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ON MAXIMAL SUBGROUPS IN DIVISION RINGS

BUI XUAN HAI AND LE KHAC HUYNH

Abstract. In this work we discuss three conjectures, raised in [3] on maximal
subgroups in division rings. Recently M. Mahdavi-Hezavehi gave a negative
answer to Conjecture 3 (see below) by constructing a counterexample in the
division ring of real quaternions. Here, we show that the other conjectures have
a positive answer for division rings of quaternions of characteristics different
from 2. The description of all solvable maximal subgroups of the division ring
of real quaternions is also given.

1. Introduction

In [3] there are the following conjectures:

Conjecture 1. Let D be a division ring with the center F and M a maximal

subgroup of D∗. Then Z(M) = M ∩ F , where Z(M) is the center of M .

Conjecture 2. Let D be a division ring and M a nilpotent maximal subgroup of

D∗. Then D is commutative.

Conjecture 3. Let D be a division ring and M a solvable maximal subgroup of

D∗. Then D is commutative.

We will establish some statement which is equivalent to Conjecture 1 in the
case of infinite center F of D. Using this fact, we prove that for division rings
of quaternions of characteristics different from 2 the conjectures 1 and 2 have
positive answers.

In [5], M. Mahdavi-Hezavehi constructed the solvable maximal subgroupMH :=
C
∗ ∪ C

∗j of the multiplicative group of the division ring of real quaternions H,
which gave a negative answer to Conjecture 3. Here, we proved that every solv-
able maximal subgroup of H∗ is conjugate with MH in H∗.

Throughout this paper the following notations will be used: D denotes a divi-
sion ring with the center F . We say that a division ring D is algebraic over its

center F if every element of D is algebraic over F . If R is a ring with identity 1
then R∗ denotes the group of all units in R. For nonempty subset A ⊆ R,CR(A)
denotes the centralizer of A in R, i.e.

CR(A) := {x ∈ R|xa = ax for all a ∈ A}.
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If G is a group, then for any nonempty subset S ⊆ G, 〈S〉 denotes the subgroup
of G generated by S. For x, y ∈ G, and a subgroup H of G, we set

yx := xyx−1 and Hx := xHx−1.

For any field extension K ⊆ L, denote by Gal(L/K) the Galois group of this
extension, i. e. the group of all automorphisms of L which fix every element of
K.

2. Conjecture 1 for division rings with infinite center

Let D be a division ring with infinite center F and M a maximal subgroup of
D∗ with center Z(M). Denote by P (Z(M)) the minimal subfield of D containing
Z(M). We shall prove that F ⊆ P (Z(M)) and that Conjecture 1 has a positive
answer if and only if F = P (Z(M)) for every maximal subgroup M of D∗.
Moreover, we shall prove that if D is algebraic over F , then the Galois group
Gal(P (Z(M))/F ) is trivial and there are no proper intermediate subfields of the
field extension F ⊆ P (Z(M)).

For further use we note the following simple results from group theory. Note
that lemmas 1, 2 are well-known, so we state them without proofs.

Lemma 1. Let G be a group with center Z(G). If M1 and M2 are distinct

maximal subgroups of G, then CG(M1) ∩CG(M2) = Z(G).

Lemma 2. Let G be a group and M a normal maximal subgroup of G. Then

there exist an element b ∈ G and a prime number p such that

G = M〈b〉, bp ∈M and bk 6∈M, ∀k = 1, 2, . . . , p− 1.

Corollary 1. Let G be a group with center Z(G) and M a maximal subgroup

of G. Then either Z(G) ⊆ M or there exist an element b ∈ Z(G) and a prime

number p such that

G = M〈b〉, bp ∈M and bk 6∈M, ∀k = 1, 2, . . . , p− 1.

Lemma 3. Let D be a division ring and H a subgroup of the multiplicative group

D∗ of D. Then either −H ∩H = ∅ or −H = H.

Proof. If −H ∩H 6= ∅, then there exists some element h ∈ H such that −h ∈ H.
It follows −1 = (−h)h−1 ∈ H. So −y = (−1)y ∈ H for any y ∈ H. This means
that −H ⊆ H. Clearly, ∀h ∈ H, h = −(−h) ∈ −H. So it follows H = −H.

Lemma 4. Let D be a division ring and M a maximal subgroup of D∗. Then

either −1 ∈M or −M ∪M = D∗.

Proof. Put H := M〈−1〉 = −M ∪M . Then H is the subgroup of D∗ containing
M . Since M is maximal, H = M or H = D∗.

