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A BOUNDED 2-HYPERCONVEX SPACE FAILING
TO HAVE THE FIXED POINT PROPERTY
FOR A STRICTLY NON-EXPANSIVE MAP

NGUYEN NHUY

ABSTRACT. It was shown in [3] that if A < 2, then any bounded A-hyperconvex
space has the fixed point property for non-expansive maps. In this note we
construct an example of a bounded 2-hyperconvex space with the fixed point
free for any iteration of a strictly non-expansive map.

1. INTRODUCTION

Let X be a metric space and let A > 1. Following [3], a subset A of X is said to
have the A-intersection property if for any family of closed balls {B(zq,7a)}acA
each of radius r, centered at x, € A for a € A, the condition

d(zq,xg) < ro +1g for every o, €A,
implies

AN () B(@a, Ara) # 0.

a€EA

We say that a subset A in a metric space X is convez if A is an intersection
of a family of closed balls. A metric space X is said to be A-hyperconvex if every
non-empty convex set in X has the A-intersection property.

Following [1], a matric space X is hyperconvez if the whole space X itself has
the 1-intersection property.

We recall that a map f : X — X is non-expansive if
d(f(z), f(y)) < d(z,y) for every z,y € X,
and f is strictly non-expansive if
d(f(z), fly)) <d(z,y) forevery x,y € X with z # y.
It was shown in [2] that if X is a bounded hyperconvex space, then any non-

expansive map f : X — X has a fixed point. This result was extended to the
case of \-hyperconvexity in [3] as follows.
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Theorem A ([3]). Let X be a bounded \-hyperconvex space. If X < 2, then any
non-expansive map f: X — X has a fixed point.

From Theorem A it arises a question whether or not this result holds for A > 2.
In this note we show that Theorem A fails for A = 2. In fact, we are going to
establish the following theorem which is the main result of this note.

Theorem B. There exist a bounded 2-hyperconvex metric space Q C loo with
diam @ < 1, and a strictly non-expansive map f : Q — Q such that

| f"(x) — 2| > 27" for every 2 € Q and n € N.

Thus, Theorems A and B completely solve the problem on the fixed point
property for non-expansive maps in A-hyperconvex spaces.

In the next section we will describe the bounded 2-hyperconvex matric space
stated in Theorem B. Our example is very elementary and self-contained. In fact,
nothing than the definition of the [,-space is used in our construction.

2. THE EXAMPLE

Let [, denote the Banach space of all bounded sequences of real numbers
equipped with the sup-norm, that is

|2 =yl = sup{|zn — yn| : n € N}
for every x = () € loo and y = (Yn) € loo-
It is well-known that any ball in [, is hyperconvex (see [1]). Let
Q1 =[3/4,1] x {0} x {0} x -+ C I,
Q2 ={1} x [5/8,3/4] x {0} x {0} x -+ C lso-
In general, we define @), C I, for n > 3 by setting
Qn={1} x {3/4} x --- x {271 4271}
x 2714277 27 197 x {0} x {0} x -

Observe that @, is an interval in [, therefore it is hyperconvex. We define
Q Clx by

Q:UQnCloo~

n=1

The space @ will be equipped with the metric induced from the norm of I,,. We
are going to show that @) satisfies the conditions of Theorem B. It is straightfor-
ward to check that

lx —y|| <1 forevery z,y € Q.

Therefore diam @) < 1.
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Observe that for every =,y € @, we have x € @, and y € @Q,, for some
m,n € N. Therefore

z=(1,3/4,...,27 £ 27" 2, 0,0,...),
where z, € 271+ 2771 271 4277
y=(1,3/4,...,27 4 27mFL 4 0,0,...),

where y,, € 271+ 2771 27t 427,

Clearly, we may assume that m > n. Then the metric of ) induced from the
norm of I, is given by the formula

‘mn_yn| ifm:n,
(1) lz—yl =S ynr €271 +277 227 427 ifm=n+1,
2-14 9—n-l ifm>n+2.

Theorem B will be proved via the following two propositions.

Proposition 1. Q is 2-hyperconvez.

The proof of Proposition 1 will be given in Section 3 and 4. We first prove the
following proposition.

Proposition 2. There exists a strictly non-expansive map f : Q — Q such that
f"(x) —z|| >27"  for every x € Q and n € N.

