
ACTA MATHEMATICA VIETNAMICA 45
Volume 30, Number 1, 2005, pp. 45-57

ON THE REPRESENTATIVE THEOREMS FOR

ONE-DIMENSIONAL ITERATIVE ARRAYS

OF FINITE AUTOMATA

PHAM TRA AN

Abstract. In this paper we show that there are representative theorems (or
supply-demand theorems) for one-dimensional iterative arrays of finite au-
tomata and for one-dimensional iterative arrays of finite automata with a
time-variant structure. Some applications are considered.

1. Introduction

In Computer Science, to study the capacity and the behaviour of processing
systems we consider the languages representable by these systems. During the
representation, the system needs to distinguish the non equivalent words by re-
membering each class of equivalent words into a state of the system. Therefore
between the state growth speed of system (a supply) and the (non equivalent)
word growth speed of the language representable by the system (a demand) there
exists a nice supply-demand relation, which could be formulated as a very simple,
but in no way trivial fact:

“Representability =⇒ Demand 6 Supply”.

This relation is called the representative principle (or supply-demand principle)
in Computer Science.

Our goal is to show that for all concrete processing systems in Computer
Science such as the finite automata, the automata with a time-variant structure,
the probabilistic automata, the Petri nets, the iterative arrays of finite automata,
etc..., the above representative principle (or supply-demand principle) should
become the representative theorems (or supply-demand theorems).

Following this approach we have shown in [12] that there are representative
theorems for the finite automata and for the automata with a time-variant struc-
ture. As a corollary of these theorems we get again the well-known necessary
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conditions for the classes of languages representable by finite automata, by fi-
nite automata with a time-variant structure, by ϕ-automata with a time-variant
structure, but now on an unified point of view.

For the class of languages representable by finite probabilistic automata (class
of stochastic languages) we have the basic results of M. Rabin, A. Salomaa and P.
D. Dieu (see [6-8]). By a glance, it seems that these results violated the supply-
demand principle. With a constant number of states, the finite probabilistic
automata could represent many rather complex languages, (see [5-6]). In [13]
by analysing the representation of finite probabilistic automata, we have shown
that there are also representative theorems for finite probabilistic automata but
here the notion of state is understood in a more general sense. It is the notion of
hyperstates.

For the class of languages representable by Petri nets, although we have had
some examples of non-Petri net languages, we do not have any criterion for recog-
nizing whether a given language is Petri net language or not. In [9-10] we proved
that there are representative theorems for Petri net. Applying these theorems we
get new necessary conditions for Petri net languages and give a series of simple
languages but not being representable by any Petri net.

In this paper we enrich our line of research by exhibiting representative the-
orems for the one-dimensional iterative arrays of finite automata and for the
one-dimensional iterative arrays of finite automata with a time-variant structure.
Some applications are investigated.

The paper is organized as follows. In Section 2 we recall some definitions of one-
dimensional iterative array of finite automata and the language representable by
it. Section 3 deals with the notion of growth function for iterative array and gives
the growth theorem for one-dimensional iterative array of finite automata. The
first representative theorem for one-dimensional iterative array of finite automata
is described in Section 4. Section 5 gives the second representative theorem
for one-dimensional iterative array of finite automata. Finally, in Section 6 we
introduce the notion of one-dimensional iterative array of finite automata with a
time-variant structure and show that we also get representative theorems for the
new model of iterative array.

2. Preliminaries

For a finite alphabet Σ, Σ∗ (resp. Σr) denotes the set of all words (resp. of
all words of length r) on the alphabet Σ. The empty word is denoted by Λ. For
any word w ∈ Σ∗, l(w) denotes the length of w. Every subset L ⊆ Σ∗ is called a
language over the alphabet Σ. Let N be the set of all non-negative integers and
N+ = N\{0}.

As has been well-known, the notion of iterative array of finite automata was
first introduced by Von Neumann in model of self-reproduction (see [1]) and was
investigated by many authors, e.g., by S. N. Cole, F. C. Hennie, A. J. Atrubin,
P. C. Fischer, A. R. Smith, P. D. Dieu, D. L. Van, etc...
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Loosely speaking, an one-dimensional iterative array of finite automata is an
infinite sequence of finite automata Γ0, Γ1, · · · , Γn, · · · connected in the following
way (see the figures):
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Fig. 1

(1) All automata Γn, n > 0 have the same structure. At the time t = 0, all
Γn, n > 1 are at the quiescent state q and Γ0 is at the initial state q0.

