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A BOUNDED 2-HYPERCONVEX SPACE FAILING

TO HAVE THE FIXED POINT PROPERTY

FOR A STRICTLY NON-EXPANSIVE MAP

NGUYEN NHUY

Abstract. It was shown in [3] that if λ < 2, then any bounded λ-hyperconvex
space has the fixed point property for non-expansive maps. In this note we
construct an example of a bounded 2-hyperconvex space with the fixed point
free for any iteration of a strictly non-expansive map.

1. Introduction

Let X be a metric space and let λ > 1. Following [3], a subset A of X is said to
have the λ-intersection property if for any family of closed balls {B(xα, rα)}α∈Λ

each of radius rα centered at xα ∈ A for α ∈ Λ, the condition

d(xα, xβ) 6 rα + rβ for every α, β ∈ Λ,

implies

A ∩
⋂

α∈Λ

B(xα, λrα) 6= ∅.

We say that a subset A in a metric space X is convex if A is an intersection
of a family of closed balls. A metric space X is said to be λ-hyperconvex if every
non-empty convex set in X has the λ-intersection property.

Following [1], a matric space X is hyperconvex if the whole space X itself has
the 1-intersection property.

We recall that a map f : X → X is non-expansive if

d(f(x), f(y)) 6 d(x, y) for every x, y ∈ X,

and f is strictly non-expansive if

d(f(x), f(y)) < d(x, y) for every x, y ∈ X with x 6= y.

It was shown in [2] that if X is a bounded hyperconvex space, then any non-
expansive map f : X → X has a fixed point. This result was extended to the
case of λ-hyperconvexity in [3] as follows.
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Theorem A ([3]). Let X be a bounded λ-hyperconvex space. If λ < 2, then any

non-expansive map f : X → X has a fixed point.

From Theorem A it arises a question whether or not this result holds for λ > 2.
In this note we show that Theorem A fails for λ = 2. In fact, we are going to
establish the following theorem which is the main result of this note.

Theorem B. There exist a bounded 2-hyperconvex metric space Q ⊂ l∞ with

diam Q 6 1, and a strictly non-expansive map f : Q → Q such that

‖fn(x) − x‖ > 2−1 for every x ∈ Q and n ∈ N.

Thus, Theorems A and B completely solve the problem on the fixed point
property for non-expansive maps in λ-hyperconvex spaces.

In the next section we will describe the bounded 2-hyperconvex matric space
stated in Theorem B. Our example is very elementary and self-contained. In fact,
nothing than the definition of the l∞-space is used in our construction.

2. The example

Let l∞ denote the Banach space of all bounded sequences of real numbers
equipped with the sup-norm, that is

‖x − y‖ = sup{|xn − yn| : n ∈ N}

for every x = (xn) ∈ l∞ and y = (yn) ∈ l∞.

It is well-known that any ball in l∞ is hyperconvex (see [1]). Let

Q1 = [3/4, 1] × {0} × {0} × · · · ⊂ l∞,

Q2 = {1} × [5/8, 3/4] × {0} × {0} × · · · ⊂ l∞.

In general, we define Qn ⊂ l∞ for n > 3 by setting

Qn = {1} × {3/4} × · · · × {2−1 + 2−n+1}

× [2−1 + 2−n−1, 2−1 + 2−n] × {0} × {0} × · · ·

Observe that Qn is an interval in l∞, therefore it is hyperconvex. We define
Q ⊂ l∞ by

Q =

∞
⋃

n=1

Qn ⊂ l∞.

The space Q will be equipped with the metric induced from the norm of l∞. We
are going to show that Q satisfies the conditions of Theorem B. It is straightfor-
ward to check that

‖x − y‖ 6 1 for every x, y ∈ Q.

Therefore diam Q 6 1.
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Observe that for every x, y ∈ Q, we have x ∈ Qn and y ∈ Qm for some
m,n ∈ N. Therefore

x = (1, 3/4, . . . , 2−1 + 2−n+1, xn, 0, 0, . . . ),

where xn ∈ [2−1 + 2−n−1, 2−1 + 2−n]

y = (1, 3/4, . . . , 2−1 + 2−m+1, ym, 0, 0, . . . ),

where ym ∈ [2−1 + 2−m−1, 2−1 + 2−m].

Clearly, we may assume that m > n. Then the metric of Q induced from the
norm of l∞ is given by the formula

‖x − y‖ =











|xn − yn| if m = n,

yn+1 ∈ [2−1 + 2−n−2, 2−1 + 2−n−1] if m = n + 1,

2−1 + 2−n−1 if m > n + 2.