Proof. We define a map f : Q — @ with the following properties

(1) [If (2) = fFWII < [lz =yl for every z,y € Q with z # y;
(ii) || f™(z) — x| > 27! for every # € Q and n € N.
For every = € (), we have x € @),, for some n € N. Then

r=(1,3/4,...,27 427 2 0,0,...),

where z,, € [271 + 27771 271 4 27,
We define f(z) € Qny1 by

flz)=(1,3/4,...,27 42 27t o2 L o7 l(g, — 27t 27" 1) 0,0,...).
Observe that
If(z) -z =2"" 427" 2427 (g, —27 =277 1) > 271,

Thus, condition (ii) holds for n = 1. Now assume that n > 2. By definition, if
T € Qm then f"(x) € Qmin. Since n > 2, from (1) we get

£ (z) —z|| =271 4+27"" 1> 271 for every z € Q.

Consequently, condition (ii) holds.
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Let us check (i). Let z,y € Q with z # y. Then x € Q,, and y € Q,, for some
m,n € N. We may assume that m > n. Observe that if m = n then from (1) we
have

1£(x) = F@)l = 27 an — ynl < |20 = yal = |z —yll.
Now we assume that m = n + 1. Then from (1) we have
lz = yll = yns1 € 27 + 27772270 4 2707,
Since yp11 > 271, we get
If (@) = f)ll =27 + 27" + 27 (yon — 27 = 27779)
=272+ 271 < o1 = [lz — .
Finally, we assume that m > n + 2. Then from (1) we have
lz —yl| =2""+27"71,
It is easy to see that
If (@) = f@)ll =27" +2772
Therefore

1 () = F)ll <z = yll-

Consequently, f is a strictly non-expansive and therefore Proposition 2 is
proved. O

3. PROOF OF PROPOSITION 1: THE FIRST STEP

The proof of Proposition 1 is devided into several steps. In the first step we
prove the following lemma.

Lemma 1. Every convex set A C () is connected.

We recall that a subset A is convex if A is an intersection of a family of closed
balls in ). First we observe that the constructed space @ is a 1-dimensional
piece-wise linear set containing no loops. Obviously ) can be ordered by “<”.

For z,y € @ we write
(2) [z,y ={z€Q:2<2<y} and [r,00)={z€Q:2z>uz}

We say that a subset A in @ is an interval if it is of the form (2). Observe that
a closed set A C @ is connected if and only if A is an interval.

Claim 1. if z,y,z2 € Q and x < z < y, then ||z — z|| < ||z — y]|.

Proof. Let x € @, and y € Q,, for m > n. Let z € [z,y]. Then z € Qy,
n < k < m. Observe that
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r=(1,3/4,...,27 427 2 0,0,...),
where z, € 271 + 2771 271 4277
y=(1,3/4,...,27 427 4 0,0,...),

where y,, € 271+ 271 271 427
z=(1,3/4,..., 27 + 2% 5 0,0,...),
where z, € 271 427871 271 4 o7k,

Consider the following cases

Cases 1: n = k = m. In this cases we have z, < 2z < ym- Then the claim
follows.

Cases 2: n =k < k+ 1 < m. In this case we have
T < 26, Tpyzp €271 427771 271 427,
Then
lz = 2l = |2 — 2n] <277 <ym <z —yll.
Cases 3: n <n+ 1=k =m. Since z; < ¥, we have
2 =zl = 2k < ym = [z —yll.
Cases 4: n <n+ 1=k <m. Then from (1) we have

27" = o —yll.

|z — 2] = Zn41 <271 +
Cases 5: n <n+1 <k <m. Then from (1) we have
lz = 2l = o =yl = 27" + 27" 7L,

The claim is proved. O

From Claim 1 we get

Corollary 1. Let A C Q be an interval, and let {B(zq,7a)}aca be a family of

balls centered at xo € A. If () B(Za,7a) # 0, then
a€eN

AN ﬂ B(za,rq) # 0.

aceA

Proof. Let A C @ be an interval, and let {B(x4,70)}aca be a family of balls
centered at x, € A with

ﬂ B(xg,740) # 0.

a€EX
Let

z € m B(zg,7a)-

a€A
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We may assume that A = [z,y] and z > y (the cases A = [z,00) or z < z are
similar). Then

To <y <z forevery a € A.
From Claim 1 we get
ly — ol < ||z — zal| <7 for every a € A.