Lemma 5. Let D be a division ring with center F and M a maximal subgroup

of D∗. Then, either Z(M) ⊆ F or M ∪ {0} is a division subring of D.
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Proof. PutK := M∪{0}. ThenK ⊆ CD(Z(M)). ThereforeK∗ ⊆ (CD(Z(M)))∗.
Since K∗ = M is maximal in D∗, either (CD(Z(M)))∗ = D∗ or (CD(Z(M)))∗ =
K∗. It follows that either Z(M) ⊆ F or K is a division subring of D.

For our use we need also the following result:

Theorem A. (see [2, Cor. (13.24), p.225]) Let D be a division ring and L a

division subring of D. If [D∗ : L∗] <∞, then either D is a finite field or L = D.

From Theorem A it follows the following corollaries:

Corollary 2. Let D be a division ring with center F 6= D. Then [D∗ : F ∗] = ∞.

Corollary 3. There is no extension of infinite fields F 6⊆ K with [K∗ : F ∗] <∞.

Lemma 6. Let D be a noncommutative division ring and L a division subring

of D such that L∗ is the maximal subgroup of D∗. Then L∗ is self-normalized in

D∗.

Proof. Since L∗ is maximal in D∗, either ND∗(L∗) = L∗ or ND∗(L∗) = D∗. If L∗

is normal in D∗, then it is of finite index in D∗. By Theorem A, either D is a
field or D = L, which is imposible. Hence L∗ is self-nomalized in D∗.

Lemma 7. Let D be a division ring with infinite center F and M a maximal

subgroup of D∗ containing −1. Then either F ∗ ⊆ M or there exists an element

u ∈ Z(M) such that F ∗ = Z(M)〈1 + u〉.

Proof. Since M is a maximal subgroup of D∗, by Corollary 1 either F ∗ ⊆ M or
there exist some element b ∈ F ∗ and a prime number p such that D∗ = M〈b〉
with bp ∈ M and bk 6∈ M for all k = 1, 2, . . . , p − 1. It follows bp ∈ Z(M) and
bk 6∈ Z(M) for all k = 1, 2, . . . , p− 1.

Suppose that the last assertion occurs. We have to find an element u ∈ Z(M)
such that F ∗ = Z(M)〈1 + u〉.

Put K := Z(M)∪ {0}. We claim that F = K〈b〉. Let us consider an arbitrary
element x ∈ F ∗. Since D∗ = M〈b〉, there exist some elements h ∈M and c ∈ 〈b〉
such that x = hc. Clearly c ∈ F ∗, so h = xc−1 ∈ F ∗. It follows h ∈ F ∗∩M ⊆ K∗,
so x = hc ∈ K∗〈b〉. We have shown that F ∗ ⊆ K∗〈b〉, hence F ⊆ K〈b〉.

Now, we have to show K〈b〉 ⊆ F . Since b ∈ F , it remains only to show
K∗ ⊆ F ∗. Suppose that y is an arbitrary element in K∗ and z is an arbitrary
element in D∗. Writing z = md with m ∈M and d ∈ 〈b〉 ⊆ F ∗, we have

yz = y(md) = (ym)d = (my)d = d(my) = (dm)y = (md)y = zy.

Therefore y ∈ F ∗, hence K〈b〉 ⊆ F .

Next, we prove the following:

∃u ∈ K, 1 + u 6∈ K.(1)

In fact, if 1 + u ∈ K for every u ∈ K, then using the fact that −1 ∈ K, it is
easy to verify that K is a field. Since F = K〈b〉 with bp ∈ K and bk 6∈ K for all
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k = 1, 2, . . . , p − 1, it follows [F ∗ : K∗] < ∞. But in view of Corollary 3 this is
impossible. Hence (1) holds.

Now, we have u ∈ K ⊆ CD(M), so 1 + u ∈ CD(M). Since M is maximal
in D∗, it can be shown that 1 + u ∈ F \M . It follows D = M〈1 + u〉, hence
F ∗ = Z(M)〈1 + u〉 and the proof of the lemma is now completed.

Lemma 8. Let D be a division ring with infinite center F and M a maximal

subgroup of D∗. Then F ⊆ P (Z(M)), where P (Z(M)) is the minimal subfield of

D containing Z(M).