(1)

Theorem B will be proved via the following two propositions.

Proposition 1. Q is 2-hyperconvex.

The proof of Proposition 1 will be given in Section 3 and 4. We first prove the
following proposition.

Proposition 2. There exists a strictly non-expansive map f : Q → Q such that

‖fn(x) − x‖ > 2−1 for every x ∈ Q and n ∈ N.

Proof. We define a map f : Q → Q with the following properties

(i) ‖f(x) − f(y)‖ < ‖x − y‖ for every x, y ∈ Q with x 6= y;

(ii) ‖fn(x) − x‖ > 2−1 for every x ∈ Q and n ∈ N.

For every x ∈ Q, we have x ∈ Qn for some n ∈ N. Then

x = (1, 3/4, . . . , 2−1 + 2−n+1, xn, 0, 0, . . . ),

where xn ∈ [2−1 + 2−n−1, 2−1 + 2−n].

We define f(x) ∈ Qn+1 by

f(x) = (1, 3/4, . . . , 2−1 + 2−n, 2−1 + 2−n−2 + 2−1(xn − 2−1 − 2−n−1), 0, 0, . . . ).

Observe that

‖f(x) − x‖ = 2−1 + 2−n−2 + 2−1(xn − 2−1 − 2−n−1) > 2−1.

Thus, condition (ii) holds for n = 1. Now assume that n > 2. By definition, if
x ∈ Qm then fn(x) ∈ Qm+n. Since n > 2, from (1) we get

‖fn(x) − x‖ = 2−1 + 2−m−1 > 2−1 for every x ∈ Q.

Consequently, condition (ii) holds.
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Let us check (i). Let x, y ∈ Q with x 6= y. Then x ∈ Qn and y ∈ Qm for some
m,n ∈ N. We may assume that m > n. Observe that if m = n then from (1) we
have

‖f(x) − f(y)‖ = 2−1|xn − yn| < |xn − yn| = ‖x − y‖.

Now we assume that m = n + 1. Then from (1) we have

‖x − y‖ = yn+1 ∈ [2−1 + 2−n−2, 2−1 + 2−n−1].

Since yn+1 > 2−1, we get

‖f(x) − f(y)‖ = 2−1 + 2−n−3 + 2−1(yn+1 − 2−1 − 2−n−2)

= 2−2 + 2−1yn+1 < yn+1 = ‖x − y‖.

Finally, we assume that m > n + 2. Then from (1) we have

‖x − y‖ = 2−1 + 2−n−1.

It is easy to see that

‖f(x) − f(y)‖ = 2−1 + 2−n−2.

Therefore

‖f(x) − f(y)‖ < ‖x − y‖.

Consequently, f is a strictly non-expansive and therefore Proposition 2 is
proved.

3. Proof of Proposition 1: The first step

The proof of Proposition 1 is devided into several steps. In the first step we
prove the following lemma.

Lemma 1. Every convex set A ⊂ Q is connected.

We recall that a subset A is convex if A is an intersection of a family of closed
balls in Q. First we observe that the constructed space Q is a 1-dimensional
piece-wise linear set containing no loops. Obviously Q can be ordered by “6”.

For x, y ∈ Q we write

[x, y] = {z ∈ Q : x 6 z 6 y} and [x,∞) = {z ∈ Q : z > x}.(2)

We say that a subset A in Q is an interval if it is of the form (2). Observe that
a closed set A ⊂ Q is connected if and only if A is an interval.

Claim 1. if x, y, z ∈ Q and x 6 z 6 y, then ‖x − z‖ 6 ‖x − y‖.

Proof. Let x ∈ Qn and y ∈ Qm for m > n. Let z ∈ [x, y]. Then z ∈ Qk,
n 6 k 6 m. Observe that
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x = (1, 3/4, . . . , 2−1 + 2−n+1, xn, 0, 0, . . . ),

where xn ∈ [2−1 + 2−n−1, 2−1 + 2−n]

y = (1, 3/4, . . . , 2−1 + 2−m+1, ym, 0, 0, . . . ),

where ym ∈ [2−1 + 2−m−1, 2−1 + 2−m]

z = (1, 3/4, . . . , 2−1 + 2−k+1, zk, 0, 0, . . . ),

where zk ∈ [2−1 + 2−k−1, 2−1 + 2−k].

Consider the following cases

Cases 1: n = k = m. In this cases we have xn 6 zk 6 ym. Then the claim
follows.

Cases 2: n = k < k + 1 6 m. In this case we have

xn 6 zk, xn, zk ∈ [2−1 + 2−n−1, 2−1 + 2−n].

