A BOUNDED 2-HYPERCONVEX SPACE FAILING TO HAVE THE FIXED POINT PROPERTY FOR A STRICTLY NON-EXPANSIVE MAP

NGUYEN NHUY

ABSTRACT. It was shown in [3] that if $\lambda < 2$, then any bounded λ -hyperconvex space has the fixed point property for non-expansive maps. In this note we construct an example of a bounded 2-hyperconvex space with the fixed point free for any iteration of a strictly non-expansive map.

1. INTRODUCTION

Let X be a metric space and let $\lambda \ge 1$. Following [3], a subset A of X is said to have the λ -intersection property if for any family of closed balls $\{B(x_{\alpha}, r_{\alpha})\}_{\alpha \in \Lambda}$ each of radius r_{α} centered at $x_{\alpha} \in A$ for $\alpha \in \Lambda$, the condition

$$d(x_{\alpha}, x_{\beta}) \leq r_{\alpha} + r_{\beta}$$
 for every $\alpha, \beta \in \Lambda$,

implies

$$A \cap \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, \lambda r_{\alpha}) \neq \emptyset.$$

We say that a subset A in a metric space X is *convex* if A is an intersection of a family of closed balls. A metric space X is said to be λ -hyperconvex if every non-empty convex set in X has the λ -intersection property.

Following [1], a matric space X is hyperconvex if the whole space X itself has the 1-intersection property.

We recall that a map $f: X \to X$ is non-expansive if

$$d(f(x), f(y)) \leq d(x, y)$$
 for every $x, y \in X$,

and f is strictly non-expansive if

$$d(f(x), f(y)) < d(x, y)$$
 for every $x, y \in X$ with $x \neq y$.

It was shown in [2] that if X is a bounded hyperconvex space, then any nonexpansive map $f : X \to X$ has a fixed point. This result was extended to the case of λ -hyperconvexity in [3] as follows.

Received February 27, 2004; in revised form August 2, 2004.

This work was supported by the National Science Council of Vietnam.

Theorem A ([3]). Let X be a bounded λ -hyperconvex space. If $\lambda < 2$, then any non-expansive map $f: X \to X$ has a fixed point.

From Theorem A it arises a question whether or not this result holds for $\lambda \ge 2$. In this note we show that Theorem A fails for $\lambda = 2$. In fact, we are going to establish the following theorem which is the main result of this note.

Theorem B. There exist a bounded 2-hyperconvex metric space $Q \subset l_{\infty}$ with diam $Q \leq 1$, and a strictly non-expansive map $f : Q \to Q$ such that

$$||f^n(x) - x|| > 2^{-1}$$
 for every $x \in Q$ and $n \in \mathbb{N}$.

Thus, Theorems A and B completely solve the problem on the fixed point property for non-expansive maps in λ -hyperconvex spaces.

In the next section we will describe the bounded 2-hyperconvex matric space stated in Theorem B. Our example is very elementary and self-contained. In fact, nothing than the definition of the l_{∞} -space is used in our construction.

2. The example

Let l_{∞} denote the Banach space of all bounded sequences of real numbers equipped with the sup-norm, that is

$$||x - y|| = \sup\{|x_n - y_n| : n \in \mathbb{N}\}$$

for every $x = (x_n) \in l_{\infty}$ and $y = (y_n) \in l_{\infty}$.

It is well-known that any ball in l_{∞} is hyperconvex (see [1]). Let

$$Q_1 = [3/4, 1] \times \{0\} \times \{0\} \times \dots \subset l_{\infty},$$

$$Q_2 = \{1\} \times [5/8, 3/4] \times \{0\} \times \{0\} \times \dots \subset l_{\infty}.$$

In general, we define $Q_n \subset l_\infty$ for $n \ge 3$ by setting

$$Q_n = \{1\} \times \{3/4\} \times \dots \times \{2^{-1} + 2^{-n+1}\}$$
$$\times [2^{-1} + 2^{-n-1}, 2^{-1} + 2^{-n}] \times \{0\} \times \{0\} \times \dots$$

Observe that Q_n is an interval in l_{∞} , therefore it is hyperconvex. We define $Q \subset l_{\infty}$ by

$$Q = \bigcup_{n=1}^{\infty} Q_n \subset l_{\infty}.$$

The space Q will be equipped with the metric induced from the norm of l_{∞} . We are going to show that Q satisfies the conditions of Theorem B. It is straightforward to check that

$$||x - y|| \leq 1$$
 for every $x, y \in Q$.

