hence by Propo-
sition 3.2, the ROE (13) has a bounded solution P (t) ∈ LO([0,∞),X+). The
proof of the proposition is completed.

Let δ > 0 be a given number. Putting Ã(t) = A(t) + δI, we consider a ROE
of the form

Ṗ (t) + Ã∗(t)P (t) + P (t)Ã(t) − P (t)B̃(t)B̃∗(t)P (t) + I = 0.(16)

Let us set

p = sup
t∈R+

‖P (t)‖, b = sup
t∈R+

b(t), B = sup
t∈R+

‖B∗(t)‖,
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a1 = sup
t∈R+

a1(t), A1 = sup
t∈R+

‖A1(t)‖.

Now, we give the following sufficient conditions for the strong stabilizability of
the nonlinear control delay system (3) in Hilbert spaces.

Theorem 3.1. Assume the conditions B.1 - B.3. Assume that linear control
system [A(t), B(t)] is GNC in finite time. The infinite-dimensional nonlinear
control delay system (3) is δ−stabilizable if the following conditions hold:

0 < b <
1

2p2B
, a1 + A1 <

√

1 − 2p2bB

2peδh
,(17)

sup
t∈R+

a(t) <
1

4p
−

1

2
pbB − p(a1 + A1)

2e2δh.(18)

The stabilizing feedback control is given by

u(t) = −
1

2
B∗(t)P (t)x(t),(19)

where P (t) is the solution of the ROE (15) with any initial condition P0 > 0.

Proof. Let us set y(t) = eδtx(t). As in Theorem 2.1, the nonlinear control delay
system (1) is transformed into the nonlinear control system (11), where

Ã1(t) = eδhA1(t),

B̃(t) = eδtB(t),

f̃(t, y(t), y(t − h), u(t)) = eδtf(t, e−δty(t), e−δ(t−h)y(t − h), u(t)).

By the assumption of the global null-controllability of the system [A(t), B(t)], we

shall prove that the system [Ã(t), B(t)] is also globally null-controllable. Indeed,
we note that (see, e.g. [7, 18]) the evolution semigroup operator UÃ(t, s) generated

by Ã(t) is UÃ(t, s) = eδ(t−s)UA(t, s), where UA(t, s) is the evolution semigroup
operator generated by A(t). Hence, by Proposition 3.1, we have

∃T > 0, c > 0 :

T
∫

0

‖B∗(s)U∗

A(T, s)x∗‖2ds > c‖U∗

A(T, 0)x∗‖2, ∀x∗ ∈ X∗.

Multiplying both sides of the above inequality with eδT and noticing

B̃(s) = eδsB(s), UÃ(T, s) = eδ(T−s)UA(T, s), UÃ(T, 0) = eδT UA(T, 0),

we obtain that
T
∫

0

‖B̃∗(s)U∗

Ã
(T, s)x∗‖2ds > c‖U∗

Ã
(T, 0)x∗‖2, ∀x∗ ∈ X∗,

which implies the global null-controllability of the system [Ã(t), B(t]. Thus, we
can now apply Proposition 3.3 for the existence of the solution of ROE (13),
with Q(t) = I. Let P (t) ∈ LO([0,∞),X+) be the solution of ROE (15) with
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P0 = I. Taking the feedback control (18), we consider the following Lyapunov-
like function for the closed loop system of the system (11):

V (t, yt) = 〈P (t)y(t), y(t)〉 +
1

2

t
∫

t−h

‖y(s)‖2ds,

and by the same arguments used in the proof of Theorem 2.1, using the conditions
(16), (17) we can prove the boundedness of the solution y(t) of the transformed
system (11), and then the exponential stability condition

‖x(t, φ)‖ 6 Ne−δt‖φ‖.

The proof of the theorem is completed.

Remark 3.1. It is worth noticing that Theorem 3.1 improves a result of [22],
where the growth condition on the nonlinear perturbation f(.) without state
delays was strictly assumed that:

‖f(t, x, y, u)‖ ≤ a(t)‖x‖ + b(t), ∀(t, x, y, u) ∈ R+ × X × X × U.

Note that if f(t, x, y, u) = 0, i.e. a = b = a1 = 0, we have the following obvious
consequence.

Corollary 3.1. Assume that the infinite-dimensional linear control system [A(t),
B(t)] is GNC in finite time. The linear control delay system

ẋ(t) = A(t)x(t) + A1(t)x(t − h) + B(t)u(t),

is δ− stabilizable if

0 < A1 <
1

2peδh
·

In the case if A1(.) = 0, f(t, x, y, u) = 0, the conditions (16), (17) automatically
hold and then we have the following subsequence for the strong stabilizability of
linear control system, which extends the result of [15, 27] to the time-varying
case.