Consequently,

AN ﬂ B(za,rq) # 0.

acA

The corollary is proved. O

Proof of Lemma 1. Let A be a convex set in ). Then

A= ﬂ B(z;,r;) for some index set I.
i€l

We will show that A is an interval. It suffices to prove that if z,y € A, then
[,y] C A. Let z € Q, and y € Q,, for m > n. Let z € [x,y]. Then z € Qy,
n < k <m. Since x,y € A we have

|l — ]| <7 and ||y — 2] <7y for every i € 1.
We need to show that
|z — z]| <7 for every i€ I.
Now fix a € Qs C @ with
a=(1,3/4,...,27 + 2751 4., 0,0,...),
where a5 € 271 + 27571271 4 275] and r > 0. It suffices to show that
(3) le —al| <r and |y —al <rimplies ||z —al <.

Observe that
(a) If s<n<k<morn<s<k<m,then from Claim 1 we get

|z —al < [ly —al <.
b)Ifn<k<s<morn<k<m<s, then from Claim 1 we get
|z —al| < |z —al <

The proof of Lemma 1 is complete. O
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4. PROOF OF PROPOSITION 1: THE SECOND STEP

By Lemma 1, every convex set A C @ is connected, therefore is an interval,
i.e., A is of the form (2). We are going to show that every interval A C @ has
the 2-intersection property.

Let {B(zq,7a)}aca be a family of balls centered at x, € A with
(4) lzq —zg|| < 1o +15 for every o, € A.
We need to prove that

AN ﬂ B(xq,2ry) # 0.

aeA

By Corollary 1 it suffices to show that
(5) ﬂ B(zq,2ry) # 0.

a€A
For every n € N, let

Aln)={aeA:x,€Qpn}.

Then we have
A=[]JAM).
n=1

Lemma 2. Assume that

(i) A(n) # 0 for infinitely many n € N, and

(ii) ro = 27127 + 27771 for every a € A(n) and for every n € N.

Then there exists ng € N such that ro > 271271 +277071) for every a € A(n)
and for every n = ng.
Proof. Assume on the contrary that the lemma does not hold. Then there exist
a sequence {ny} C N and a(k) € A(ng) such that

Tak) < 27127t 427 for every k € N.
From (4) we get
1Za(1) = Tamw)ll < Ta@) + Ta@) for every k € N.
Therefore
|Za() = Tamll < 271271 F 27T 27127 27T
— 2—1 + 2—1(2—711—1 + 2—nk—1)’

for every k € N. On the other hand, since z,(1) € Qn; and x4y € Qp,,, from (1)
we get

HQ:a(l) - Jfa(k)H = 2_1 + 2_711—1 > 2—1 + 2—1(2—n1—1 + 2_7%—1)’

for every ng > nq + 2. This contradiction completes the proof of the lemma. [
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From Lemma 2 we get the following fact which proves Proposition 2 in a special
case.

Corollary 2. Ifr, > 271271 +27771) for every a € A(n) and for everyn € N,
then there exists ng € N such that

(6) m B(rq,2rq) D U Q-

a€EA k=ng+1

In particular, (| B(za,2rs) # 0.
a€l

Proof. It A(n) # 0 for infinitely many n € N, then by Lemma 2 there exists
no € N such that r, > 271271 +27071) for every a € A(n) and for every
n = ng.
To obtain (6) it suffices to show that
B(zq,2r4) D Q for every k > ng + 1 and for every a € A.

In fact, let « € A(n). Then x, € @,. For y € Q, k = ng + 1, we need to show
that

ly — zall < 27a.
Assume that
y=(1,3/4,...,27 + 2771 4,0,0,...),
where y, € 271 + 27771 271 4 o7H],
Consider the following cases.
Cases 1: n > k. Then we have
ly — 2ol <27 +27F 27t 27072 < 9,
Cases 2: n =k — 1. Then we have
ly —zal| =ye <271+ 27F <27t 270 o
Cases 3: n < k — 2. Then by the assumption we have
ly — 2ol =271 +277"71 < 2.
Consequently, (6) is valid.
If A(n) # 0 for only finitely many n € N, say for n = nq,...,ny,, then let
no = max{niy,...,Nm}.
We are going to show that
B(za,2ra) D Qk
for every k > ng + 1 and for every o € A(n;), i =1,2,...,m

In fact, since n; < ng < ng+ 1 < k, we get for every y € Qg

<
ly — zall <271+ 2771 < 2rg.
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Hence
y € B(xq,2ry).
Consequently,