Then

‖x − z‖ = |zk − xn| 6 2−n−1 < ym 6 ‖x − y‖.

Cases 3: n < n + 1 = k = m. Since zk 6 ym, we have

‖x − z‖ = zk 6 ym = ‖x − y‖.

Cases 4: n < n + 1 = k < m. Then from (1) we have

‖x − z‖ = zn+1 6 2−1 + 2−n−1 = ‖x − y‖.

Cases 5: n < n + 1 < k 6 m. Then from (1) we have

‖x − z‖ = ‖x − y‖ = 2−1 + 2−n−1.

The claim is proved.

From Claim 1 we get

Corollary 1. Let A ⊂ Q be an interval, and let {B(xα, rα)}α∈Λ be a family of

balls centered at xα ∈ A. If
⋂

α∈Λ
B(xα, rα) 6= ∅, then

A ∩
⋂

α∈Λ

B(xα, rα) 6= ∅.

Proof. Let A ⊂ Q be an interval, and let {B(xα, rα)}α∈Λ be a family of balls
centered at xα ∈ A with

⋂

α∈λ

B(xα, rα) 6= ∅.

Let

z ∈
⋂

α∈Λ

B(xα, rα).
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We may assume that A = [x, y] and z > y (the cases A = [x,∞) or z 6 x are
similar). Then

xα 6 y 6 z for every α ∈ Λ.

From Claim 1 we get

‖y − xα‖ 6 ‖z − xα‖ 6 rα for every α ∈ Λ.

Consequently,

A ∩
⋂

α∈Λ

B(xα, rα) 6= ∅.

The corollary is proved.

Proof of Lemma 1. Let A be a convex set in Q. Then

A =
⋂

i∈I

B(xi, ri) for some index set I.

We will show that A is an interval. It suffices to prove that if x, y ∈ A, then
[x, y] ⊂ A. Let x ∈ Qn and y ∈ Qm for m > n. Let z ∈ [x, y]. Then z ∈ Qk,
n 6 k 6 m. Since x, y ∈ A we have

‖x − xi‖ 6 ri and ‖y − xi‖ 6 ri for every i ∈ I.

We need to show that

‖z − xi‖ 6 ri for every i ∈ I.

Now fix a ∈ Qs ⊂ Q with

a = (1, 3/4, . . . , 2−1 + 2−s+1, as, 0, 0, . . . ),

where as ∈ [2−1 + 2−s−1, 2−1 + 2−s], and r > 0. It suffices to show that

‖x − a‖ 6 r and ‖y − a‖ 6 r implies ‖z − a‖ 6 r.(3)

Observe that

(a) If s 6 n 6 k 6 m or n 6 s 6 k 6 m, then from Claim 1 we get

‖z − a‖ 6 ‖y − a‖ 6 r.

(b) If n 6 k 6 s 6 m or n 6 k 6 m 6 s, then from Claim 1 we get

‖z − a‖ 6 ‖x − a‖ 6 r.

The proof of Lemma 1 is complete.
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4. Proof of Proposition 1: The second step

By Lemma 1, every convex set A ⊂ Q is connected, therefore is an interval,
i.e., A is of the form (2). We are going to show that every interval A ⊂ Q has
the 2-intersection property.

Let {B(xα, rα)}α∈Λ be a family of balls centered at xα ∈ A with

‖xα − xβ‖ 6 rα + rβ for every α, β ∈ Λ.(4)

We need to prove that

A ∩
⋂

α∈Λ

B(xα, 2rα) 6= ∅.

By Corollary 1 it suffices to show that
⋂

α∈Λ

B(xα, 2rα) 6= ∅.(5)

For every n ∈ N, let

Λ(n) = {α ∈ Λ : xα ∈ Qn}.

Then we have

Λ =

∞
⋃

n=1

Λ(n).

Lemma 2. Assume that

(i) Λ(n) 6= ∅ for infinitely many n ∈ N, and

(ii) rα > 2−1(2−1 + 2−n−1) for every α ∈ Λ(n) and for every n ∈ N.

Then there exists n0 ∈ N such that rα > 2−1(2−1 +2−n0−1) for every α ∈ Λ(n)
and for every n > n0.

Proof. Assume on the contrary that the lemma does not hold. Then there exist
a sequence {nk} ⊂ N and α(k) ∈ Λ(nk) such that

rα(k) < 2−1(2−1 + 2−nk−1) for every k ∈ N.