(2) The state of Γn, n > 1, at the time t is defined by the states of Γn−1 and
Γn+1 at the time t− 1.

(3) The state of Γ0 at the time t is defined by the input symbol and the states
of Γ0 and Γ1 at the time t− 1.

(4) The input of iterative array is connected to Γ0.

Now we can define an one-dimensional iterative array of finite automata for-
mally as follows.

An one-dimensional iterative array of finite automata (abbreviated 1IA) is
given by a list

Γ = (Σ , Q , q0 , q , λ0 , λ , F ),

where

Σ is a finite set of input symbols;

Q is the finite set of states of automata Γn, n > 0;

q0 ∈ Q is the initial state of Γ0;

q ∈ Q is the quiescent state of Γn, n > 1;

λ0 : Σ×Q×Q −→ Q is the state transition function of Γ0;

λ : Q×Q×Q −→ Q is the state transition function of Γn, n > 1, with the
condition λ(q0, q, q) = λ(q, q, q) = q;

F ⊆ Q is the set of final states of Γ0.

Let M be a mapping from Σ×Q+ −→ Q+ defined by

M(a, p0p1 · · · pn) = λ0(a, p0, p1)λ(p0, p1, p2) · · · λ(pn−1, pn, q)λ(pn, q, q)

with n > 0, a ∈ Σ, pi ∈ Q, 0 6 i 6 n.

Here M(ω, u) is the state transition function of the iterative array Γ .
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The mapping M can be extended to a mapping from Σ∗ ×Q+ −→ Q+ by the
recursive definition

{
M(Λ, u) = u,
M(ωa, u) = M(a,M(ω, u))

with a ∈ Σ, ω ∈ Σ∗ and u ∈ Q+.

After that we define N to be a mapping from Σ∗ × Q+ −→ Q such that for
ω ∈ Σ∗, u ∈ Q+ and if M(ω, u) = p′0p

′
1 · · · p

′
n then

N(ω, u) = p′0,

where N(ω, u) is the state transition function of Γ0.

A word ω ∈ Σ∗ is said to be representable by the iterative array Γ if N(ω, q0) ∈
F . The language representable by the iterative array Γ is the set

L(Γ ) = {ω ∈ Σ∗ |N(ω, q) ∈ F }.

A language which is representable by an one-dimensional iterative array, is
called an 1IA-language. The set of all 1IA-languages is denoted by L(1IA).

3. The growth theorem for 1IA

Let Γ = (Σ , Q , q0 , q , λ0 , λ , F ) be an 1IA. Each state of Γi, i > 0, describes
a local state of Γ , each combination of non-quiescent states of Γi, i > 0, describes
a global state of Γ and is called a configuration of Γ . The configuration c0 =
(q0, q, q, · · · ) is the initial configuration of Γ . After that we define the following
sets:

CΓ,r = {M(ω, c0) | ∀q0 ∈ Q,∀ω ∈ Σr},

CΓ,≤r = {M(ω, c0) | ∀q0 ∈ Q,∀ω ∈ Σ≤r}.

CΓ,r (resp. CΓ,6r) is the set of all reachable configurations of Γ from any initial
configuration c0 and with any input ω ∈ Σr (resp. ω ∈ Σ6r).

Definition 1. The growth functions of iterative array Γ are

hΓ(r) = |CΓ,r|,

gΓ(r) = |CΓ,6r|;

where |CΓ,r|, is the cardinal of the set CΓ,r.

The following theorem gives us an upper bound of the growth functions for
any 1IA.

Theorem 1 (The growth theorem for 1IA). Let Γ be an 1IA. We have

hΓ(r) = O(CP1(r)), ∀r ∈ N+,

gΓ(r) = O(CP1(r)), ∀r ∈ N+.

where C = const and P1(r) is a polynominal of degree 1.
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Proof. Let Γ = (Σ , Q , q0 , q , λ0 , λ , F ) be an 1IA. From the definition of the
growth functions, we have

hΓ(r) = |CΓ,r| 6 |Q|
r+1 = O(CP1(r)), ∀r ∈ N+,

gΓ(r) = |CΓ,≤r| 6
|Q|(|Q|r+1 − 1)

|Q| − 1
= O(CP1(r)), ∀r ∈ N+.

where C = |Q| = const and P1(r) = r + 1.