ﬂB(xa,Qra)D U Qu.

acN k>no+1

Therefore in the remainder of this paper we will assume that
ro < 27127142771 for at least a € A(n) and an n € N,
Let
ng=min{n:a € A(n) and r, <2 12714277 H},
At (ng) = {a € A(ng) : 1o > 27127 4 2707 )},
A" (ng) = {a € A(ng) : rq < 271271 4270711,
A" (no) = {a € A (ng) : 1o < 271271 42707 2)],
Lemma 3. If A= (ng) # 0 then
Qny C [ Blxa,2ra).
a€A\A~ (no)
Proof. 1t suffices to show that
Qny C B(xa,2ry) for every a € A\ A™ (ng).
Assume that o € A(k). Then we have
To = (1,3/4,...,27 + 27" 2 0,0,...),
where aj, € 27! +27F 71 271 4 27F),
For y € Qy,, we have
y=(1,3/4,...,27 427" g 0,0,...),
where yy,,, € [271 + 27071 271 4 97no],
Consider the following cases.
Case 1: k < ng— 1. Then by the definition of ng we have
ly — zal <271+ 27771 < 2r,.
This means y € B(zq, 2r4)-
Case 2: k = ng. Since
a €A\ A (ng) = AT(ng), 1o =271(271 42707,
we have
[y = zall = l[Zno — Ynoll < 27t <7t o Loy,
So y € B(xq,2ry).
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Case 3: k =ng+ 1. Since A~ (ng) # 0, there exists Sy € A~ (ng) such that
T, < 27H27h 427072,
Observe that
|z, — Tal = Tnog+1 < 78y + Ta-
Therefore
2rq 2 2Tng41 — 208y > 2Tpgt1 — (27t 42702y > Trg+1-
Consequently,
ly — Zall = Tng1 < 2ra.
This means

y € B(zq,2ry).
Case 4: k > ng + 2. For § € A~ (ng) we have
og — 2ol =271 + 2707 <y 415

Therefore
2 = 2(271 + 2707 1) —2rg
> 227t 4270y (o7 4 gmmo—)
=271 427
Consequently,

ly — 2qll = 271 + 27071 < 2ry.
This means
y € B(xq,2ry).
Thus, Lemma 3 is proved.

Corollary 3. If A= (ng) # 0 then
m B(xaa QTQ) 7£ @

a€eN

Proof. Since @), is hyperconvex, we have
ﬂ B(zq,2ry) # 0.
a€A~(no)
Then by Corollary 1 we get
QneN () B(#a,2ra) # 0.
a€A~(no)
Let

a € Qpy N ﬂ B(zq,2rq).
a€A~(no)
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Then by Lemma 3 we have
a e m B(.I‘a, 2Ta)'
aeA\A~ (ng)

Therefore a € () B(zq,2r,) and Corollary 3 is proved.
acl

To complete the proof of Proposition 1, it remains to consider the case
(7) A7 (no) = 0.
Lemma 4. Let A~ (ng) = 0, If we take
b=(1,3/4,...,27 270 271 L 970720 0 ) € Quot1s
then

be ﬂ B(xq,2r)-
acA

25

Proof. We will show that b € B(xq,2ry) for every a € A. Let o € A(k). Consider

the following cases
Case 1: k < ng— 1. Then by the definition of ng we have

16— ol <271 + 2771 < 2r,.
This means b € B(x, 2r)-
Case 2: k = ng. Since r, > 271(271 +277072) for every a € A(ng),

16— zall =271 + 277072 < 2,
This means b € B(zq, 2r).
Case 3: k =ng+ 1. For 5 € A~ (ng) we have

|25 — Tall = T = Tnot1 <70+ 175
Therefore
2o = 2Tyt — 2rg > 2pgry — (271 42707y > 071
Then we have
16— 2ol = Tngr1 —271 — 27072 27072 < 27 o,
This means b € B(zq, 2r,).
Case 4: k > ng+ 2. For § € A~ (ng) we have
2 — zall =271+ 2707 vy + 1.
Therefore
2rq =227+ 2707 —2pg
>2(27t 42707y (971 fgmo—hy
=272l
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Then we have
b — 2| <271 427072 <271 om0l Lo

This means b € B(xq,2r,). Thus, the assertion that () B(zq,2r,) # 0 is also
a€A
true in the case (7).

The proof of Proposition 1 is complete. O
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