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A LINEARLY CONVERGENT CONJUGATE GRADIENT

METHOD FOR UNCONSTRAINED OPTIMIZATION

PROBLEMS

SUN MIN AND LIU JING

Abstract. In this paper, a new conjugate gradient method with a simple
formula βk is given for unconstrained optimization problems. It possesses
sufficient descent property for any line search. Global convergence results of
the new method with the Goldstein line search and the Armijo line search
are discussed. For uniformly convex functions, the method has linear conver-
gence rate. Preliminary computational experiments are included to illustrate
the efficiency of the proposed method in minimizing large-scale non-convex
optimization problems.

Consider the unconstrained nonlinear optimization problem

(0.1) min f(x), x ∈ Rn,

where f : Rn → R is a nonlinear function and its gradient g(x) is available.
Conjugate gradient method is very effective for solving large-scale uncon-

strained optimization problems (0.1) due to its low memory requirements, and
its iterative formula is given by

(0.2) xk+1 = xk + αkdk,

with

(0.3) dk =

{
−gk, k = 1,
−gk + βkdk−1, k ≥ 2,

where x1 is a given initial point, αk is a step-length along dk which is computed
by carrying out some line search, gk denotes g(xk) and βk is a suitable scalar given
by different formulae which result in distinct conjugate gradient methods. Well-
known conjugate gradient methods include Fletcher-Reeves (FR) method [1],
Polak-Ribiere-Polyak (PRP) method [2,3], Dai-Yuan (DY) method [4], Conjugate
Descent (CD) method [5], and Hestenes-Stiefel (HS) method [5]. The parameters
βk of these methods are given by

βFR
k =

‖gk‖
2

‖gk−1‖2
, βPRP

k =
g>k (gk − gk−1)

d>k−1(gk − gk−1)
,
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βDY
k =

‖gk‖
2

d>k−1(gk − gk−1)
, βCD

k = −
‖gk‖

2

g>k−1dk−1
, βHS

k =
g>k (gk − gk−1)

d>k−1(gk − gk−1)
.

It is generally believed that the FR method has nice global convergence proper-
ties. The HS and PRP methods have been regarded as two of the most efficient
conjugate gradient methods in practical computation and are preferred over the
FR method. Nevertheless, Powell [5] showed that the PRP method with exact
line search can cycle without approaching a solution point. Under the sufficient
descent condition, Gilbert and Nocedal [6] showed that the modified PRP method
βk = max{0, βPRP

k } is globally convergent with the Wolfe-Powell line search. For
the unmodified PRP method, Grippo and Lucidi [7] proved its convergence with
a new line search.

The following step-length line searches are often used in the convergence anal-
ysis of the conjugate gradient methods:

(1) Armijo line search. Let mk be the minimum nonnegative integer m such
that αk = βmk satisfies

(0.4) f(xk + αkdk)− f(xk) ≤ δβmg>k dk, β, δ ∈ (0, 1).

(2) Goldstein line search. Find an αk > 0 such that

(0.5) αkµ2g
>
k dk ≤ f(xk + αkdk)− f(xk) ≤ αkµ1g

>
k dk

where 0 < µ1 < µ2 < 1.
(3) Weak Wolfe-Powell line search (WWP). Find an αk > 0 satisfying the

right-hand side inequality of (5) and

(0.6) g(xk + αkdk)
>dk ≥ σg>k dk, σ ∈ (µ1, 1).

(4) Strong Wolfe-Powell line search (SWP). Find an αk > 0 satisfying the
right-hand side inequality of (5) and

(0.7) |g(xk + αkdk)
>dk| ≤ σ|g>k dk|, σ ∈ (µ1, 1).

The Wolfe-Powell line search and the Armijo type line search can guarantee
the global convergence in many conjugate gradient methods [6-9], however the
conjugate gradient method with Goldstein line search is very fewer except for the
paper[11]. Can the Goldstein line search guarantee the global convergence and
linear convergence?

In this paper, we present a new conjugate gradient method with the Goldstein
line search for unconstrained optimization problems and prove its global conver-
gence under some mild conditions. In addition, we show that the new method
with the Armijo line search is also convergent. When the objective function is
uniformly convex, we investigate the linear convergence rate of this new method.