Corollary 3.2. The infinite-dimensional linear control system

ẋ(t) = A(t)x(t) + B(t)u(t),

is strongly stabilizable if the system is GNC in finite time.

As in finite-dimensional case, the following procedure recalls all steps of finding
stabilizing feedback control:

Step 1. Verify the GNC of infinite dimensional linear control system [A(t), B(t)]
by Proposition 3.1.

Step 2. For given δ > 0, find the solution P (t) ∈ LO([0,+∞),X+) of ROE (15).

Step 3. Compute the numbers p, b,B,A1, a1 and check the conditions (16)-(17).

Step 4. The stabilizing feedback control u(t) is given by (18).
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Example 3.1. Consider system (3) in the Hilbert spaces l2, where

A(t) : (x1, x2, ...) ∈ l2 −→ (
1

8
e−4t − 2e4t)(x1, x2, ...) ∈ l2,

A1(t) : (x1, x2, ...) ∈ l2 −→ e−
1

2t (x1, x2, ...) ∈ l2,

B(t) : (u1, u2, ...) ∈ l2 −→ e−2t(u1, u2, ...) ∈ l2,

f(t, x, y, u) =
1

3
x sin2 t +

1

3
e−

1

2
ty +

4

5
e−

9

2
tu, ∀t > 0.

We have

a(t) =
1

3
sin2 t, a1(t) =

1

3
e−

1

2
t, b(t) =

4

5
e−

9

2
t.

To verify the GNC of the system [A(t), B(t)] we first find the evolution operator
U(t, s). Upon some computations we find that

U(t, τ) =













u11(t, τ) 0 · · · · · · · · · · · · · · ·
0 u22(t, τ) 0 · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · 0 unn(t, τ) 0 · · ·
· · · · · · · · · · · · · · · · · ·













,

where

u11(t, τ) = e−
1

32
(e−4t

−e−4τ )− 1

2
(e4t

−e4τ ),

u22(t, τ) = e−
1

32
(e−4t

−e−4τ )− 1

2
(e4t

−e4τ ),

unn(t, τ) = e−
1

32
(e−4t

−e−4τ )− 1

2
(e4t

−e4τ ).

Therefore, defining

‖U∗(T, 0)x∗‖2 =

∞
∑

n=1

e−
1

16
e−4T

e
1

16 e−e4T

e1x2
n,

‖B∗(τ)U∗(T, τ)x∗‖2 =

∞
∑

n=1

[e−
1

16
.e−4T

.e
1

16 .e−e4T

.e1.x2
n].[e−4τ .e−

1

16 .e−1.e
1

16
e−4τ

.ee4τ

]

>

∞
∑

n=1

[e−
1

16
.e−4T

.e
1

16 .e−e4T

.e1.x2
n].[e−4τ .e−

17

16 ],

and applying Proposition 3.1, where c = 0.08, T = 1, we can verify the GNC of
the system [A(t), B(t)]. On the other hand, we have

Ã(t)x = (
1

8
e−4t − 2e4t + 2)x,

the ROE

Ṗ (t) + Ã∗(t)P (t) + P (t)Ã(t) − P (t)B̃(t)B̃∗(t)P (t) + I = 0,
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has the solution

P (t) =







1

4
e−4t 0

0
1

4
e−4t






.

and all the conditions (16), (17) are satisfied with

b = 4/5, p = 1/4, a1 = 1/3, A1 = 1.

By Theorem 3.1, the system is 2-stabilizable.

Remark 3.2. Note that the sufficient conditions for the strong stability of
infinite-dimensional system (3) involve solving ROE (15), which is, in general,
still a difficult problem. However, some effective approaches to this problem can
be found in [3, 8, 14, 17].

4. Conclusions

In this paper, we have studied the strong stability problem for a class of nonlin-
ear time-varying control systems with state delays. Based on the controllability
of the nominal linear control system, sufficient conditions depending on the size of
the delay for the strong stabilizability have been established by solving a standard
Riccati matrix/operator equation. The feature of this work is that the strong sta-
bility conditions do not involve any spectrum of the evolution operator/matrix,
and hence are easy to verify and construct. A constructive procedure for finding
the stabilizing feedback control and illustrative examples of the results are given.
It is worth mentioning that the results presented in this paper do not involve
multiple delays as well as the constraints on both the state and control of the
system. These issues will be the subject of the future investigations.
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