Therefore diam $Q \leq 1$.

Observe that for every $x, y \in Q$, we have $x \in Q_n$ and $y \in Q_m$ for some $m, n \in \mathbb{N}$. Therefore

$$x = (1, 3/4, \dots, 2^{-1} + 2^{-n+1}, x_n, 0, 0, \dots),$$

where $x_n \in [2^{-1} + 2^{-n-1}, 2^{-1} + 2^{-n}]$
$$y = (1, 3/4, \dots, 2^{-1} + 2^{-m+1}, y_m, 0, 0, \dots),$$

where $y_m \in [2^{-1} + 2^{-m-1}, 2^{-1} + 2^{-m}].$

Clearly, we may assume that $m \ge n$. Then the metric of Q induced from the norm of l_{∞} is given by the formula

(1)
$$||x-y|| = \begin{cases} |x_n - y_n| & \text{if } m = n, \\ y_{n+1} \in [2^{-1} + 2^{-n-2}, 2^{-1} + 2^{-n-1}] & \text{if } m = n+1, \\ 2^{-1} + 2^{-n-1} & \text{if } m \ge n+2. \end{cases}$$

Theorem B will be proved via the following two propositions.

Proposition 1. *Q* is 2-hyperconvex.

The proof of Proposition 1 will be given in Section 3 and 4. We first prove the following proposition.

Proposition 2. There exists a strictly non-expansive map $f: Q \to Q$ such that

$$||f^n(x) - x|| > 2^{-1}$$
 for every $x \in Q$ and $n \in \mathbb{N}$.

Proof. We define a map $f: Q \to Q$ with the following properties

(i) ||f(x) - f(y)|| < ||x - y|| for every $x, y \in Q$ with $x \neq y$;

(ii) $||f^n(x) - x|| > 2^{-1}$ for every $x \in Q$ and $n \in \mathbb{N}$.

For every $x \in Q$, we have $x \in Q_n$ for some $n \in \mathbb{N}$. Then

$$x = (1, 3/4, \dots, 2^{-1} + 2^{-n+1}, x_n, 0, 0, \dots),$$

where $x_n \in [2^{-1} + 2^{-n-1}, 2^{-1} + 2^{-n}].$

We define $f(x) \in Q_{n+1}$ by

$$f(x) = (1, 3/4, \dots, 2^{-1} + 2^{-n}, 2^{-1} + 2^{-n-2} + 2^{-1}(x_n - 2^{-1} - 2^{-n-1}), 0, 0, \dots).$$

Observe that

$$\|f(x) - x\| = 2^{-1} + 2^{-n-2} + 2^{-1}(x_n - 2^{-1} - 2^{-n-1}) > 2^{-1}.$$

Thus, condition (ii) holds for n = 1. Now assume that $n \ge 2$. By definition, if $x \in Q_m$ then $f^n(x) \in Q_{m+n}$. Since $n \ge 2$, from (1) we get

$$||f^n(x) - x|| = 2^{-1} + 2^{-m-1} > 2^{-1}$$
 for every $x \in Q$.

Consequently, condition (ii) holds.

Let us check (i). Let $x, y \in Q$ with $x \neq y$. Then $x \in Q_n$ and $y \in Q_m$ for some $m, n \in \mathbb{N}$. We may assume that $m \ge n$. Observe that if m = n then from (1) we have

$$||f(x) - f(y)|| = 2^{-1}|x_n - y_n| < |x_n - y_n| = ||x - y||.$$

Now we assume that m = n + 1. Then from (1) we have

$$||x - y|| = y_{n+1} \in [2^{-1} + 2^{-n-2}, 2^{-1} + 2^{-n-1}].$$

Since $y_{n+1} > 2^{-1}$, we get

$$||f(x) - f(y)|| = 2^{-1} + 2^{-n-3} + 2^{-1}(y_{n+1} - 2^{-1} - 2^{-n-2})$$

= 2⁻² + 2⁻¹y_{n+1} < y_{n+1} = ||x - y||.

Finally, we assume that $m \ge n+2$. Then from (1) we have

$$||x - y|| = 2^{-1} + 2^{-n-1}.$$

It is easy to see that

$$||f(x) - f(y)|| = 2^{-1} + 2^{-n-2}.$$

Therefore

$$||f(x) - f(y)|| < ||x - y||.$$

Consequently, f is a strictly non-expansive and therefore Proposition 2 is proved.