Thus the growth functions of any 1IA is bounded by CP1(r). This is an essential
limitation of the 1IA.

4. The first representative theorem for 1IA

Let L ⊆ Σ∗. We define the relations Lr(modL) in Σr and L≤r(modL) in Σ≤r

as follows:

uLrv (modL)⇔ ∀w ∈ Σ∗ : wu ∈ L↔ wv ∈ L , ∀u, v ∈ Σr;

uL≤rv (modL)⇔ ∀w ∈ Σ∗ : wu ∈ L↔ wv ∈ L , ∀u, v ∈ Σ6r;

It is easy to show that the relations Lr (modL) and L6r (modL) are reflexive,
symmetric and transitive. They are equivalent relations. So we define:

HL(r) = RankLr (modL);

GL(r) = RankL6r (modL).

They are considered to be the representative complexities of the language L in
Σr and in Σ6r respectively.

First, we give a simple but important property of HL(r), GL(r).

Let Σ be an alphabet, |Σ| = m > 2. We have

1 6 HL(r) 6 |Σr| = O(mr) = O(CP1(r)) , ∀r ∈ N+;

1 6 GL(r) 6 |Σ≤r| = O(mr) = O(CP1(r)) , ∀r ∈ N+.

where C = const and P1(r) is a polynominal of degree 1.

There is a nice relation between the growth functions of an 1IA and the com-
plexity functions of the language which is representable by it.

Theorem 2 (The first representative theorem for 1IA). Let Γ be an 1IA and L =
L(Γ ). We have

HL(r) 6 hΓ (r) , ∀r ∈ N+;

GL(r) 6 gΓ (r) , ∀r ∈ N+.

Proof. Let Γ = (Σ , Q , q0 , q , λ0 , λ , F ) be an 1IA and L = L(Γ ). We shall
prove that, for example GL(r) 6 gΓ (r) , ∀r ∈ N+. To do this, we assume the
contrary, i.e., there exists an r ∈ N+ such that GL(r) > gΓ (r). Therefore, there
are two words u, v ∈ Σ6r such that uL6rv (modL), but C0(u) = C0(v), where
C0(ω) = M(ω, c0), ω ∈ Σ∗. It follows that

M(ω,C0(u)) = M(ω,C0(v)) , ∀ω ∈ Σ∗;
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M(ωu, c0) = M(ωv, c0) , ∀ω ∈ Σ∗.

N(ωu, c0) = N(ωv, c0) , ∀ω ∈ Σ∗;

ωu ∈ L←→ ωv ∈ L , ∀ω ∈ Σ∗;

uL6rv (modL).

It conflicts with the hypothesis uL6rv (modL). Therefore we get GL(r) 6 gΓ (r) ,
∀r ∈ N+.

By an analogous argument, we have HL(r) 6 hΓ (r) , ∀r ∈ N+.

Remark. We note that the upper bound for the growth functions hΓ(r), gΓ(r)
of an 1IA and the upper bound for the comlexity functions HL(r), GL(r) of a

language are the same O(CP1(r)). Therefore, from the Theorm 2 we can not get
a necessary condition for the class L(1IA). The application of the first represen-
tative theorem is limited by it.

Now we consider a special case of 1IA, whose growth functions are decreased
in degree such that we could get some necessary condition.

Definition 2. An 1IA is K-bounded, K ∈ N+, if there are only automata at
0, 1, · · · , (K − 1) and there are not automata at K, K + 1, · · · . An 1IA is
bounded (abbreviated 1BIA), if there exists an K ∈ N+ such that the 1IA is
K-bounded. The class of all languages representable by 1BIA is denoted by
L(1BIA).