The remainder of the paper is organized as follows. We describe the algorithm
and analyze its simple properties in Section 1. In Section 2, we prove its global
convergence under some mild conditions. Linear convergence rate is analyzed
in Section 3, and preliminary computational results are given in Section 4. The
conclusion is given in Section 5.
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1. Algorithm

Throughout the paper, we always suppose the following assumptions hold.
(H1): The objective function f has lower bound on the level set L0 = {x ∈

Rn|f(x) ≤ f(x1)}.
(H2): In some neighborhood N of L0, g is uniformly continuous on an open

convex set B that contains L0.
(H2′) The gradient g is Lipschitz continuous on the open convex set B, i.e.

there exists an L > 0 such that

(1.1) ‖g(x) − g(y)‖ ≤ L‖x− y‖.

It is obvious that (H2′) implies (H2).
Now we consider the following algorithm.

Algorithm 1.1.

Step 1: Given x1 ∈ Rn, ε > 0, t > 1, set k = 1.

Step 2: If ‖gk‖ < ε, then stop; compute αk by the Armijo line search (0.4) or
the Goldstein line search (0.5), and compute dk by (0.3), where

(1.2) βk =
‖gk‖

t · ‖dk−1‖
if k ≥ 2.

Step 3: Let the next iterative be xk+1 = xk + αkdk, and k := k + 1. Go to
Step 2.

The following lemmas are very useful for studying conjugate gradient methods.

Lemma 1.1. For all k ≥ 1,

(1.3) g>k dk ≤ −
t− 1

t
‖gk‖

2.

Proof. If k = 1, then

g>k dk = −‖gk‖
2 ≤ −

t− 1

t
‖gk‖

2.

If k ≥ 2, by (0.3) and (1.2) we have

g>k dk = −‖gk‖
2 + βkg

>
k dk−1 ≤ −‖gk‖

2 + βk‖gk‖ · ‖dk−1‖ ≤ −
t− 1

t
‖gk‖

2.

This completes the proof. �

Remark 1.1. From Lemma 1.1 and t > 1, the new conjugate gradient method
can guarantee the sufficient descent condition for any line search.

Remark 1.2. [11] If f(x) has lower bound and g>k dk < 0, then there exists αk

satisfying the Goldstein line search, i.e. the line search (0.5) is well-defined.

Remark 1.3. If xk is not a stationary point of f(x), i.e. ‖gk‖ 6= 0, then by
Lemma 1.1 we have ‖dk‖ 6= 0, so βk is well-defined.

Lemma 1.2. For all k ≥ 1,

(1.4) ‖dk‖ ≤
1 + t

t
‖gk‖.
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Proof. If k = 1, then

‖dk‖ = ‖ − gk‖ ≤
1 + t

t
‖gk‖.

If k ≥ 2, by (0.3) and (1.2), we have

‖dk‖ = ‖ − gk + βkdk−1‖ ≤ ‖gk‖+ βk‖dk−1‖ ≤
1 + t

t
‖gk‖.

This completes the proof. �

2. Global convergence

In this section, the convergence property of the new method with the Goldstein
line search will be studied. Then, some results about the convergence properties
of the new method with the Armijo line search are given.

2.1. The convergence properties with the Goldstein line search. In this
subsection we assume that the step size αk is computed by the Goldstein line
search (0.5). The following lemma, which is the well-known Zoutendijk condition,
is very useful in the proof of global convergence of the conjugate gradient methods.

Theorem 2.1. If (H1) and (H2′) hold and Algorithm 1.1 generates an infinite

sequence {xk}, then

(2.1)
∞∑

k=1

(g>k dk)
2

‖dk‖2
< +∞.

Proof. From the right-hand side inequality of (0.5) we have

(2.2)

∞∑

k=1

|αkg
>
k dk| < +∞.

By the mean value theorem applied to the left-hand side of (0.5), there exists
θk ∈ (0, 1) such that

αkg(xk + θkαkdk)
>dk = f(xk + αkdk)− f(xk) ≥ αkµ2g

>
k dk.

By (H2′) and the Cauchy-Schwarz inequality we have

αkL‖dk‖
2 ≥ ‖g(xk+θkαkdk)−gk‖·‖dk‖ ≥ (g(xk+θkαkdk)−gk)

>dk ≥ −(1−µ2)g
>
k dk,

i.e.

(2.3) αk ≥
−(1− µ2)g

>
k dk

L‖dk‖2
.

From the above inequality and (2.2), (2.1) holds. The proof is complete. �

Remark 2.1. By (1.3), (1.4) and (2.3) there exists a constant parameter c > 0
such that

(2.4) αk ≥ c
.
=

(1− µ2)t(t− 1)

L(1 + t)2
.
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Theorem 2.2. If the conditions in Theorem 2.1 hold then

lim
k→∞

‖gk‖ = 0.