3. Proof of Proposition 1: The first step

The proof of Proposition 1 is devided into several steps. In the first step we prove the following lemma.

Lemma 1. Every convex set $A \subset Q$ is connected.

We recall that a subset A is convex if A is an intersection of a family of closed balls in Q. First we observe that the constructed space Q is a 1-dimensional piece-wise linear set containing no loops. Obviously Q can be ordered by " \leq ".

For $x, y \in Q$ we write

(2)
$$[x,y] = \{z \in Q : x \leq z \leq y\} \text{ and } [x,\infty) = \{z \in Q : z \geq x\}.$$

We say that a subset A in Q is an *interval* if it is of the form (2). Observe that a closed set $A \subset Q$ is connected if and only if A is an interval.

Claim 1. if $x, y, z \in Q$ and $x \leq z \leq y$, then $||x - z|| \leq ||x - y||$.

Proof. Let $x \in Q_n$ and $y \in Q_m$ for $m \ge n$. Let $z \in [x, y]$. Then $z \in Q_k$, $n \le k \le m$. Observe that

$$x = (1, 3/4, \dots, 2^{-1} + 2^{-n+1}, x_n, 0, 0, \dots),$$

where $x_n \in [2^{-1} + 2^{-n-1}, 2^{-1} + 2^{-n}]$
$$y = (1, 3/4, \dots, 2^{-1} + 2^{-m+1}, y_m, 0, 0, \dots),$$

where $y_m \in [2^{-1} + 2^{-m-1}, 2^{-1} + 2^{-m}]$
$$z = (1, 3/4, \dots, 2^{-1} + 2^{-k+1}, z_k, 0, 0, \dots),$$

where $z_k \in [2^{-1} + 2^{-k-1}, 2^{-1} + 2^{-k}].$

Consider the following cases

Cases 1: n = k = m. In this cases we have $x_n \leq z_k \leq y_m$. Then the claim follows.

Cases 2: $n = k < k + 1 \leq m$. In this case we have

$$x_n \leq z_k, \quad x_n, z_k \in [2^{-1} + 2^{-n-1}, 2^{-1} + 2^{-n}].$$

Then

$$||x - z|| = |z_k - x_n| \leq 2^{-n-1} < y_m \leq ||x - y||.$$

Cases 3: n < n + 1 = k = m. Since $z_k \leq y_m$, we have

$$||x-z|| = z_k \leqslant y_m = ||x-y||$$

Cases 4: n < n + 1 = k < m. Then from (1) we have

$$||x - z|| = z_{n+1} \leq 2^{-1} + 2^{-n-1} = ||x - y||.$$

Cases 5: $n < n + 1 < k \leq m$. Then from (1) we have

$$||x - z|| = ||x - y|| = 2^{-1} + 2^{-n-1}$$

The claim is proved.

From Claim 1 we get

Corollary 1. Let $A \subset Q$ be an interval, and let $\{B(x_{\alpha}, r_{\alpha})\}_{\alpha \in \Lambda}$ be a family of balls centered at $x_{\alpha} \in A$. If $\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, r_{\alpha}) \neq \emptyset$, then

$$A \cap \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, r_{\alpha}) \neq \emptyset.$$

Proof. Let $A \subset Q$ be an interval, and let $\{B(x_{\alpha}, r_{\alpha})\}_{\alpha \in \Lambda}$ be a family of balls centered at $x_{\alpha} \in A$ with

$$\bigcap_{\alpha\in\lambda}B(x_{\alpha},r_{\alpha})\neq\emptyset.$$

Let

$$z \in \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, r_{\alpha}).$$

We may assume that A = [x, y] and $z \ge y$ (the cases $A = [x, \infty)$ or $z \le x$ are similar). Then

$$x_{\alpha} \leq y \leq z$$
 for every $\alpha \in \Lambda$.

From Claim 1 we get

$$||y - x_{\alpha}|| \leq ||z - x_{\alpha}|| \leq r_{\alpha}$$
 for every $\alpha \in \Lambda$.

Consequently,

$$A \cap \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, r_{\alpha}) \neq \emptyset.$$

The corollary is proved.