From (4) we get

‖xα(1) − xα(k)‖ 6 rα(1) + rα(k) for every k ∈ N.

Therefore

‖xα(1) − xα(k)‖ 6 2−1(2−1 + 2−n1−1) + 2−1(2−1 + 2−nk−1)

= 2−1 + 2−1(2−n1−1 + 2−nk−1),

for every k ∈ N. On the other hand, since xα(1) ∈ Qn1
and xα(k) ∈ Qnk

, from (1)
we get

‖xα(1) − xα(k)‖ > 2−1 + 2−n1−1 > 2−1 + 2−1(2−n1−1 + 2−nk−1),

for every nk > n1 + 2. This contradiction completes the proof of the lemma.
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From Lemma 2 we get the following fact which proves Proposition 2 in a special
case.

Corollary 2. If rα > 2−1(2−1 +2−n−1) for every α ∈ Λ(n) and for every n ∈ N,

then there exists n0 ∈ N such that

⋂

α∈Λ

B(xα, 2rα) ⊃
∞
⋃

k=n0+1

Qk.(6)

In particular,
⋂

α∈Λ
B(xα, 2rα) 6= ∅.

Proof. If Λ(n) 6= ∅ for infinitely many n ∈ N, then by Lemma 2 there exists
n0 ∈ N such that rα > 2−1(2−1 + 2−n0−1) for every α ∈ Λ(n) and for every
n > n0.

To obtain (6) it suffices to show that

B(xα, 2rα) ⊃ Qk for every k > n0 + 1 and for every α ∈ Λ.

In fact, let α ∈ Λ(n). Then xα ∈ Qn. For y ∈ Qk, k > n0 + 1, we need to show
that

‖y − xα‖ 6 2rα.

Assume that

y = (1, 3/4, . . . , 2−1 + 2−k+1, yk, 0, 0, . . . ),

where yk ∈ [2−1 + 2−k−1, 2−1 + 2−k].

Consider the following cases.

Cases 1: n > k. Then we have

‖y − xα‖ 6 2−1 + 2−k−1
6 2−1 + 2−n0−2 < 2rα.

Cases 2: n = k − 1. Then we have

‖y − xα‖ = yk 6 2−1 + 2−k
6 2−1 + 2−n0−1

6 2rα.

Cases 3: n 6 k − 2. Then by the assumption we have

‖y − xα‖ = 2−1 + 2−n−1
6 2rα.

Consequently, (6) is valid.

If Λ(n) 6= ∅ for only finitely many n ∈ N, say for n = n1, . . . , nm, then let

n0 = max{n1, . . . , nm}.

We are going to show that

B(xα, 2rα) ⊃ Qk

for every k > n0 + 1 and for every α ∈ Λ(ni), i = 1, 2, . . . ,m.

In fact, since ni 6 n0 < n0 + 1 6 k, we get for every y ∈ Qk

‖y − xα‖ 6 2−1 + 2−ni−1
6 2rα.
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Hence

y ∈ B(xα, 2rα).

Consequently,
⋂

α∈Λ

B(xα, 2rα) ⊃
⋃

k>n0+1

Qα.

Therefore in the remainder of this paper we will assume that

rα < 2−1(2−1 + 2−n−1) for at least α ∈ Λ(n) and an n ∈ N.

Let

n0 = min{n : α ∈ Λ(n) and rα < 2−1(2−1 + 2−n−1)},

Λ+(n0) = {α ∈ Λ(n0) : rα > 2−1(2−1 + 2−n0−1)},

Λ−(n0) = {α ∈ Λ(n0) : rα < 2−1(2−1 + 2−n0−1)},

Λ−−(n0) = {α ∈ Λ−(n0) : rα < 2−1(2−1 + 2−n0−2)}.

Lemma 3. If Λ−−(n0) 6= ∅ then

Qn0
⊂

⋂

α∈Λ\Λ−(n0)

B(xα, 2rα).

Proof. It suffices to show that

Qn0
⊂ B(xα, 2rα) for every α ∈ Λ \ Λ−(n0).

Assume that α ∈ Λ(k). Then we have

xα = (1, 3/4, . . . , 2−1 + 2−k+1, xk, 0, 0, . . . ),

where xk ∈ [2−1 + 2−k−1, 2−1 + 2−k].

For y ∈ Qn0
, we have

y = (1, 3/4, . . . , 2−1 + 2−n0+1, yn0
, 0, 0, . . . ),

where yn0
∈ [2−1 + 2−n0−1, 2−1 + 2−n0 ].

Consider the following cases.