Proof. By (1.3) and (2.1) we have

lim
k→∞

‖gk‖
4

‖dk‖2
= 0.

Therefore, by the above equality and (1.4) it follows that

lim
k→∞

t2

(1 + t)2
‖gk‖

2 = lim
k→∞

t2‖gk‖
4

(1 + t)2‖gk‖2
≤ lim

k→∞

‖gk‖
4

‖dk‖2
= 0.

This completes the proof. �

Theorem 2.3. If (H1) and (H2) hold and Algorithm 1.1 generates an infinite

sequence {xk}, then the sequence {‖gk‖} has an upper bound.

Proof. By Lemma 1.1 and the Cauchy-Schwarz inequality we have

(2.5) ‖dk‖ ≥
t− 1

t
‖gk‖.

If we assume that {‖gk‖} has no bound, then there exists an infinite subset K
such that

(2.6) lim
k∈K,k→∞

‖gk‖ = +∞.

By the right-hand side inequality of (0.5) and (1.3) we have

+∞ >

∞∑

k=1

(fk − fk+1)

>
∑

k∈K

(fk − fk+1)

≥ −µ1

∑

k∈K

αkg
>
k dk ≥ µ1

t− 1

t

∑

k∈K

αk‖gk‖
2 ≥ µ1

t− 1

t+ 1

∑

k∈K

αk‖dk‖
2.

Thus,

(2.7) lim
k∈K,k→∞

αk‖dk‖
2 = 0.

By (2.5) we have

(2.8) lim
k∈K,k→∞

‖dk‖ = +∞.

By (2.7) and (2.8) we have

(2.9) lim
k∈K,k→∞

αk‖dk‖ = 0.
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By the mean value theorem applied to the left-hand side of (0.5) and Lemma 1.1
we have

‖g(xk + θkαkdk)− gk‖ · ‖dk‖

≥ (g(xk + θkαkdk)− gk)
>dk

≥ −(1− µ2)g
>
k dk

≥ (1− µ2)(t− 1)‖gk‖
2/t

≥ (1− µ2)(t− 1)‖gk‖ · ‖dk‖/(1 + t),

where θk ∈ (0, 1). Using (2.9), we get

lim
k∈K,k→∞

‖gk‖ = 0,

which contradicts (2.6). This shows that {‖gk‖} has an upper bound. This
completes the proof. �

Theorem 2.4. If (H1) and (H2) hold and Algorithm 1.1 generates an infinite

sequence {xk}, then

lim
k→∞

‖gk‖ = 0.

Proof. Assume that there is an infinite subset K ⊂ N such that

‖gk‖ > ε, ∀k ∈ K.

In the proof of Theorem 2.3, we have seen that

µ1
t− 1

t

∑

k∈K

αk‖gk‖
2 < +∞.

Thus,

(2.10) lim
k∈K,k→∞

αk = 0.

By Lemma 1.2, Theorem 2.3 and (2.4) we have

(2.11) lim
k∈K,k→∞

αk‖dk‖ = 0.

In the proof of Theorem 2.3 we have seen that

‖g(xk + θkαkdk)− gk‖ · ‖dk‖

≥ (1− µ2)(t− 1)‖gk‖ · ‖dk‖/(1 + t)

Combing this with (2.11) we get

lim
k∈K,k→∞

‖gk‖ = 0,

which contradicts the assumption. This completes the proof. �
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2.2. The convergence properties with the Armijo line search. In this
subsection we assume that the step size αk is computed by the Armijo line search.

Theorem 2.5. If (H1) and (H2′) hold and Algorithm 1.1 generates an infinite

sequence {xk} then

(2.12) lim
k→∞

‖gk‖ = 0.

Proof. Let

K1 = {k|αk = 1}, K2 = {k|αk < 1}.

For k ∈ K1 we have

(2.13) f(xk+1)− f(xk) ≤ δg>k dk ≤ −
δ(t− 1)

t
‖gk‖

2,

where the first inequality follows from (0.4) and the second one follows from (1.3).
If k ∈ K2 then αk < 1, and this shows that α = αk/β cannot satisfy (0.4) and

thus

f(xk + αdk)− f(xk) > δαg>k dk.