Proof of Lemma 1. Let A be a convex set in Q. Then

$$A = \bigcap_{i \in I} B(x_i, r_i) \quad \text{for some index set } I.$$

We will show that A is an interval. It suffices to prove that if $x, y \in A$, then $[x, y] \subset A$. Let $x \in Q_n$ and $y \in Q_m$ for $m \ge n$. Let $z \in [x, y]$. Then $z \in Q_k$, $n \le k \le m$. Since $x, y \in A$ we have

$$||x - x_i|| \leq r_i$$
 and $||y - x_i|| \leq r_i$ for every $i \in I$.

We need to show that

$$||z - x_i|| \leq r_i$$
 for every $i \in I$.

Now fix $a \in Q_s \subset Q$ with

$$a = (1, 3/4, \dots, 2^{-1} + 2^{-s+1}, a_s, 0, 0, \dots),$$

where $a_s \in [2^{-1} + 2^{-s-1}, 2^{-1} + 2^{-s}]$, and r > 0. It suffices to show that

(3)
$$||x-a|| \leq r$$
 and $||y-a|| \leq r$ implies $||z-a|| \leq r$.

Observe that

(a) If $s \leqslant n \leqslant k \leqslant m$ or $n \leqslant s \leqslant k \leqslant m$, then from Claim 1 we get

$$||z-a|| \leqslant ||y-a|| \leqslant r.$$

(b) If $n \leq k \leq s \leq m$ or $n \leq k \leq m \leq s$, then from Claim 1 we get

$$||z-a|| \leq ||x-a|| \leq r.$$

The proof of Lemma 1 is complete.

20

4. PROOF OF PROPOSITION 1: THE SECOND STEP

By Lemma 1, every convex set $A \subset Q$ is connected, therefore is an interval, i.e., A is of the form (2). We are going to show that every interval $A \subset Q$ has the 2-intersection property.

Let $\{B(x_{\alpha}, r_{\alpha})\}_{\alpha \in \Lambda}$ be a family of balls centered at $x_{\alpha} \in A$ with

(4)
$$||x_{\alpha} - x_{\beta}|| \leq r_{\alpha} + r_{\beta}$$
 for every $\alpha, \beta \in \Lambda$

We need to prove that

$$A \cap \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \neq \emptyset.$$

By Corollary 1 it suffices to show that

(5)
$$\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \neq \emptyset.$$

For every $n \in \mathbb{N}$, let

$$\Lambda(n) = \{ \alpha \in \Lambda : x_{\alpha} \in Q_n \}$$

Then we have

$$\Lambda = \bigcup_{n=1}^{\infty} \Lambda(n).$$

Lemma 2. Assume that

(i) $\Lambda(n) \neq \emptyset$ for infinitely many $n \in \mathbb{N}$, and

(ii) $r_{\alpha} \ge 2^{-1}(2^{-1} + 2^{-n-1})$ for every $\alpha \in \Lambda(n)$ and for every $n \in \mathbb{N}$.

Then there exists $n_0 \in \mathbb{N}$ such that $r_{\alpha} \ge 2^{-1}(2^{-1}+2^{-n_0-1})$ for every $\alpha \in \Lambda(n)$ and for every $n \ge n_0$.

Proof. Assume on the contrary that the lemma does not hold. Then there exist a sequence $\{n_k\} \subset \mathbb{N}$ and $\alpha(k) \in \Lambda(n_k)$ such that

$$r_{\alpha(k)} < 2^{-1}(2^{-1} + 2^{-n_k - 1})$$
 for every $k \in \mathbb{N}$.

From (4) we get

$$||x_{\alpha(1)} - x_{\alpha(k)}|| \leq r_{\alpha(1)} + r_{\alpha(k)} \text{ for every } k \in \mathbb{N}.$$

Therefore

$$||x_{\alpha(1)} - x_{\alpha(k)}|| \leq 2^{-1}(2^{-1} + 2^{-n_1 - 1}) + 2^{-1}(2^{-1} + 2^{-n_k - 1})$$

= 2⁻¹ + 2⁻¹(2^{-n_1 - 1} + 2^{-n_k - 1}),

for every $k \in \mathbb{N}$. On the other hand, since $x_{\alpha(1)} \in Q_{n_1}$ and $x_{\alpha(k)} \in Q_{n_k}$, from (1) we get

$$||x_{\alpha(1)} - x_{\alpha(k)}|| \ge 2^{-1} + 2^{-n_1 - 1} > 2^{-1} + 2^{-1}(2^{-n_1 - 1} + 2^{-n_k - 1}),$$

for every $n_k \ge n_1 + 2$. This contradiction completes the proof of the lemma. \Box

From Lemma 2 we get the following fact which proves Proposition 2 in a special case.

