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UNIFORM NORMAL STRUCTURE AND FIXED POINTS OF

NONEXPANSIVE MAPS IN A GENERAL TOPOLOGICAL

SPACE (X, τ) WITH A τ-SYMMETRIC FUNCTION

M. AAMRI AND D. EL MOUTAWAKIL

Abstract. The main purpose of this paper is to define the concept of uniform
normal structure and give some new fixed point theorems of nonexpansive
maps in a general topological space (X, τ ) with a τ -symmetric function.

1. Introduction

Let (X, d) be a metric space. A self-mapping T of X is said to be nonex-
pansive if for each x, y ∈ X, d(Tx, Ty) 6 d(x, y). Although such mappings are
nartural extension of the contraction mappings, it was clear from the outset that
the study of fixed points of nonexpansive mappings required techniques which
go far beyond the purely metric approach. On the one hand, it is well known
that fixed point theory for mappings of this class has its origin in 1965 existence
theorems when M. S. Brodskii and D. P. Mil’man introduced a geometric prop-
erty, called normal structure, for subsets of Banach spaces. This property was
inroduced into fixed point theory by W. A. Kirk in Banach spaces and since then
a number of abstract results were discovered, along with important discoveries
related both to the structure of the fixed point sets and to techniques for approx-
imating fixed points. On the one hand, there are attempts to generalize certain
existence fixed point theorems to metric spaces. In 1969, Kijima and Takahashi
[1] gave a metric formulation of Kirk’s theorem [2]. But their definition of convex
metric spaces is rather restraining. However, many results in metric spaces were
developed after Penot’s formulation [4]. In [7], Khamsi extended the concept of
uniform normal structure and established some important fixed point theorems
of nonexpansive maps in metric spaces. On the other hand, it has been observed
that the distance function used in metric fixed point theorems proofs need not
satisfy the triangular inequality nor d(x, x) = 0 for all x ∈ X. Motivated by this
idea, Hicks and Rhoades [8] established several important common fixed point
theorems for general contractive self-mappings of a symmetrizable (resp. semi-
metrizable) topological spaces. Recall that a symmetric function on a set X is a
nonnegative real valued function d defined on X × X satisfying
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1) d(x, y) = 0 if and only if x = y,

2) d(x, y) = d(y, x).

A symmetric function d on a set X is a semi-metric if for each x ∈ X and each
ε > 0, Bd(x, ε) = {y ∈ X : d(x, y) 6 ε} is a neighborhood of x in the topology
t(d) defined as follows

τ = {U ⊆ X| ∀x ∈ U, Bd(x, ε) ⊂ U, for some ε > 0}.

A topological space X is said to be symmetrizable (semi-metrizable) if its topol-
ogy is induced by a symmetric (semi-metric) on X. Moreover, Hicks and Rhoades
[8] proved that very general probabilistic structures admit a compatible symmet-
ric or semi-metric. For further details on semi-metric spaces (resp. probabilistic
metric spaces), see, for example, [11] (resp. [10]).

In this paper, we follows some ideas in [3], [4], [6], [7] to establish a generaliza-
tion of Khamsis’s fixed point theorem [7]. Let (X, τ) be a topological space. In
Section 2 we define a new notion called τ -symmetric function which extends the
usual notion of symmetric function and define the concept of p-normal structure.
Then we give some new fixed point theorems of nonexpansive maps in general
topological space (X, τ) by introducing the notion of a τ -symmetric function
p : X ×X −→ R

+. An application to symmetrizable topological spaces has been
made.

2. τ-symmetric function and the existence of fixed points

Let (X, τ) be a topological space and p : X × X −→ R
+ be a function. For

any ε > 0 and any x ∈ X, let Bp(x, ε) = {y ∈ X : p(x, y) < ε} and B′
p(x, ε) =

{y ∈ X : p(x, y) 6 ε}.

Definition 2.1. The function p is said to be a τ -symmetric if

(τ1) For all x, y ∈ X, p(x, y) = p(y, x),

(τ2) For each x ∈ X and any neighborhood V of x, there exists ε > 0 with
Bp(x, ε) ⊂ V .

Example 2.1.