It is easy to see that if Γ is bounded, then its growth functions are bounded
too. Indeed, there exists some K ∈ N+ such that

hΓ(r) 6 |Q|K+1 = O(C) , ∀r ∈ N+,

gΓ(r) 6
|Q|(|Q|K+1 − 1)

|Q| − 1
= O(C) , ∀r ∈ N+.

where C = const.

Corollary 1 (The necessary condition for L(1BIA)). If L ∈ L(1BIA) then

HL(r) = O(C) , ∀r ∈ N+;

GL(r) = O(C) , ∀r ∈ N+;

where C = const.

Proof. It follows from Theorem 2 and the growth functions of any 1BIA are
bounded.

Example 1. Let Σ = {a, b} and

L1 = { anbn | n ∈ N+}.

Denote W = {a, a2, · · · , ar}. Therefore W ⊆ Σ6r and |W | = r. We can ver-
ify that aiL6ra

j (modL) with i 6= j. It follows that GL1(r) > |W | = r > C.
According to Corollary 1 we get L1 /∈ L(1BIA).
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Example 2. Let Σ be an alphabet, |Σ| = m > 2 and

L2 = { xxR | x ∈ Σ∗},

where xR is the inverse image of x. We can see that for all x1, x2 ∈ Σr, if x1 6= x2

then x1Lrx2 (modL2). Therefore

HL2(r) = |Σr| = mr.

Now we assume that Γ = (Σ , Q , q0 , q , λ0 , λ , F ) is an 1IA with |Q| = n
and L2 = L(Γ ). In Section 3 we have shown that for any 1IA Γ with |Q| = n,
the growth function hΓ (r) 6 |Q|r+1 = nr+1.

Applying Theorem 1 and Theorem 2 we get

HL2(r) = mr
6 hΓ (r) 6 nr+1 , ∀m,n, r ∈ N+.

If there is a triplet (m,n, r) satisfying mr > nr+1 (for example (m = 10, n = 3,
r = 1) is a thus triplet) then L2 on alphabet Σ, |Σ| = m is not representable by
any 1IA with |Q| 6 n. At the time t = r, the iterative array shall be overfull.

5. The second representative theorem for 1IA

Let L ⊆ Σ∗. We now define the other equivalent relations Rr (modL) and
R≤r (modL). They are dual relations to the relations Lr (modL) and L≤r (modL)
in Section 4.

uRrv (modL)⇔ ∀w ∈ Σr : uw ∈ L↔ vw ∈ L , ∀u, v ∈ Σ∗;

uR6rv (modL)⇔ ∀w ∈ Σ6r : uw ∈ L↔ vw ∈ L , ∀u, v ∈ Σ∗.

The relation R6r (modL) was first considered by S. N. Cole in [2]. We can see
that they are equivalent relations. So we define

IL(r) = Rank Rr (modL);

JL(r) = Rank R6r (modL).

It is easy to prove that ∀L ⊆ Σ∗ , we have:

1 6 IL(r) 6 2|Σ
r| = O(2mr

) = O(CExp(r)) , ∀r ∈ N+;

1 6 JL(r) 6 2|Σ
6r| = O(2

m(mr−1)
m−1 ) = O(CExp(r)) , ∀r ∈ N+.

where C = const and Exp(r) denote an exponential function of r.

The functions IL(r) and JL(r) are considered to be other complexity functions
of language L, and we get also an other representative theorem for 1IA.

Theorem 3 (The second representative theorem for 1IA). Let Γ be an 1IA and

L = L(Γ ). Then

IL(r) ≤ hΓ (r) , ∀r ∈ N+;

JL(r) ≤ gΓ (r) , ∀r ∈ N+.
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Proof. Let Γ = (Σ , Q , q0 , q , λ0 , λ , F ) be an 1IA and L = L(Γ ). We shall
prove that, for example JL(r) ≤ gΓ (r) , ∀r ∈ N+. We assume the contrary, i. e.
there exists an r ∈ N+ such that JL(r) > gΓ (r). Then we shall prove that there
are two words u, v ∈ Σ∗ such that uR6rv (modL), but C0(u) and C0(v), where
C0(w) = M(w, c0), w ∈ Σ∗, are non r-distinguished in the sense

M(ω,C0(u)) = M(ω,C0(v)) , ∀ω ∈ Σ6r;

