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A CERTAIN SUBCLASS OF P-VALENTLY ANALYTIC
FUNCTIONS WITH NEGATIVE COEFFICIENTS
OF COMPLEX ORDER

AJAB AKBARALLY AND MASLINA DARUS

ABSTRACT. The object of this paper is to show some properties of functions
belonging to a subclass M,(A, B,b,n) (where b is a complex number with
Re(b) > 0 and A and B are two arbitrary constants with —1 < B < A < 1).
Coefficient estimates and some distortion theorems for this class of functions
are found. Radii of close-to-convexity, starlikeness and convexity are derived.
An application to fractional calculus is given.

1. INTRODUCTION

Let S denote the family of functions of the form
(e}
(1.1) flz)= z—i—Zakzk
k=2

which are analytic in the open unit disk U = {z : |z| < 1}.
We denote T'(p) by the subclass of S consisting of functions of the form

(1.2) f2) =2 =Y apu™* (peN).
k=1

We denote by M,(A, B,b,n) the class of functions f € T'(p) that satisfy the
condition

1 Drtp ! 1+ A
(1.3) 1+ —(—Z( fz) ) A
b\ D"fPf(z) 1+ Bz
where < denotes subordination, b # 0 is any complex number with Reb > 0, A
and B are arbitrary fixed numbers, —1 < B < A < 1. D"*Pf(z) is the extension
of the familiar operator D" f(z) of Ruscheweyh Derivatives [3], n € Ny = NU{0}.

This operator was considered by Sekine, Owa and Obradovic [4] where
[ee)
D"Pf(z) = 2P — Z Cp p(n)ap p2? "
k=1
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with
C(nAprk) (L)

The subclass M,(A, B,b,n) is obtained from the subclass S%(A, B,n) defined by
Aouf and Amri [1].

2. COEFFICIENT ESTIMATES

Theorem 2.1. A necessary and sufficient condition for a function f € T(p) to
be in the class Mpy(A, B,b,n) is

S [+ [b(A — B) — BE[|Cy k()] 4]

k=1
=y iiA-5) -

Proof. (=) By definition of subordination we can write (1.3) as

1 /2(D"Pf(2)) 1+ Aw(z)
1+5(—Dn+pf( - ) = T Boly (B ED)
n+p z z n-+p 2 /
P = 3 (0 + K)Cpa(m)apisz”**
= )
2 — 37 Cpr(n)appe?th
k=1
P = 3 (p+ H)Cpi(n)ap
= (b(A_B)—B( LS —p))w(Z),
2 — 3 Cpp(n)apipzpth
k=1
> (=) Cp i (m)ap 2" > (—k)Cpp(m)ap 2"
S = (b(A - B) — B(k:1 — ))w(Z)-
1- k; Cpp(n)ap 2 1— k; Cpp(n)ap 2"
Since |w(z)| < 1,
‘ Z )y 12 ‘ < ‘b(A - B)-Y (A~ B) - Bk]cp,k(n)ap+kzk(.
k=1

Letting 2 — 17 through real values we have

[o¢]
S [k + (A — B) — B Cp(m)lagil < [bl(A — B),
k=1
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ie.

(18

[k +[6(A = B) = BE[|Cyp 1 (n)|ap k]

k=1

<1
b[(A - B)

(<) Let (2.1) be true. From (2.2) we see that since |w(z)| < 1,

‘ 2(D"*Pf(2)) = pD"Pf(2) ‘
b(A — B)D"+P — B(z(D"+P f(2)) — pD™Pf(2))

§ (—k)Cpk(n)ap_szk
(2.3) - ( b=
b(A— B) — k§1[b(A — B) — Bk|Cp i (n)ap 2"

—_

‘<1.

We need to prove that (2.3) is true.
By applying the hypothesis (2.1) and letting |z| = 1 we find that

k§ (—k)Cpk(n)ap_szk

WA~ B) ~ 3 [b(A = B) ~ BHCpu(n)ayii*

[y

0
2 kCpr(n)lap il

< k=1
~ o0

bI(A = B) = 2 [6(A = B) = BHCpr(n)lap|

bI(A = B) = > |b(A — B) = BK|Cy k(1) |ap-k|
< k=1

DA = B) = 2 [6(A = B) = BHCpi(n)lap++
< L

Hence we find that (2.3) is true. Therefore f € My,(A, B,b,n).