Case 1: k 6 n0 − 1. Then by the definition of n0 we have

‖y − xα‖ 6 2−1 + 2−k−1
6 2rα.

This means y ∈ B(xα, 2rα).

Case 2: k = n0. Since

α ∈ Λ \ Λ−(n0) = Λ+(n0), rα > 2−1(2−1 + 2−n0−1),

we have

‖y − xα‖ = ‖xn0
− yn0

‖ 6 2−n0−1 < 2−1 + 2−n0−1
6 2rα.

So y ∈ B(xα, 2rα).
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Case 3: k = n0 + 1. Since Λ−−(n0) 6= ∅, there exists β0 ∈ Λ−−(n0) such that

rβ0
< 2−1(2−1 + 2−n0−2).

Observe that

‖xβ0
− xα‖ = xn0+1 6 rβ0

+ rα.

Therefore

2rα > 2xn0+1 − 2rβ0
> 2xn0+1 − (2−1 + 2−n0−2) > xn0+1.

Consequently,

‖y − xα‖ = xn0+1 6 2rα.

This means

y ∈ B(xα, 2rα).

Case 4: k > n0 + 2. For β ∈ Λ−(n0) we have

‖xβ − xα‖ = 2−1 + 2−n0−1
6 rα + rβ.

Therefore

2rα > 2(2−1 + 2−n0−1) − 2rβ

> 2(2−1 + 2−n0−1) − (2−1 + 2−n0−1)

= 2−1 + 2−n0−1.

Consequently,

‖y − xα‖ = 2−1 + 2−n0−1
6 2rα.

This means

y ∈ B(xα, 2rα).

Thus, Lemma 3 is proved.

Corollary 3. If Λ−−(n0) 6= ∅ then
⋂

α∈Λ

B(xα, 2rα) 6= ∅.

Proof. Since Qn0
is hyperconvex, we have

⋂

α∈Λ−(n0)

B(xα, 2rα) 6= ∅.

Then by Corollary 1 we get

Qn0
∩

⋂

α∈Λ−(n0)

B(xα, 2rα) 6= ∅.

Let

a ∈ Qn0
∩

⋂

α∈Λ−(n0)

B(xα, 2rα).
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Then by Lemma 3 we have

a ∈
⋂

α∈Λ\Λ−(n0)

B(xα, 2rα).

Therefore α ∈
⋂

α∈Λ

B(xα, 2rα) and Corollary 3 is proved.

To complete the proof of Proposition 1, it remains to consider the case

Λ−−(n0) = ∅.(7)

Lemma 4. Let Λ−−(n0) = ∅, If we take

b = (1, 3/4, . . . , 2−1 + 2−n0 , 2−1 + 2−n0−2, 0, 0, . . . ) ∈ Qn0+1,

then

b ∈
⋂

α∈Λ

B(xα, 2rα).

Proof. We will show that b ∈ B(xα, 2rα) for every α ∈ Λ. Let α ∈ Λ(k). Consider
the following cases

Case 1: k 6 n0 − 1. Then by the definition of n0 we have

‖b − xα‖ 6 2−1 + 2−k−1
6 2rα.

This means b ∈ B(xα, 2rα).

Case 2: k = n0. Since rα > 2−1(2−1 + 2−n0−2) for every α ∈ Λ(n0),

‖b − xα‖ = 2−1 + 2−n0−2
6 2rα.

This means b ∈ B(xα, 2rα).

Case 3: k = n0 + 1. For β ∈ Λ−(n0) we have

‖xβ − xα‖ = xk = xn0+1 6 rα + rβ .

Therefore

2rα > 2xn0+1 − 2rβ > 2xn0+1 − (2−1 + 2−n0−1) > 2−1.

Then we have

‖b − xα‖ = xn0+1 − 2−1 − 2−n0−2
6 2−n0−2 < 2−1

6 2rα.

This means b ∈ B(xα, 2rα).

Case 4: k > n0 + 2. For β ∈ Λ−(n0) we have

‖xβ − xα‖ = 2−1 + 2−n0−1
6 rα + rβ.

Therefore

2rα > 2(2−1 + 2−n0−1) − 2rβ

> 2(2−1 + 2−n0−1) − (2−1 + 2−n0−1)

= 2−1 + 2−n0−1.
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Then we have

‖b − xα‖ 6 2−1 + 2−n0−2 < 2−1 + 2−n0−1
6 2rα.

This means b ∈ B(xα, 2rα). Thus, the assertion that
⋂

α∈Λ
B(xα, 2rα) 6= ∅ is also

true in the case (7).

The proof of Proposition 1 is complete.
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