Proof. In view of Lemma 4, either −1 ∈M or −M ∪M = D∗. If −M ∪M = D∗

then F ∗ = −Z(M) ∪ Z(M), so F = P (Z(M)). Otherwise, suppose −1 ∈ M .
By Lemma 7, either F ∗ ⊆ M or there exists an element u ∈ Z(M) such that
F = Z(M)〈1+u〉. If F ∗ ⊆M then F ∗ ⊆ Z(M) ⊆ P (Z(M)). If F = Z(M)〈1+u〉
for some u ∈ Z(M) then F = P (Z(M)). Therefore F ⊆ P (Z(M)) in any
case.

We are now ready to prove the following:

Proposition 1. Let D be a division ring with infinite center F and M a maximal

subgroup of D∗. Then Z(M) = M ∩ F if and only if P (Z(M)) = F .

Proof. Suppose Z(M) = M ∩ F . Then Z(M) ⊆ F and it follows P (Z(M)) ⊆ F .
So in the connection with Lemma 8 we have P (Z(M)) = F .

Conversely, if P (Z(M)) = F then Z(M) ⊆ F and hence Z(M) = M ∩ F .

Clearly, Proposition 1 gives us an other way to attack Conjecture 1 for division
rings with infinite center.

3. Minimal subfield containing the center of a maximal subgroup

Let D be a division ring with center F and M a maximal subgroup of D∗.
In Paragraph 2 we have defined the minimal subfield P (Z(M)) containing the
center Z(M) of M . Moreover, if F is infinite then we have the field extension
F ⊆ P (Z(M)) (see Lemma 8). In this section, we study in detail this field
extension in the case when D is noncommutative division ring which is algebraic
over its center F . In our study we need two important results on simple rings.
For the convenience of the readers we list them here.

Centralizer Theorem. (see [1, p. 42]) Let B be a simple subring of a simple

ring A, K := Z(A) ⊆ Z(B) and [B : K] <∞. Then

(i) CA(CA(B)) = B.

(ii) If [A : K] <∞ then [A : K] = [B : K][CA(B) : K].

Note that this theorem is in fact only a part of Centralizer Theorem in [1].
Note also the part (i) is often referred as the Double Centralizer Theorem.
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Skolem-Noether Theorem. (see [1, p. 39]) Let A,B be simple rings, K :=
Z(B) ⊆ Z(A) and [A : K] <∞. If f, g : A −→ B are K-algebra homomorphisms,

then there exists a unit b ∈ B∗ such that g(a) = bf(a)b−1 for all a ∈ A.

Lemma 9. Let D be a noncommutative division ring which is algebraic over its

center F and M a maximal subgroup of D∗. Then we have the algebraic field

extension F ⊆ P (Z(M)). Moreover, this extension have no proper intermediate

subfields.

Proof. If F is finite then F is algebraic over its prime subfield P , hence D is
algebraic over the finite subfield P . By Jacobson Theorem (see [2, p. 219]) D is
commutative, a contradiction. Thus, F must be infinite. Therefore, by Lemma
8 we have the field extension F ⊆ P (Z(M)).

Suppose F 6= P (Z(M)). We have to show that the extension F ⊆ P (Z(M))
has no proper intermediate subfield. Consider an arbitrary element a ∈ P (Z(M))\
F . Since a ∈ P (Z(M)) ⊆ CD(M),

M ⊆ (CD(a))∗ = (CD(F (a)))∗.

By assumpsion M is maximal in D∗ and a 6∈ F , therefore M = (CD(F (a)))∗.

Putting L := M ∪ {0}, we have L = CD(F (a)). By Lemma 6, L∗ is self-
normalized. It follows that CD(L) = P (Z(M)). Since a is algebraic over F ,
[F (a) : F ] <∞. By applying the Double Centralizer Theorem we have

P (Z(M)) = CD(L) = CD(CD(F (a))) = F (a).

The proof is now completed.

Now, let us consider a division ring D with infinite center F and suppose that
D∗ has at least one maximal subgroup. Then

S := {P (Z(M))|M is maximal in D∗} 6= ∅.

By Lemma 8 we have the field extension F ⊆ P (Z(M)) for every maximal sub-
group M of D∗. By Proposition 1, Conjecture 1 is true for D if and only if
F = P (Z(M)) for every maximal subgroup M . Putting

PS := ∩{P (Z(M))|M is maximal in D∗},

we have F ⊆ PS . Clearly, if F 6= PS then Conjecture 1 is false. However, as we
can see in the following, we always have F = PS . To see this, we first need some
results:

Lemma 10. Let D be a division ring with center F and M a normal maximal

subgroup of D∗. Then Z(M) = M ∩ F .

