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EXISTENCE OF SOLUTIONS
OF GENERALIZED QUASIVARIATIONAL
INEQUALITIES WITH SET-VALUED MAPS

LE ANH TUAN AND PHAM HUU SACH

ABSTRACT. This paper gives existence theorems for solutions of the problem
of finding a point (20, zo,yo) € B(z0,x0) X A(z0) X F (20, o, xo) such that, for
all z € A(zo), F(z0,%0,2) —yo ¢ C(z0, w0, o), where A, B,C and F are set-
valued maps between topological vector spaces. Our results generalize some
known existence theorems for quasivariational inequalities.

1. INTRODUCTION

Let X,Y and Z be locally convex Hausdorff topological vector spaces, and
K C X and E C Z be nonempty subsets. Let A: K — 2K B: E x K — 2F,
C:ExKxK-—2Yand F: Ex K x K — 2Y be set-valued maps with
nonempty values. In this paper, we are interested in the existence of solutions
of the following generalized quasivariational inequality problem with set-valued
maps:

(P) Find (z0,70) € E x K such that zy € A(zo), 20 € B(z0,x0) and there
exists yo € F(z0, To, o) such that

(1.1) F(z0,x0,2) —yo & C(20,x0,%0), Ya € A(zg).

If C(z0,x0,70) is the negative half-line and F' is a (single-valued) function
satisfying the condition

(1.2) F(Zo, o, ZL‘o) Z 0,
then (1.1) implies that
F(zy,x0,2) >0, Va € A(xg),

i.e., (20,%0) is a solution of the generalized quasivariational inequality problems
investigated in [2, 7, 5]. Observe that (1.2) is an assumption often used in proving
the existence of solutions of such problems (see e.g. [7, 5]).

If F is single-valued, and B does not depend on the first variable z, then
Problem (P) was investigated in [6] with C(zo, zo, o) being the nonempty interior
of a closed convex cone and in [2] with C(zp,xo, zo) being the positive half-line.
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We will see in Section 3 that our main result (Theorem 3.1) includes as special
cases Theorem 3.1 and Corollary 3.1 of [2], Theorem 3 of [7], Theorem 1 of [5]
and Theorem 2.1 of [6].

If we additionally assume that C(zo, xg, xo) = —int D(zg, z¢) and F' (29, zo, Zo)
C D(z0,x0), where D(zg, zo) is a closed convex cone with nonempty interior, then
from (1.1) it follows that

(1.3) F(z0,x0,x) ¢ —int D(z9,20), Vz € A(xg),

(see Theorem 3.2 of Section 3). The requirement (1.3) is considered in Corollary
1 of [10] under the additional assumption that both F' and D do not depend on
the first variable z. Also, it is worth noticing that, unlike Corollary 1 of [10], we
do not use the pseudomonotonicity property in proving (1.3).

We will see in Section 3 that the existence of a solution of (P) is equivalent
to the existence of a fixed point of a suitable set-valued map. The fixed point
theorem used in this paper is due to Park [11] it will be recalled in Section 2.

2. PRELIMINARIES

Let X be a topological space. Each subset of X can be seen as a topological
space with the topology induced by the given topology of X. For z € X, let
us denote by U(x),U;(z), U2(x), ... open neighbourhoods of x. The empty set is
denoted by 0.

For a set-valued map F : X — 2" between two topological spaces X and Y
we denote by im F' and gr F' the image and graph of F :

im F = | ] Fx),

rxeX
gr F={(z,y) e X xY :y € F(z)}.

By definition F' is upper semicontinuous (usc) if for any = € X and any open
set N D F(x) there exists U(z) such that N D F(z') for all 2’ € U(z). F is lower
semicontinuous (Isc) if for any € X and any open set N with F(z) " N # {)
there exists U(x) such that F(z') NN #  for all 2/ € U(z). F is continuous if it
is both usc and Isc. F' is closed if its graph is a closed set of X x Y. F' is compact
if im F' is contained in a compact set of Y. F' is acyclic if it is usc and if, for any
x € X, F(z) is nonempty, compact and acyclic. Recall that a topological space
is called acyclic if all of its reduced Cech homology groups over rationals vanish.
It is well known that contractible spaces are acyclic; and hence, convex sets and
star-shaped sets are acyclic.

We will need the following fixed point theorem due to Park [11, Theorem 7].

Theorem 2.1. Let K be a nonempty convex subset of a locally convex Hausdorff
topological vector space X. If F : K — 2K s a compact acyclic map, then F
has a fized point, i.e., there exists xy € K such that xo € F(xg).
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Lemma 2.1. [4, 8] Let Y be a Hausdorff topological vector space, Q@ C Y be a

nonempty compact set and D C'Y be a closed convex cone with nonempty interior
(D #Y). Then there exists q € Q such that

(Q —q) N —intD = 0.
3. MAIN RESULT

Throughout this paper we assume that X, Y and Z are locally convex Haus-
dorff topological vector spaces, K C X and E C Z are nonempty convex sub-
sets, A : K — 2% is a compact continuous map with nonempty closed values,
B: E x K — 2F is a compact acyclic map, and C : E x K x K — 2¥ and
F:Ex K x K — 2Y are set-valued maps with nonempty values.

Consider the set-valued maps T : E x K — 2K and 7 : E x K — 26xK
defined by setting

(3.1)
T(z,€) ={r € A(§) : Jy € F(2,§,2),VE € A(§), F(2,6,¢) —y ¢ C(2,62)},
(3.2) 7(2,€) = B(2,§) x T'(2,€),

for each (z,£) € E x K. Obviously, (z0,20) € E x K is a solution of (P) if and
only if it is a fixed point of the map 7. So, solving (P) is equivalent to finding a
fixed point of 7.