(Note that here we have not C0(u) = C0(v), because u, v /∈ Σ6r, in general).
Indeed, we set J(r) = p > gΓ (r). The relation R6r (modL) devises Σ∗ into p
equivalent classes. Let τ1, · · · , τp be representatives of these classes. With each
word ω ∈ Σ6r, we consider the following set:

{M(ω,C0(τ1)), · · · ,M(ω,C0(τp))},

This set has p components. But on the other hand,

{M(ω,C0(τ1)), · · · ,M(ω,C0(τp))} ⊆ CΓ,6r,

with |CΓ,6r| = gΓ (r) < p. Therefore we have

|{M(ω,C0(τ1)), · · · ,M(ω,C0(τp))}| < p.

So there are two words u = τi, v = τj such that

M(ω,C0(u)) = M(ω,C0(v)).

Since ω is any word in Σ6r, we obtain

M(ω,C0(u)) = M(ω,C0(v)) , ∀ω ∈ Σ6r.

It mean u, v are two non r-distinguished words.

Now we continue to prove Theorem 3. From M(ω,C0(u)) = M(ω,C0(v)) ,
∀ω ∈ Σ6r, we obtain

M(uω, c0) = M(vω, c0) , ∀ω ∈ Σ6r;

N(uω, c0) = N(vω, c0) , ∀ω ∈ Σ6r;

uω ∈ L←→ vω ∈ L , ∀ω ∈ Σ6r;

uR6rv (modL)

It contradicts the hypothesis uR6rv (modL). Therefore, we get

JL(r) 6 gΓ (r) , ∀r ∈ N+.

By an analogous argument, we have IL(r) 6 hΓ (r) , ∀r ∈ N+.

Corollary 2 (The Cole’s necessary condition for L(1IA)). (see [2]). If L ∈ L(1IA)
then

IL(r) = O(CP1(r)) , ∀r ∈ N+,

JL(r) = O(CP1(r)) , ∀r ∈ N+;

where C = const and P1(r) is a polynominal of degree 1.

Proof. It follows from Theorem 1 and Theorem 3.
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Example 3. Let Σ be an alphabet, |Σ| = m > 2 and

L3 = Σ∗D,

where D is the set of all symmetric words of length more than 3 in Σ∗. In [2]

S. N. Cole had shown that JL3 > 22(r−3)/2
= O(CExp(r)) > O(CP1(r)), with r

large enough. By Corollary 2, it follows that L3 /∈ L(1IA).

Example 4. Let Σ be an alphabet, |Σ| = m > 2 and

L4,l = {τ1τ2 · · · τnτ0| τi ∈ Σ∗; l(τi) = l;∃τi = τ0};

For each subset A = {τi1 , τi2 , . . . , τik} ⊆ Σl we associate it with a word

UA = τi1τi2 . . . τik

We can verify that:

∀w ∈ Σl : (UAw ∈ L4,l ⇔ w ∈ A).

Now if we choose r = l and l is large enough, then we have

IL4,l
(l) > 2|Σ

l| = O(2ml
) = O(CExp(l)) > O(CP1(l))

According to Corollary 2 we obtain L4,l /∈ L(1IA), with l large enough.

6. One-dimensional iterative arrays of finite

automata with a time-variant structure

A natural way to generalize the notion of an iterative array of finite automata
is to allow the structure of the component automata to be time-variant.

Formally, an one-dimensional iterative array of finite automata with a time-

variant structure (abbreviated 1TVIA) is given by a list

∆ = (Σ , Q , q0 , q , λ0,t , λt , Ft),

where

Σ, Q, q0, q are the sames in 1IA;

∀t ∈ N , λ0,t : Σ ×Q × Q −→ Q is the state transition function of Γ0 at the
time t;

∀t ∈ N , λt : Q×Q×Q −→ Q is the state transition function of Γn, n > 1 at
the time t, with the condition λ0,t(q0, q, q) = λt(q, q, q) = q;

∀t ∈ N , Ft ⊆ Q is the set of final states of Γ0 at the time t.

Let Mt be a mapping from Σ×Q+ −→ Q+ defined by

Mt(a, p0p1 · · · pn) = λ0,t(a, p0, p1)λt(p0, p1, p2) · · · λt(pn−1, pn, q)λt(pn, q, q),

with n > 0, a ∈ Σ, pi ∈ Q, 0 6 i 6 n.