1. Let X = {0; 1; 3} and τ = {∅;X; {0; 1}}. Consider the function p : X×X →
R

+ defined by

p(x, y) =







y for x 6= 1
1

2
y for x = 1

We have, p(1, 3) =
3

2
6= p(3, 1) = 1. Thus p is not symmetric. Moreover, we have

p(0, 3) = 3 > p(0, 1) + p(1, 3) =
5

2

which implies that p does not satisfying the triangular inequality. However, the
function p is a τ -distance.
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2. Let X = R
+ and τ = {X, ∅}. It is well known that the space (X, τ) is not

metrisable. Consider the function p defined on X × X by p(x, y) = (x − y)2 for
all x, y ∈ X. It is easy to see that p is a τ -symmetric function.

3. A symmetric function on a set X is a nonnegative real valued function d

defined on X × X which satisfies

1) d(x, y) = 0 if and only if x = y,

2) d(x, y) = d(y, x).

Each symmetric function d on a nonempty set X is a τ -symmetric on X where
the topology τ is defined as follows: U ∈ τ if for each x ∈ U one has Bd(x, ε) ⊂ U

for some ε > 0.

4. Let X = [0,+∞[ and d(x, y) = |x − y| the usual metric. Consider the
function p : X × X −→ R

+ defined by

p(x, y) = e|x−y|, ∀x, y ∈ X.

It is easy to see that p is a τ -symmetric function on X, where τ is the usual
topology since Bp(x, ε) ⊂ Bd(x, ε) for all x ∈ X and ε > 0. Moreover, (X, p) is
not a symmetric space since for all x ∈ X, p(x, x) = 1.

Lemma 2.1. Let (X, τ) be a topological space with a τ -symmetric p.

(a) Let (xn) be an arbitrary sequence in X and (αn) be a sequence in R
+

converging to 0 such that p(xn, x) 6 αn for all n ∈ N. Then (xn) converges to x

with respect to the topology τ .

(b) If τ is a Hausdorff topology, then

(b1) p(x, y) = 0 implies x = y,

(b2) for any sequence (xn) in X, the conditions lim
n→∞

p(x, xn) = 0 and

lim
n→∞

p(xn, y) = 0 imply x = y.

Proof. (a) Let V be a neighborhood of x. Since lim
n→∞

p(x, xn) = 0, there exists

N ∈ N such that for every n > N , xn ∈ V . Therefore lim
n→∞

xn = x with respect

to τ .

(b1) Since p(x, y) = 0, p(x, y) < ε for all ε > 0. Let V be a neighborhood of x.
Then there exists ε > 0 such that Bp(x, ε) ⊂ V , which implies that y ∈ V . Since
V is arbitrary, we conclude that y = x.

(b2) From (a), lim
n→∞

p(x, xn) = 0 and lim
n→∞

p(y, xn) = 0 imply lim
n→∞

xn = x and

lim
n→∞

xn = y with respect to the Hausdorff topology τ . Thus x = y.

Let us recall that each family (An) of closed nonempty subsets of a complete
metric space (X, d) such that lim

n→∞
δ(An) = 0, where δ(A) = sup{d(x, y) : x, y ∈

A}, has a nonempty intersection. It will be helpful in the sequel to generalize
this result to our setting.

Definition 2.2. Let (X, τ) be a topological space with a τ -symmetric p.
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1. we say that a nonempty subset A of X is p-closed iff

A
p

= {x ∈ X : p(x,A) = 0} ⊂ A,

where p(x,A) = inf{p(x, y)|y ∈ A}.

2. A sequence in X is said p-Cauchy sequence if it satisfies the usual metric
condition. There are several concepts of completeness in this setting:

(i) X is S-complete if for every p-Cauchy sequence (xn), there exists x in X

with lim
n→∞

p(xn, x) = 0;

(ii) X is p-Cauchy complete if for every p-Cauchy sequence (xn), there exists
x in X with lim

n→∞
xn = x with respect to the topology τ .

3. We say that X is sequentially p-compact if each sequence (xn) of X has a
p-convergent subsequence (xn′), i.e., there exists x ∈ X with lim

n′→∞
p(x, xn′) = 0.