Corollary 2. If $r_{\alpha} \ge 2^{-1}(2^{-1}+2^{-n-1})$ for every $\alpha \in \Lambda(n)$ and for every $n \in \mathbb{N}$, then there exists $n_0 \in \mathbb{N}$ such that

(6)
$$\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \supset \bigcup_{k=n_0+1}^{\infty} Q_k$$

In particular, $\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \neq \emptyset$.

Proof. If $\Lambda(n) \neq \emptyset$ for infinitely many $n \in \mathbb{N}$, then by Lemma 2 there exists $n_0 \in \mathbb{N}$ such that $r_{\alpha} \geq 2^{-1}(2^{-1} + 2^{-n_0-1})$ for every $\alpha \in \Lambda(n)$ and for every $n \geq n_0$.

To obtain (6) it suffices to show that

$$B(x_{\alpha}, 2r_{\alpha}) \supset Q_k$$
 for every $k \ge n_0 + 1$ and for every $\alpha \in \Lambda$.

In fact, let $\alpha \in \Lambda(n)$. Then $x_{\alpha} \in Q_n$. For $y \in Q_k$, $k \ge n_0 + 1$, we need to show that

$$\|y - x_{\alpha}\| \leq 2r_{\alpha}.$$

Assume that

$$y = (1, 3/4, \dots, 2^{-1} + 2^{-k+1}, y_k, 0, 0, \dots),$$

where $y_k \in [2^{-1} + 2^{-k-1}, 2^{-1} + 2^{-k}].$

Consider the following cases.

Cases 1: $n \ge k$. Then we have

$$|y - x_{\alpha}|| \leq 2^{-1} + 2^{-k-1} \leq 2^{-1} + 2^{-n_0-2} < 2r_{\alpha}.$$

Cases 2: n = k - 1. Then we have

$$||y - x_{\alpha}|| = y_k \leq 2^{-1} + 2^{-k} \leq 2^{-1} + 2^{-n_0 - 1} \leq 2r_{\alpha}$$

Cases 3: $n \leq k-2$. Then by the assumption we have

$$||y - x_{\alpha}|| = 2^{-1} + 2^{-n-1} \leq 2r_{\alpha}.$$

Consequently, (6) is valid.

If $\Lambda(n) \neq \emptyset$ for only finitely many $n \in \mathbb{N}$, say for $n = n_1, \ldots, n_m$, then let

$$n_0 = \max\{n_1, \ldots, n_m\}$$

We are going to show that

$$B(x_{\alpha}, 2r_{\alpha}) \supset Q_k$$

for every $k \ge n_0 + 1$ and for every $\alpha \in \Lambda(n_i)$, $i = 1, 2, \ldots, m$.

In fact, since $n_i \leq n_0 < n_0 + 1 \leq k$, we get for every $y \in Q_k$

$$||y - x_{\alpha}|| \leq 2^{-1} + 2^{-n_i - 1} \leq 2r_{\alpha}.$$

Hence

$$y \in B(x_{\alpha}, 2r_{\alpha})$$

Consequently,

$$\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \supset \bigcup_{k \ge n_0 + 1} Q_{\alpha}$$

Therefore in the remainder of this paper we will assume that

 $r_{\alpha} < 2^{-1}(2^{-1} + 2^{-n-1})$ for at least $\alpha \in \Lambda(n)$ and an $n \in \mathbb{N}$.

Let

$$n_{0} = \min\{n : \alpha \in \Lambda(n) \text{ and } r_{\alpha} < 2^{-1}(2^{-1} + 2^{-n-1})\},\$$

$$\Lambda^{+}(n_{0}) = \{\alpha \in \Lambda(n_{0}) : r_{\alpha} \ge 2^{-1}(2^{-1} + 2^{-n_{0}-1})\},\$$

$$\Lambda^{-}(n_{0}) = \{\alpha \in \Lambda(n_{0}) : r_{\alpha} < 2^{-1}(2^{-1} + 2^{-n_{0}-1})\},\$$

$$\Lambda^{--}(n_{0}) = \{\alpha \in \Lambda^{-}(n_{0}) : r_{\alpha} < 2^{-1}(2^{-1} + 2^{-n_{0}-2})\}.$$

Lemma 3. If $\Lambda^{--}(n_0) \neq \emptyset$ then

$$Q_{n_0} \subset \bigcap_{\alpha \in \Lambda \setminus \Lambda^-(n_0)} B(x_\alpha, 2r_\alpha)$$

Proof. It suffices to show that

$$Q_{n_0} \subset B(x_{\alpha}, 2r_{\alpha})$$
 for every $\alpha \in \Lambda \setminus \Lambda^-(n_0)$.