The mapping Mt can be extended to a mapping from Σ∗×Q+ −→ Q+ by the
recursive definition

{
Mt(Λ, u) = u;
Mt(ωa, u) = Mt(a,Mt−1(ω, u));

with a ∈ Σ, ω ∈ Σ∗ and u ∈ Q+.
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After that we define Nt to be a mapping from Σ∗ × Q+ −→ Q such that for
ω ∈ Σ∗, u ∈ Q+ and if Mt(ω, u) = p′0p

′
1 · · · p

′
n then

Nt(ω, u) = p′0;

Nt(ω, u) is the state transition function of Γ0 at the time t.

The language representable by the iterative array ∆ is the set

L(∆) = {ω ∈ Σ∗ |N0(ω, q) ∈ Fl(ω) }.

A language which is representable by an 1TVIA, is called an 1TVIA-language.
The set of all 1TVIA-languages is denoted by L(1TV IA).

For ω ∈ Σ∗, we define

C∆,r = {M0(ω, c0) | ∀q0 ∈ Q,∀ω ∈ Σr},

C∆,≤r = {M0(ω, c0) | ∀q0 ∈ Q,∀ω ∈ Σ6r}.

C∆,r (resp. C∆,≤r) is the set of all reachable configurations of ∆ from any initial
configuration c0 and with any input ω ∈ Σr (resp. ω ∈ Σ6r).

The growth functions of iterative array of finite automata with a time-variant
structure ∆ are

h∆(r) = |C∆,r|,

g∆(r) = |C∆,6r|.

By the analogous argument in proof of Theorem 1, we get the upper bounds of
the growth functions for any 1TVIA:

h∆(r) = O(CP1(r)) , ∀r ∈ N+,

g∆(r) = O(CP1(r)) , ∀r ∈ N+.

where C = const and P1(r) is a polynominal of degree 1.

Theorem 4 (The first representative theorem for 1TVIA). Let ∆ be an 1TVIA

and L = L(∆). We have

HL(r) ≤ h∆(r) , ∀r ∈ N+.

Proof. Let ∆ = (Σ , Q , q0 , q , λ0,t , λt , Ft) be an 1TVIA and L = L(∆). To
prove HL(r) 6 h∆(r) , ∀r ∈ N+, we assume the contrary, i. e., there exists an
r ∈ N+ such that HL(r) > h∆(r). Therefore, there are two words u, v ∈ Σr such
that uLrv (mod L), but C0(u) = C0(v), where C0(ω) = M0(ω, c0), ω ∈ Σ∗. It
follows that

Ml(u)(ω,C0(u)) = Ml(v)(ω,C0(v)) , ∀ω ∈ Σ∗;

M0(ωu, c0) = M0(ωv, c0) , ∀ω ∈ Σ∗.

N0(ωu, c0) = N0(ωv, c0) , ∀ω ∈ Σ∗;

ωu ∈ Fr+l(ω) ←→ ωv ∈ Fr+l(ω) , ∀ω ∈ Σ∗;

ωu ∈ L←→ ωv ∈ L , ∀ω ∈ Σ∗;

uLrv (modL)

It contradicts the hypothesis uLrv (mod L). Therefore we get HL(r) 6 h∆(r) ,
∀r ∈ N+.
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Example 5. Let Σ be an alphabet, |Σ| = m > 2 and

L2 = { xxR | x ∈ Σ∗},

where xR is the inverse image of x.

In Example 2 we have shown that HL2(r) = |Σr| = mr and if there exists a
triplet (m,n, r) satisfying the condition mr > nr+1, then L2 is not representable
by any 1IA with |Q| 6 n.

Now we continue to prove that if we have the above condition then L2 is not
representable by even any 1TVIA with |Q| 6 n.

Indeed, for any 1TVIA ∆ we have h∆(r) = |Q|r+1 = nr+1. If L2 = L(∆) then
according to Theorem 4, we get

HL2(r) = mr
6 h∆(r) = nr+1.

It contradicts the condition mr > nr+1. Our confirmation is proved.