Proof. Suppose Z(M) 6= M ∩ F . Then Z(M) 6⊆ F . By Lemma 5, M is the
multiplicative group of some division subring of D. Then by Lemma 6, M is
self-normalized. But, by assumption M is normal in D∗, hence we have a con-
tradiction.
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Lemma 11. Let D be a division ring with infinite center F and M1,M2 distinct

maximal subgroups of D∗. Then

P (Z(M1)) ∩ P (Z(M2)) = F.

Proof. By Lemma 8 we have

F ⊆ P (Z(M1)) ∩ P (Z(M2)).

Conversely, clearly

P (Z(M1))
∗ ∩ P (Z(M2))

∗ ⊆ CD(M1)
∗ ∩ CD(M2)

∗.

By Lemma 1, CD(M1)
∗ ∩CD(M2)

∗ = F ∗ and the proof is now finished.

Now, it is easy to obtain that PS = F .

Proposition 2. Let D be a division ring with infinite center F . Then PS = F .

Proof. If D∗ has distinct maximal subgroups then by Lemma 11 the conclusion
holds. Suppose that D has a unique maximal subgroup M . Then M is normal
in D∗. By Lemma 10, Z(M) = M ∩ F and clearly it follows P (Z(M)) = F .

Corollary 4. Let D be a noncommutative division ring with infinite center F
and M a maximal subgroup of D∗. Then for every x ∈ D∗ \M we have

P (Z(M)) ∩ P (Z(Mx)) = F.

Proof. If M is normal in D∗ then by Lemma 10, Z(M) = M ∩ F . Hence, by
Proposition 1, P (Z(M)) = F . IfM is self-normalized thenM andMx are distinct
maximal subgroups of D∗. By Lemma 11, P (Z(M)) ∩ P (Z(Mx)) = F .

Now, we are ready to prove the main result of this section.

Theorem 1. Let D be a noncommutative division ring which is algebraic over

its center F and M a maximal subgroup of D∗. Then F ⊆ P (Z(M)). Moreover,

the following properties hold:

(i) There are no proper intermediate subfields of the field extension F ⊆
P (Z(M)),

(ii) Gal(P (Z(M))/F ) = {IdP (Z(M))}.

Proof. In view of Lemma 9, it remains to prove the assertion (ii). Put K :=
P (Z(M)) and suppose that K 6= F . Consider an arbitrary element a ∈ K \ F .
By (i), K = F (a), and it follows [K : F ] = [F (a) : F ] <∞.

Suppose Gal(K/F ) 6= {IdK}. Then there exists some τ ∈ Gal(K/F ) such
that τ 6= IdK . Consider the following homomorphisms of F -algebras:

ψ : K −→ D and ϕ : K −→ D

with ψ(x) = τ(x) and ϕ(x) = x for all x ∈ K. By Skolem-Noether Theorem
there exists some element ω ∈ D∗ such that

ϕ(x) = ωψ(x)ω−1, ∀x ∈ K.
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It follows a = ωτ(a)ω−1 or aω = ωτ(a).

Suppose ω ∈ M . Since a ∈ K ⊆ CD(M), ωa = aω = ωτ(a). Therefore
τ(a) = a and it follows τ = IdK , a contradiction. Thus, ω ∈ D∗ \ M . By
Corollary 4, we have

F = P (Z(M)) ∩ P (Z(Mω))

= P (Z(M)) ∩ P ((Z(M))ω)

= P (Z(M)) ∩ (P (Z(M)))ω

= K ∩Kω.

On the other hand, a = τ(a)ω ∈ Kω, hence a ∈ K ∩Kω = F and we obtain
again a contradiction. The proof is now completed.

4. Maximal subgroups in division rings of quaternions

In this section, using the results obtained in the preceding section, we show that
Conjectures 1 and 2 are true for division rings of quaternions in the case of char-
acteristics different from 2. Concerning Conjecture 3, recently [5] M. Mahdavi-
Hezavehi gave a negative answer by showing that the subgroupMH := C

∗∪C
∗j is

solvable maximal in H∗, where H is the division ring of real quaternions. Here, in
addition, we shall prove that every solvable maximal subgroup of H∗ is conjugate
with MH in H∗.

Definition 1. Let D be a noncommutative division ring with center F . We say
that D is a division ring of quaternions over F if [D : F ] = 4.

Theorems 2 and 3 below show that the Conjectures 1 and 2 are true for division
rings of quaternions of characteristics different from 2.

Theorem 2. Let D be a division ring of quaternions over its center F and

charD 6= 2. Then Z(M) = M ∩ F for every maximal subgroup M of D∗.