Applying the mean value theorem to the left-hand side of the above inequality
we see that there exists θk ∈ [0, 1] such that

αg(xk + θkαdk)
>dk > δαg>k dk,

and by (H2’) and the Cauchy-Schwarz inequality we obtain

Lα‖dk‖
2

≥ ‖g(xk + θkαdk)− gk‖ · ‖dk‖

≥ (g(xk + θkαdk)− gk)
>dk

≥ −(1− δ)g>k dk.

Therefore we have

αk ≥
−β(1− δ)g>k dk

L‖dk‖2
,

and from (1.2) and(1.3) we have

αk ≥
−β(1− δ)(t − 1)‖gk‖

2

tL‖dk‖2
≥

βt2(1− δ)(t− 1)‖gk‖
2

tL(1 + t)2‖gk‖2
=

βt(1− δ)(t − 1)

L(1 + t)2
.
= c̃.

By (0.4) we have

(2.14) f(xk + αkdk)− f(xk) ≤ δc̃g>k dk ≤ −
δc̃(t− 1)

t
‖gk‖

2.

By (2.13) and (2.14) we have

(2.15) ĉ‖gk‖
2 ≤ f(xk)− f(xk+1),

where

ĉ = min{
δc̃(t− 1)

t
,
δ(t − 1)

t
}.
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From (2.15) we can obtain that {fk} is a decreasing sequence and has a bound
from below. This shows that {fk} has a limit. Summing both side of (2.15) from
k = 0 to ∞, we have

∞∑

k=0

ĉ‖gk‖
2 < +∞.

We assert that (2.12) holds. The proof is complete. �

3. Linear convergence rate

In this section we will discuss the convergence rate of the new method. First,
we give the definition of a uniformly convex function.

Definition 3.1. f is uniformly convex on Rn if there exists a constant µ > 0
such that

(g(x)− g(y))>(x− y) ≥ µ‖x− y‖2, ∀ x, y ∈ Rn,

where g(x) = ∇f(x).
Now, we further assume that
(H3): f is uniformly convex and twice continuously differentiable.
Obviously, assumption (H3) implies (H1),(H2) and (H2′).

Lemma 3.1 ([8]). If (H3) holds, then f has the following properties:

(1) f has a unique minimizer on Rn, say x∗.
(2) There exist m > 0, M > 0 and ε > 0 such that

1

2
m‖x− x∗‖2 ≤ f(x)− f(x∗) ≤

1

2
M‖x− x∗‖2, ∀x ∈ N(x∗, ε),

m‖x− x∗‖ ≤ ‖g(x)‖ ≤ M‖x− x∗‖, ∀x ∈ N(x∗, ε).

The following theorem is inspired by Theorem 4.1 in [8].

Theorem 3.2. If (H3) holds and µ1 < 1/2 then {xk} converges to x∗ at least

R-linearly.

Proof. If (H3) holds then there exists k′ such that xk ∈ N(x∗, ε0)∀k ≥ k. Without
loss of generality we can assume that x1 ∈ N(x∗, ε0). By the proof of Theorem
2.3 and Remark 2.1 we have

(3.1) fk − fk+1 ≥
µ1(t− 1)c

t
‖gk‖

2.

By Lemma 3.1(2) and (3.1) we obtain

fk − fk+1 ≥
µ1(t− 1)cm2

t
‖xk − x∗‖2

≥
2µ1(t− 1)cm2

Mt
(fk − f∗).

Setting

θ = m

√
2µ1(t− 1)c

Mt
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we have

(3.2) fk − fk+1 ≥ θ2(fk − f∗).

Now we prove that θ < 1. In fact, by the definition of c, and noting that
m ≤ M ≤ L, we have

θ2 =
2µ1(t− 1)cm2

Mt
=

2µ1(t− 1)2m2(1− µ2)

ML(1 + t)2

≤
2µ1m

2

ML
≤ 2µ1 < 1.

Setting

ω =
√
1− θ2

it obviously hold ω < 1, and (3.2) implies that

fk+1 − f∗ ≤ (1− θ2)(fk − f∗)

= ω2(fk − f∗)

≤ · · ·

≤ ω2(k−k′)(fk′+1 − f∗).

By Lemma 3.1 and the above inequality we have

‖xk+1 − x∗‖2 ≤
2

m
(fk+1 − f∗)

≤ ω2(k−k′) 2(fk′+1 − f∗)

m
,

thus

‖xk − x∗‖ ≤ ωk

√
2(fk′+1 − f∗)

mω2(k′+1)

and

lim
k→∞

‖xk − x∗‖1/k ≤ ω < 1.