3. DISTORTION THEOREMS

Theorem 3.1. If f € M,(A, B,b,n) then

rP — p+1 |b|(A_B) <|f(2)|
[1+[b(A— B) — B||Cp1(n)
<Tp+rp+1 |b|(A_B)

A A= B) - BIC.m =7
with equality for
b|(A - B)

= z — Z 1 :
flz) =20 —2P* 1 5(A—B)— B|Cpi(n)
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Proof. From (2.1) we obtain

o0

> Ik +[b(A = B) = BE[|Cyx(n)|ap x| < bl(A — B)

k=1
- |b](A — B)

3.1 .
. kz e S TEA- B) - BlGya(n)
From (1.2) and (3.1) it follows that

()| = [P - Z |ap+xl 27+
k=1
(e}
=P — PP " ap ]
k=1
g bA-B)
[1+[b(A— B) = B[|Cp1(n)
Similarly,
F < 2P+ lapll217H
k=1
(e}
<P+ 1PN " ap g
k=1
b|(A — B)
< rP 4 Pt | :
[1+[6(A = B) — B|]Cpa(n)
Theorem 3.2. If f € M,(A, B,b,n) then
_ + 1)[b|(A — B)
,rp 1 _ + 1 Tp (p < / z
_ +1)b|(A — B)
<prP 4 (p+ 1P (p zl=r
with equality for
b|(A— B)
2) = 2P — Pt | .
e [+ (A~ B) ~ BJ[Cyu(n)

Proof. By (3.1) we have

oo

(p+D)b[(A — B)

(3.2) Z(p + B)lapsr| < [1+|6(A—DB)

k=1

= B[|Cpa(n)
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From (1.2) and (3.2) it follows that

oo
— k—
12 plalP™t = (0 + F)lapell=PH*
k=1
o0
>prtt =Py (o k)lapkl
k=1

(p+1)[b[(A - B)

> p—1 _ _.p .
P T T T (A = B) = B]ICya(n)

Similarly,

o0
< plalP~ + ) (0 + k)laprl |27
k=1

o0
<prP P (p+E)apal
k=1

(p+DPl(A—-B)
1+ (A= B) — B[Cpu(n)

<prt =P

4. CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

A function f € T'(p) is said to be close-to-convex of order ¢ (0 < < 1) if

(4.1) Re{f'(2)} > 6,

for all z € U, see [1]. A function f € T'(p) is said to be starlike of order ¢ if
2f'(2)

4.2 .

(4.2) Re{ e } )

A function f € T'(p) is said to be convex of order ¢ if and only if zf’(2) is starlike
of order 4, that is, if

(4.3) Re{1 + ZJ{,/;S)} >4,

Theorem 4.1. If f € My(A,B,b,n), then f is close-to-convex of order ¢ in
|z| < ri(p, A, B,b,n,d) where

ri(p A, B,b,n, ) = inf [(p —8)[k+ |b(A—B) — Bk:|]Cp7k.(n)] 1k

(p+ k)[bl(A - B)]
Proof. 1t is sufficient to show that
f'z)

(4.4) =

o
p| <0+ lapanllzlF <p-o.
k=1




64 AJAB AKBARALLY AND MASLINA DARUS

By (2.1) we have

(4.5) S [k + [b(A — B) — BH[ICpx(n)lay x| < bI(A — B).
k=1
Observe that (4.4) is true if
(p+k)|z|* < [k + |b(A — B) — BE[|Cpi(n)
p—0d bl(A - B)
Solving (4.6) for |z| we obtain
(p—0)[k+[b(A-B)— Bk|]Cp7k(n)] 1/k
(p + F)[bI(A = B)]

(4.6)

2] < , (peN).

O

Theorem 4.2. If f € My(A,B,b,n) then f is starlike of order 6 in |z| <
ro(p, A, B,b,n,d) where

(p = 8)[k + [b(A - B) - Bk|]0p7k(n)] 1k

ral 4,3, d) = S )

Proof. We must show that

- k
> klapll2]
k=1

(4.7)

= <p-—24.
1= 3 laprllzl?
k=1

We see from (4.5) that (4.7) is true if
(p+k—0)|z* < [k + |b(A — B) — Bk[]Cpi(n)
p-5 b|(A - B)

Solving (4.8) for |z| we obtain
(p—0)[k+|b(A—B) — BkHCp,k(n)] 1/k
(p+k —9)[lbl(A - B)]

(4.8)

2] <

, pPEN.

Theorem 4.3. If f € M,(A, B,b,n) then f is convex of order § in
‘Z| < r;»,(p,A,B,b,n,cS)

where
p(p — 8)|k + |b(A — B) — BE||Cp, 1 (n)11/k
(p+k)(p+Fk—0)[b](A - B)] '

7“3(]9, Av B7 banv 5) = 1%f |:

Proof. We must show that

- k k)la |k
Zf”(z) _p‘ _ kgl (p+ k)| P-I—k” |
) P X (0t B)lap =1

(4.9) 1+ <p-—4.
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From (4.5) we see that (4.9) is true if
(p+ k)P +k—0)e* _ [k+[b(A—B) = BE|Cyr(n) |
p(p —9) - b|(A - B)
Solving (4.10) for |z| we obtain
p(p — 9)[k +[b(A - B) — BkHCp,k(n)] 1/k
(p+k)(p+k—9)[bl(A-B)]

(4.10)

2] < [ , (peN).
5. AN APPLICATION IN THE FRACTIONAL CALCULUS

We recall here the following definitions of the fractional calculus given by Owa
[3].