Assume that $\alpha \in \Lambda(k)$. Then we have

$$x_{\alpha} = (1, 3/4, \dots, 2^{-1} + 2^{-k+1}, x_k, 0, 0, \dots),$$

where $x_k \in [2^{-1} + 2^{-k-1}, 2^{-1} + 2^{-k}].$

For $y \in Q_{n_0}$, we have

$$y = (1, 3/4, \dots, 2^{-1} + 2^{-n_0+1}, y_{n_0}, 0, 0, \dots),$$

where $y_{n_0} \in [2^{-1} + 2^{-n_0-1}, 2^{-1} + 2^{-n_0}].$

Consider the following cases.

Case 1: $k \leq n_0 - 1$. Then by the definition of n_0 we have

$$||y - x_{\alpha}|| \leq 2^{-1} + 2^{-k-1} \leq 2r_{\alpha}.$$

This means $y \in B(x_{\alpha}, 2r_{\alpha})$.

Case 2: $k = n_0$. Since

$$\alpha \in \Lambda \setminus \Lambda^{-}(n_0) = \Lambda^{+}(n_0), \quad r_{\alpha} \ge 2^{-1}(2^{-1} + 2^{-n_0 - 1}),$$

we have

$$||y - x_{\alpha}|| = ||x_{n_0} - y_{n_0}|| \leq 2^{-n_0 - 1} < 2^{-1} + 2^{-n_0 - 1} \leq 2r_{\alpha}.$$

So $y \in B(x_{\alpha}, 2r_{\alpha}).$

Case 3: $k = n_0 + 1$. Since $\Lambda^{--}(n_0) \neq \emptyset$, there exists $\beta_0 \in \Lambda^{--}(n_0)$ such that $r_{\beta_0} < 2^{-1}(2^{-1} + 2^{-n_0-2}).$

Observe that

$$\|x_{\beta_0} - x_\alpha\| = x_{n_0+1} \leqslant r_{\beta_0} + r_\alpha$$

Therefore

$$2r_{\alpha} \ge 2x_{n_0+1} - 2r_{\beta_0} > 2x_{n_0+1} - (2^{-1} + 2^{-n_0-2}) \ge x_{n_0+1}$$

Consequently,

$$\|y - x_{\alpha}\| = x_{n_0+1} \leqslant 2r_{\alpha}.$$

This means

$$y \in B(x_{\alpha}, 2r_{\alpha}).$$

Case 4: $k \ge n_0 + 2$. For $\beta \in \Lambda^-(n_0)$ we have

$$||x_{\beta} - x_{\alpha}|| = 2^{-1} + 2^{-n_0 - 1} \leq r_{\alpha} + r_{\beta}$$

Therefore

$$2r_{\alpha} \ge 2(2^{-1} + 2^{-n_0 - 1}) - 2r_{\beta}$$

> 2(2^{-1} + 2^{-n_0 - 1}) - (2^{-1} + 2^{-n_0 - 1})
= 2^{-1} + 2^{-n_0 - 1}.

Consequently,

$$||y - x_{\alpha}|| = 2^{-1} + 2^{-n_0 - 1} \leq 2r_{\alpha}.$$

This means

$$y \in B(x_{\alpha}, 2r_{\alpha})$$

Thus, Lemma 3 is proved.

Corollary 3. If $\Lambda^{--}(n_0) \neq \emptyset$ then

$$\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \neq \emptyset.$$

Proof. Since Q_{n_0} is hyperconvex, we have

$$\bigcap_{\alpha \in \Lambda^{-}(n_{0})} B(x_{\alpha}, 2r_{\alpha}) \neq \emptyset$$

Then by Corollary 1 we get

$$Q_{n_0} \cap \bigcap_{\alpha \in \Lambda^-(n_0)} B(x_\alpha, 2r_\alpha) \neq \emptyset.$$

Let

$$a \in Q_{n_0} \cap \bigcap_{\alpha \in \Lambda^-(n_0)} B(x_\alpha, 2r_\alpha).$$

24

Then by Lemma 3 we have

$$a \in \bigcap_{\alpha \in \Lambda \setminus \Lambda^-(n_0)} B(x_\alpha, 2r_\alpha).$$

Therefore $\alpha \in \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha})$ and Corollary 3 is proved.