Remark 2.1. Let (X, τ) be a topological space with a τ -symmetric p and let
(xn) be a p-Cauchy sequence. If X is S-complete, then there exists x ∈ X such
that lim

n→∞
p(xn, x) = 0. Lemma 2.1(a) then gives lim

n→∞
xn = x with respect to the

topology τ . Therefore S-completeness implies p-Cauchy completeness. Moreover,
it is easy to see that sequential p-compactness implies that (X, τ) is sequentially
compact.

Lemma 2.2. Let (X, τ) be a Hausdorff topological space with a τ -symmetric p.

Suppose that for each x ∈ X, the function p(x, .) : X −→ R
+ is lower semi-

continuous. Then for each x ∈ X, B′
p(x, r) is p-closed.

Proof. Let y ∈ B′
p(x, r)p. Then p(y,B′

p(x, r)) = 0 and therefore, for all n ∈ N
∗,

there exists a sequence (yn) in B′
p(x, r) such that lim

n→∞
p(y, yn) = 0, which implies

that lim
n→∞

yn = y with respect to the topology τ (Lemma 2.1(a)). Since p(x, yn) 6

r and p(x, .) is lower semi-continuous, by letting n to infty we get p(x, y) 6 r.
Hence y ∈ B′

p(x, r) and therefore B′
p(x, r) is p-closed.

Proposition 2.1. Let (X, τ) be a Hausdorff topological space with a τ -symmetric

p. Suppose that X is S-complete and p-bounded. Let (An) be a family of p-closed

nonempty subsets of X such that lim
n→∞

δp(An) = 0. Then
⋂

n∈N

An = {a} for some

a ∈ X.

Proof. As in the metric case, we can show that there exists a ∈ X with a ∈ An

for all n ∈ N. Lemma 2.1(b1) then guarantees the uniqueness of a.

Definition 2.3. Let F be a nonempty family of subsets of X. We say that F
defines a convexity structure on X if and only if it is stable by intersection.

Example 2.2. Let (X, τ) be a Hausdorff topological space with a τ -symmetric
p. An admissible subset of X is any intersection of balls. Let us denote the family
of admissible subsets of X by A(X). It is obvious that A(X) define a convexity
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structure on X. In this work, we suppose that any other convexity structure F
on X, contains A(X).

Remark 2.2. In view of Lemma 2.2, if for each x in X the function p(x, .) :
X −→ R

+ is lower semi-continuous, then each admissible subset of X is p-closed.

Definition 2.4. Let (X, τ) be a topological space with a τ -symmetric p. For a
subset A of X, we write

rp,x(A) = sup
y∈A

p(x, y),(1)

rp(A) = inf
x∈A

rp,x(A),(2)

δp(A) = sup
x∈A

rp,x(A),(3)

cov(A) =
⋂

B′

p
∈F

B′
p,(4)

co(A) =
⋂

f∈A

B′
p(f, rp,f(A)),(5)

where F is the family of balls containing A. Clearly, a subset A of X is admissible
if and only if A = cov(A).

Definition 2.5. We say that X has uniform p-normal structure if there exists
a convexity structure (F) on X and a nondecreasing function φ : R

+ −→ R
+

satisfying

(φ1) φ(0) = 0,

(φ2) For every t ∈]0,+∞[, lim
n→∞

φn(t) = 0,

(φ3) rp(A) 6 φ(δp(A)), for every A ∈ F not reduced to a single point.

Example 2.3. Let (X, d) be a metric space. It is clear that d is a τ -symmetric
where τ is the topology induced by the metric d. Recall that X is said to have
uniform normal structure if there exists a convexity structure F on X such that
rd(A) 6 αδd(A), for a fixed constant α ∈ (0, 1), for any nonempty A ∈ F , which is
d-bounded and not reduced to a single point. Let φ : X −→ R

+ be the function
defined by φ(t) = αt, for all t ∈ R

+. It is clear that this function φ satisfies
(φ1)-(φ3). Hence, (X, d) has uniform d-normal structure.

In [3], Kirk proved the following lemma in metric spaces. The proof of the
lemma in our setting is essentially the same as in [8].