Now we consider the other equivalent relations that are also suitable to 1TVIA.
Let L ⊆ Σ∗ and i, r ∈ N+. We define the relations Ri,r (modL) and Ri,≤r (modL)
as follows:

uRi,rv (modL)⇔ ∀w ∈ Σr : uw ∈ L↔ vw ∈ L , ∀u, v ∈ Σi;

uRi,6rv (modL)⇔ ∀w ∈ Σ6r : uw ∈ L↔ vw ∈ L , ∀u, v ∈ Σi.

We can see that they are equivalent relations. So we define:

KL(i, r) = Rank Ri,r (modL);

FL(i, r) = Rank Ri,≤r (modL).

It is easy to prove that ∀L ⊆ Σ∗, ∀i, r ∈ N+, we have:

1 6 KL(i, r) 6 2|Σ
r | = O(2mr

) = O(CExp(r)) , ∀r ∈ N+;

1 6 FL(i, r) 6 2|Σ
≤r | = O(2

m(mr−1)
m−1 ) = O(CExp(r)) , ∀r ∈ N+.

where C = const and Exp(r) denote an exponential function of r.

Theorem 5 (The second representative theorem for 1TVIA). Let ∆ be an 1TVIA

and L = L(∆). Then

KL(i, r) 6 h∆(r) , ∀i, r ∈ N+;

FL(i, r) 6 g∆(r) , ∀i, r ∈ N+.

Proof. Let ∆ = (Σ , Q , q0 , q , λ0,t , λt , Ft) be an 1TVIA and L = L(∆). We
shall prove that, for example FL(i, r) 6 g∆(r), ∀i, r ∈ N+. We assume the
contrary, i. e. there are i, r ∈ N+ such that FL(i, r) > g∆(r). By analogous
argument in the proof of Theorem 3, it follows that there are two words u, v ∈
Σi such that uRi,6rv (modL), but C0(u) and C0(v), where C0(w) = M0(w, c0),
w ∈ Σ∗, are non r-distinguished in the sense

Ml(u)(ω,C0(u)) = Ml(v)(ω,C0(v)) , ∀ω ∈ Σ6r;
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From this, we have:

M0(uω, c0) = M0(vω, c0) , ∀ω ∈ Σ6r;

N0(uω, c0) = N0(vω, c0) , ∀ω ∈ Σ6r;

uω ∈ L←→ vω ∈ L , ∀ω ∈ Σ6r;

uRi,≤rv (modL)

It conflicts with the hypothesis uRi,6rv (modL). Therefore we get

FL(i, r) 6 g∆(r) , ∀i, r ∈ N+.

By an analogous argument, we have KL(i, r) 6 h∆(r) , ∀i, r ∈ N+.

Corollary 3 (The necessary condition for L(1TV IA)). If L ∈ L(1TV IA) then

KL(i, r) = O(CP1(r)) , ∀i, r ∈ N+;

FL(i, r) = O(CP1(r)) , ∀i, r ∈ N+;

where C = const and P1(r) is a polynominal of degree 1.

Proof. It follows from Theorem 5 and the upper bounds of h∆(r) and g∆(r).

Example 6. Let |Σ| = m > 2 and r = const. We define

L6,r = {τ1τ2 . . . τnτ0| τi ∈ Σ∗; l(τi) = r;n = mr;∃τi = τ0};

L6 =
⋃

r≥0

L6,r.

For each subset A = {τi1 , τi2 , . . . , τik} ⊆ Σr we associate it with a word UA,

UA = τi1τi2 . . . τik τik . . . τik
︸ ︷︷ ︸

(mr−k)−times

.

It follows l(UA) = rmr = const.

We choose i = rmr. We can verify that

∀w ∈ Σk : UAw ∈ L6,r ⇔ w ∈ A.

Since l(UA) = rmr, therefore we also have:

∀w ∈ Σk : UAw ∈ L6 ⇔ w ∈ A.

So we have KL6(i, r) > 2|Σ
r | = 2mr

, ∀r ∈ N+ , ∀i = rmr. Finally, we obtain:

KL6(rm
r, r) = 2mr

= O(CExp(r)) > O(CP1(r)) ,

with r enough large.

According to Corollary 3, we obtain L6 /∈ L(1TV IA).
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