This shows that {xk} converges to x∗ at least R-linearly. The proof is complete.
�

4. Numerical reports

In this section we give some preliminary computational results to test the
ability of the proposed Algorithm 1.1 in MATLAB 7.1. We take µ1 = 0.38, µ2 =
0.75 in the Goldstein line search, and t = 2 in the algorithm. The stopping
criterion is

‖gk‖ ≤ 10−6.

We test the following conjugate gradient methods.
NCG1: Algorithm 1.1 with the Goldstein line search.
NCG2: Algorithm 1.1 with the Armijo line search.
PRP1: the PRP method with the Goldstein line search.
PRP2: the PRP method with the Armijo line search.
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PRP+: the PRP formula with nonnegative values βk = max{0, βPRP
k } and the

Goldstein line search conditions.
FR: the FR method with the Armijo line search.
DY: the DY method with the Armijo line search.
HS: the HS method with the Armijo line search.
The numerical results are listed in Tables 1 and 2, where the items in each

column have the following meanings:
N: the dimension of the problem;
NI/NF/CPU: the number of iterations, function evaluations, and CPU time;
F means that the number of the iteration exceeds 100.

Problem 4.1.

f(x) =

n∑

i=1

(xi − 1)2 + [

n∑

i=1

1

i
(xi − 1)]2 + [

n∑

i=1

1

i
(xi − 1)]4.

The initial point:

xi = 1−
i

n
, i = 1, 2, · · · , n.

Table 1. Numerical results for Problem 4.1

N NCG1 PRP1 PRP+

2 12/57 11/44 13/53
10 10/48 17/74 18/79
100 14/69 17/72 17/73
1000 15/82 19/86 17/77
5000 14/74 21/99 20/95
10000 15/85 20/94 20/95

Problem 4.2.

f(x) =
n∑

i=1

(exi − xi).

The initial point:

xi =
n

n− 1
, i = 1, 2, · · · , n.

Table 2. Numerical results for Problem 4.2

N NCG2 PRP2 FR DY
50 6/13/0.0100 7/14/0.0100 9/18/0.0100 9/18/0.0100
100 7/14/0.0100 7/14/0.0100 9/18/0.0100 9/18/0.0100
500 8/16/0.0200 7/14/0.0200 10/20/0.0100 10/20/0.0100
1000 8/16/0.0200 7/14/0.0200 F 13/26/1.4621
5000 9/18/0.2604 7/14/0.2504 F 13/26/7.3105
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Problem 4.3 (Beale function).

f(x) =

3∑

i=1

fi(x)
2, fi(x) = yi − x1(1− xi2), i = 1, 2, 3

y1 = 1.5, y2 = 2.25, y3 = 2.625, x0 = (1, 1)>.

Problem 4.4 (Rosenbrock function).

f(x) = 100(x2 − x21)
2 + (1− x1)

2, x0 = (−3.635, 5.621)> .

Problem 4.5 (Cube function).

f(x) = 100(x2 − x31)
2 + (1− x1)

2, x0 = (1.2, 1)>.

Problem 4.6.

f(x) = (−x1+x2+x3)
2+(x1−x2+x3)

2+(x1+x2−x3)
2, x0 = (100,−1, 2, 5)> .

Table 3. Numerical results for Problems 4.3-4.6

P NCG2 PRP2 FR HS
P3 54/108/3.3849 71/142/7.7111 35/70/1.9128 34/68/1.6624
P4 40/79/2.9643 90/179/11.9171 F 123/245/8.9429
P5 60/119/4.5766 42/83/3.9357 59/117/3.9056 F
P6 24/47/1.7325 7/13/0.3705 21/41/1.0615 40/79/2.2132

The above numerical results shows that the new method is efficient in practice.
First, the new method avoids the evaluation of second derivatives of f . Second, it
also avoids the storage of any matrix associated with quasi Newton type method.
This comparison shows that the search direction of the new method is a good
descent direction at each iteration.

However, how to choose a suitable parameter t for different problems deserves
further research.

5. Conclusions

In this paper we developed a new conjugate gradient method for unconstrained
optimization problems. Under mild conditions, we obtained global convergence
with the Armijo line search and the Goldstein line search of the new method, and
linear convergence rate was also studied. Numerical tests showed our method is
encouraging in practical computation, compared with other similar methods.
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