Proof. Put K := P (Z(M)). By Theorem 1, Gal(K/F ) = {IdK}. Suppose
F 6= K. Then by Centralizer Theorem we have

[D : F ] = [K : F ][CD(K) : F ] = 4.

Therefore [K : F ] = 2, soK is normal extension over F . Moreover, since charF 6=
2, it follows K is Galois over F . Hence

|Gal(K/F )| = [K : F ] = 2

and we are in a contradiction.

Theorem 3. Let D be a division ring of quaternions over its center F and

charD 6= 2. Then, there are no nilpotent maximal subgroups in D∗.

Proof. Let M be a nilpotent maximal subgroup of D∗. By Theorem 7 in [3], M
is the multiplicative group of some subfield K of D. By Theorem 2 we have

K = Z(K) = K ∩ F ⊆ F.
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Hence D = F , a contradiction.

Now, we finish our discussion by describing all solvable maximal subgroups
of H∗. In fact, we shall show that every solvable maximal subgroup of H∗ is
conjugate with MH := C

∗ ∪ C
∗j in H∗.

For convenience we restate the following result of M. Mahdavi-Hezavehi:

Theorem C. [5, Cor. 4] Let D be a division ring which is finite dimensional over

its center F and M a nonabelian maximal subgroup of D∗. Then M is solvable

if and only if there exists some maximal subfield K of D, satisfying the following

conditions:

(i) K∗ is the normal subgroup of M ;

(ii) K is the Galois extension over F ;

(iii) M/K∗ ' Gal(K/F ) is solvable group.

Proposition 3. Let H be a division ring of real quaternions and M be a solvable

maximal subgroup of H∗. Then there exist the elements ω, θ ∈ H∗ such that:

(i) ω2 = θ2 = −1, ωθ = −θω;

(ii) M = R(ω)∗ ∪ R(ω)∗θ, where R denotes the field of real numbers.

Proof. Let M be a solvable maximal subgroup of H∗. By Theorem 3, M is
nonabelian. Therefore, in view of Theorem C, there exists some maximal subfield
K of H such that K∗ is normal in M,K is Galois over R and M/K∗ ' Gal(K/R).
It follows that

[M : K∗] = |M/K∗| = |Gal(K/R)| = [K : R] = 2.

Suppose τ ∈ Gal(K/R), τ 6= IdK . By Skolem-Noether Theorem, there exists
an element a ∈ H∗ such that

τ(x) = axa−1,∀x ∈ K.

If a ∈ H∗ \ M , then a ∈ NH∗(K∗) \ M . It follows that M is the proper
subgroup of NH∗(K∗). Since M is maximal in H∗, NH∗(K∗) = H∗ or K∗ / H∗.
By Cartan-Brauer-Hua Theorem (see [2, p. 222]), K = R or K = H, which is
impossible. Thus, a ∈ M . Since τ 6= IdK , it follows a 6∈ K, hence a ∈ M \K∗.
Clearly, we can write K = R(ω) with ω ∈ K \ R and ω2 = −1. Then τ(ω) = −ω
and it follows aω = −ωa. Therefore

a2ω = a(aω) = a(−ωa) = −(aω)a = −(−ωa)a = ωa2,

and we have a2 ∈ CH(ω) = R(ω) = K. Moreover, since aω 6= ωa, it follows that

a2 ∈ R(a) ∩ R(ω) = R.

Writing a2 = −s2 for some positive number s, we have for θ := as−1 ∈M \K∗,

θ2 = ω2 = −1 and ωθ = −θω.

Since [M : R(ω)∗] = 2, it follows M = R(ω)∗ ∪ R(ω)∗θ.
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Now, we show that the converse of Proposition 3 is true.

Proposition 4. Let ω and θ be elements of H∗ such that ω2 = θ2 = −1 and

ωθ = −θω. Then M := R(ω)∗ ∪ R(ω)∗θ is the solvable maximal subgroup of H∗.

Proof. Putting a := ω, b := θ and c := ωθ, we have a2 = b2 = c2 = −1, ab = c,
bc = a, and ca = b. It can be shown that {1, a, b, c} is the basis of H over R. So,
we may define the following automorphism of the R-algebra H:

f : H −→ H,

with f(1) = 1, f(i) = a, f(j) = b, f(k) = c. Then M = f(MH) is the solvable
maximal subgroup of H∗.

Note that, by Skolem-Noether Theorem, the map f in Proposition 4 is the
inner automorphism. As a consequence we get the following result:

Theorem 4. Let H be the division ring of real quaternions. Then every solvable

maximal subgroup of H∗ is conjugated with MH = C
∗ ∪ C

∗j.
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