Lemma 2.3. Let (X, τ) be a topological space with a τ -symmetric p. Assume that

X is p-bounded and has uniform p-normal structure. Let T be a nonexpansive

self-mapping of X. If D ∈ A(X) is T -invariant set, then there exists a nonempty

admissible subset D∗ of D, which is T -invariant, such that

δp(D
∗) 6

1

2
(φ(δp(D)) + rp(D)).
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Proof. Set r =
1

2
(φ(δp(D)) + rp(D)). We can assume that δp(D) > 0, otherwise

we can take D∗ = D since φ(0) = 0. Since X has uniform p-normal structure,
we have rp(D) 6 φ(δp(D)). Therefore, the set A = {f ∈ D : D ⊂ B′

p(f, r)} is

nonempty subset of X. Moreover, A =
⋂

f∈D

B′
p(f, r)∩D, which implies that A is

admissible. Clearly, there is no reason for A to be T -invariant. Put ϑ = {M ∈
A(X) : A ⊂ M,T (M) ⊂ M} and L =

⋂

M∈ϑ

M . Note that ϑ is nonempty since

X ∈ ϑ. It is clear that L is T -invariant, admissible subset of X which contains
A. Let C = A ∪ T (L). Observe that co(C) = L. Indeed, since C ⊂ L and
L ∈ A(X), we have co(C) ⊂ L. From this we obtain T (co(C)) ⊂ T (L) ⊂ C,
hence C ∈ A(X), and therefore L ⊂ co(C) ⊂ L. This gives the desired equality.
Define D∗ = {f ∈ L : L ⊂ B′

p(f, r)}. We claim that D∗ is the desired set.
Observe that D∗ is nonempty since it contains A. Using the same argument
we can prove that D∗ is an admissible subset of X. On the other hand, it is
clear that δp(D

∗) 6 r. To complete the proof, we have to show that D∗ is T -
invariant. Let f ∈ D∗. By definition of D∗, we have L ⊂ B′

p(f, r). Since T is
nonexpansive, we have T (L) ⊂ B′

p(T (f), r) ⊂ B′
p(T (f), r). Let g ∈ A. Then

L ⊂ B′
p(g, r). But T (f) ∈ L, so that T (f) ∈ Bp(g, r), which is equivalent to

g ∈ B′
p(T (f), r). Therefore A ⊂ B′

p(T (f), r). Since C = A ∪ T (L), we deduce

that C ⊂ B′
p(T (f), r). Thus, we have co(C) = L ⊂ B′

p(T (f), r). From the
definition of D∗ it follows that T (f) ∈ D∗. In other words, D∗ is T -invariant.

Now we are able to prove the main result

Theorem 2.1. Let (X, τ) be a topological space with a τ -symmetric p such that

for each x in X, the function p(x, .) is lower semicontinuous. Assume that X is

S-complete, p-bounded and has uniform p-normal structure. Let T be a nonex-

pansive self-mapping of X. Then T has a fixed point.

Proof. Since X has uniform p-normal structure, there exists a nondecreasing
function φ : R

+ −→ R
+ satisfying (φ1)-(φ3). Moreover, we can apply Lemma 2.3

and Remark 2.2 to deduce the existence of a decreasing sequence (An) of p-closed
nonempty admissible subsets of X such that An is T -invariant and δp(An+1) 6

1

2
(φ(δp(An)) + rp(An)). This implies that

δp(An) 6 φn(δp(X)),

which in turn implies lim
n→∞

δp(An) = 0. Now we apply Proposition 2.1 to prove

that ∩An is reduced to a single point, which is the desired fixed point of T .

In the metric space setting, we have the following result.

Corollary 2.1. Let (X, d) be a bounded complete metric space. Assume that X

has uniform d-normal structure. Let T be a nonexpansive self-mapping of X.

Then T has a fixed point.
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According to the Example 2.2, the Corollary 2.1 is a generalization of the
following result of [7].

Corollary 2.2. Let (X, d) be a bounded complete metric space. Assume that X

has uniform normal structure. Let T be a nonexpansive self-mapping of X. Then

T has a fixed point.

In [8], the authors established some common fixed point theorems for general
contractive maps in symmetric spaces and proved that very general probabilistic
structures admit a compatible symmetric or semi-metric. Now we apply our main
result to the symmetric spaces setting.

Corollary 2.3. Let (X, d) be a symmetric space such that for each x in X the

function d(x, .) is lower semicontinuous. Assume that X is S-complete, d-bounded

and has uniform d-normal structure. Let T be a nonexpansive self-mapping of

X. Then T has a fixed point.
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