Definition 5.1. The fractional integral of order ¢ is defined, for a function f(z),

by
) 1S
D:1116) = . [ gt
0

where § > 0, f(z) is an analytic function in a simply connected region of the
z-plane containing the origin, and the multiplicity of (z — ¢)°~! is removed by
requiring log(z — ¢) to be real when (z —t) > 0.

Definition 5.2. The fractional derivative of order ¢ is defined, for a function

f(z), by
1 d [
Dif(z) = r(1—5)£/(z—t)6dt
0

where 0 < 0 < 1, f(2) is an analytic function in a simply connected region of
the z-plane containing the origin, and the multiplicity of (z — )~ is removed by
requiring log(z — ¢) to be real when (z —t) > 0.

Definition 5.3. Under the condition of Definition 5.2, the fractional derivative
of order n + ¢ is defined by

D f(z) = S DIf(:)
where 0 <d<landn=0,1,2,....
Now we shall prove the following theorems using the definition above (cf. [2]).
Theorem 5.4. If f € T(p) is in the class My(A, B,b,n) then
(5.1)

5 I(p+1)
ID;°f(2)] < m

(p+ D[[b[(A — B)]
(p+0+ DI +[b(A = B) - B[|Cpa(n)

2P+ 1+ E



66 AJAB AKBARALLY AND MASLINA DARUS

and
(5.2)
S Do) | i (b + D]bl(A - B)
DG > v - s rDr TG B - B

Proof. From Definition 5.1 we see that

_ I(p+1) = T(p+k+1)
d — P+ _ p+k+3
(5:3) b E) = v 5317 g;np+k+5+n%*“

(0>0; k=1, peN).

For convenience let

_ Tlp+k+1)
¢%y_F@+k+5+D'

Clearly the function ¢(k) is a decreasing function of k£ and

0<¢<k><¢<l)=%-

By (2.1) we have that

0 b|(A — B)
(5.4) Z;mﬁu<[LHMA_By—Bm%mm'

From (5.3) and (5.4) it follows that

_ L(p+1) s
DI <P g gy OOl L bl
Lo+l |l (v + DIbl(A - B)] )
S TDp+6+1) (p+d+ 1)1+ |b(A—B) - B|]Cp1(n)
which is equivalent to (5.1) and
D3 > o { o — 9l 3 ey}
k=1
F(p—|—1) |z‘p+6 %
“T(p+6+1)

(p+ D[(A — B)
A e TP B) - g )

which is equivalent to (5.2). O

Theorem 5.5. If f € T(p) is in the class My(A, B,b,n) then
(5.5)

5 I(p+1)
D f(2)] < m

(v + DI|(A — B) -1
(=3 + DL+ 16(A — B) - BICp(n)

2P~ [1+
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and
(5.6)
T(p+1) s (p+ 1)[|b|(A — B)]
D@ > 7 57 - o+ DI+ WA —B) = BICya(n)

Proof. By Definition 5.2 we have

Cp+1) ,5 N~ Fptk+1) -
D — p—6 _ p+
@) =0, 5317 Zr(p+k—5+1)ap+kz
(0<d<1l; k=1, peN)
Lp+1) 5 N~ +RT@+E) -
. Dif(z) = — L) _p=d p+h=d,
57 SO =5 v ;F(wk—éﬂ)%*’“z
Let W(k) = I S-(i—i_?—l- ok Since W(k) is a decreasing function of k we have
p —_—
I'p+1)
(k) < W(l) = —LT |
0<Wk) <) = =53
y (5.4) we have
(e}
(p+1)[b[(A - B)
5.8 p+k)la .
( ) kz | erk‘ [ +‘b(A—B)—B|]Cp71(TL)

From (5.7) and (5.8) it follows that

D3] < o= e P ()l Y+ Bl )
k=1

'p—3d+1)
F(p+1) p—98
Tp—orn *

(p+ DI[b|(A - B)]
% {1 T 0T DL+ A _B) - BCy.(n) ‘Z|}

which is equivalent to (5.5) and

8

DI > o~ s — v >0+ Bl
F(p + 1) ‘Z|p—5 %
T T(p-0+1)
(p + D[[b|(A — B)]
. {1 T (p—6+ 1)L+ [b(A—B) - B[Cpi(n) ‘Z|}

which is equivalent to (5.6). O
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