To complete the proof of Proposition 1, it remains to consider the case

(7)
$$\Lambda^{--}(n_0) = \emptyset.$$

Lemma 4. Let $\Lambda^{--}(n_0) = \emptyset$, If we take

$$b = (1, 3/4, \dots, 2^{-1} + 2^{-n_0}, 2^{-1} + 2^{-n_0-2}, 0, 0, \dots) \in Q_{n_0+1},$$

then

$$b \in \bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha})$$

Proof. We will show that $b \in B(x_{\alpha}, 2r_{\alpha})$ for every $\alpha \in \Lambda$. Let $\alpha \in \Lambda(k)$. Consider the following cases

Case 1: $k \leq n_0 - 1$. Then by the definition of n_0 we have

$$||b - x_{\alpha}|| \leq 2^{-1} + 2^{-k-1} \leq 2r_{\alpha}.$$

This means $b \in B(x_{\alpha}, 2r_{\alpha})$.

Case 2: $k = n_0$. Since $r_{\alpha} \ge 2^{-1}(2^{-1} + 2^{-n_0-2})$ for every $\alpha \in \Lambda(n_0)$, $\|b - x_{\alpha}\| = 2^{-1} + 2^{-n_0-2} \le 2r_{\alpha}$.

This means $b \in B(x_{\alpha}, 2r_{\alpha})$.

Case 3: $k = n_0 + 1$. For $\beta \in \Lambda^-(n_0)$ we have

$$||x_{\beta} - x_{\alpha}|| = x_k = x_{n_0+1} \leqslant r_{\alpha} + r_{\beta}.$$

Therefore

$$2r_{\alpha} \ge 2x_{n_0+1} - 2r_{\beta} > 2x_{n_0+1} - (2^{-1} + 2^{-n_0-1}) \ge 2^{-1}.$$

Then we have

$$|b - x_{\alpha}|| = x_{n_0+1} - 2^{-1} - 2^{-n_0-2} \le 2^{-n_0-2} < 2^{-1} \le 2r_{\alpha}$$

This means $b \in B(x_{\alpha}, 2r_{\alpha})$.

Case 4: $k \ge n_0 + 2$. For $\beta \in \Lambda^-(n_0)$ we have

$$||x_{\beta} - x_{\alpha}|| = 2^{-1} + 2^{-n_0 - 1} \leqslant r_{\alpha} + r_{\beta}.$$

Therefore

$$2r_{\alpha} \ge 2(2^{-1} + 2^{-n_0 - 1}) - 2r_{\beta}$$

> 2(2^{-1} + 2^{-n_0 - 1}) - (2^{-1} + 2^{-n_0 - 1})
= 2^{-1} + 2^{-n_0 - 1}.

Then we have

$$||b - x_{\alpha}|| \leq 2^{-1} + 2^{-n_0 - 2} < 2^{-1} + 2^{-n_0 - 1} \leq 2r_{\alpha}.$$

This means $b \in B(x_{\alpha}, 2r_{\alpha})$. Thus, the assertion that $\bigcap_{\alpha \in \Lambda} B(x_{\alpha}, 2r_{\alpha}) \neq \emptyset$ is also

true in the case (7).

The proof of Proposition 1 is complete.

Acknowledgements

The author would like to thank Professor Nguyen To Nhu for his encouragement during the preparation of this article.

References

- [1] N. Aronszajn and P. Panitchpakdi, *Extensions of uniformly continuous transformations and hyperconvex metric spaces*, Pacific J. Math. **6** (1956), 405-439.
- [2] A. G. Aksoy and M. A. Khamsi, Nonstandard Methods in Fixed Point Theory, Springer-Verlag, Berlin 1990.
- [3] M. A. Khamsi, Nhu Nguyen and M. O'Neill, Lambda-hyperconvex spaces and the fixed point property, Nonlinear Analysis 43 (2001), 21-31.

Journal of Science Vietnam National University, Hanoi 144, Xuan Thuy, Caugiay, Hanoi

E-mail address: nhuyn@vnu.edu.vn