Theorem 3.1. Let F : ExKxK — 2Y be an usc map with compact values, and
C:ExKxK —2Y be a map with open graph such that, for all (2,€§) e EXK,
the set T'(z,€) is nonempty and acyclic. Then there exists a solution of (P).

Proof. Let T be defined by (3.2). As we have mentioned above, to prove the
theorem it suffices to show that 7 has a fixed point. The existence of such a fixed
point is assured by Theorem 2.1. Indeed, we first claim that 7T is usc. For each
(2,€) € E x K, the set T'(z,£) can be rewritten as

T(Z,f) = T1(27£) N A(g)a

where
Ti(z,6) ={r € K :3y € F(z,§,1),Y¢ € A(§), F(2,&¢E) —y ¢ C(z,& )}

Since A is usc and compact-valued, it follows from [1, Proposition 2, p.71] that
T is usc if T} : E x K — 2K is closed. To prove this property we have to
show that the complement of gr 77 in the topological space £ x K x K is open.
In other words, we have to show that for any point (2,£,Z) ¢ gr T; there exist

neighbourhoods U(z),U(§) and U(Z) such that

(3.3) V(z,&x) e U(z) xU&) x U(Z) : (2,&,x) ¢ gr T1.
Equivalently, we have to prove that
(3.4) V(z,&,2) € U(Z) x UE) x U(z),Vy € F(z,&,2),3€ € A®€)

o~

F(Z,f,g) —yC C(Z,{,ZE‘)
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Indeed, let (z,&,7) ¢ gr T1. Then, for any y € F(z,€,7), there exists £’ € A(€)
such that F(z,&,¢') —y C C(z,&,7), ie.,

(3.5) (2,67, F(2,6,¢) —y) Cer C.
By the openess of gr C' and the compactness of (2, £, ') there exist open neigh-

bourhoods Uy ¢/(2), Uy ¢ (), Uye (%) and Uy ¢ (0y), which depend on y and &,
such that

(3.6) Uyger(2) x Uyer(€) x Uyer(7) x (F(2,€,€) =y + Uy e (Oy) + Uy e (0y))
CgrC,

,
£,

where U, ¢(0y) is a balanced neighbourhood of the origin Oy of Y.
When y runs over F(z, €,7), the open neighbourhoods y + Uy ¢(Oy) cover the

compact set F(z,&,z). Hence there exist y; € F(z,£,7) and & € A(E) (i =
1,2,...,n) such that

n

@i + Uy, (0y)) D F(2,€, 7).
=1

By the upper semicontinuity of F' there exist neighbourhoods Ui (2), Uy (§) and
U(z) such that

n

(37)  V(z.&2) € U1(2) x U1(§) x U@) : |Jwi + Uy, (0y)) D F(z,€,2).
=1

Without loss of generality we may assume that

Ui(2) € ((Uygt(2), Ui(€) € (Upgr(©), U@ C (U (@).
=1 =1

=1

Using (3.6) with y; and & instead of y and & we have

(3.9)
Uy, e1(2) X Uy, ¢1(€) x Uy, (%) x (F(2,€,&) — yi + Uy, ¢ (0y) + Uy, ¢ (0y))
CerC.

Also, since F is usc there exist neighbourhoods Us(2),Us2(§) and U(€)) such that
(39) Vi = 1727 ey Ty v(zafﬂ?) € UQ(E) X UQ(E) X U(g;) :
F(Z7§777) C F(ngu 57{) + Uy“f;(OY)

Observe that A(§)NU(&;) # 0 since §; € A(E)NU(;). By the lower semicontinuity
of A there exists a neighbourhood Us(§) such that

(3.10) Vi=1,2,...,n, VE€Us(&): A)NU(E) #0.
Setting
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we claim that (3.3) holds. In other words, taking (z,&,z) € U(2) x U(€) x U(z)
and y € F(z,£,x) we must find £ € A(§) satisfying (3.4).
By (3.7) there exist y; € F(2,£,7) and & € A(€) such that

Y € yi + Uy, ¢ (Oy).

Since £ € U(£) C Us(€) we can find € € A(¢) such that € € U(&)) (see (3.10)).
Now, using (3.9) with n = £ we get

(3.11) F(2,68) —y CF(2.6,&) — i+ yi —y + Uy ¢ (Oy)
C F(2,6,€) — yi + Uy, e (0y) + Uy, ¢/ (Oy).
On the other hand,
(z,6,2) € U(2) x U(&) x U(z) C Uy, ¢/(2) x injsg(g) X Uy, ¢/(Z).
Hence, by (3.8) and (3.11) we have

(27£7$7 F(za£7£) - y) - gr Cv
i.e., (3.4) holds, as desired.
Thus T3 is closed, hence T is usc.

Observe now that 7 defined by (3.2) is usc with nonempty compact values since
it is the product of the usc maps B and T with nonempty compact values (see [1,
Proposition 7, p.73]). Observe also that for each (z,§) € E x K, the set 7(z,¢)
is acyclic since it is the product of two acyclic sets (see the Kiinneth formula in
[9]). Thus, 7 is acyclic. In addition, since im 7 C im B x im A and A and B
are compact maps, 7 is a compact map. We have seen that all the assumptions
of Theorem 2.1 are satisfied for 7. Therefore, 7 has a fixed point, i.e., (P) has a
solution. O

Theorem 3.2. In addition to the assumptions of Theorem 3.1, assume that for
each (2,€) € Ex K, C(2,£,€) = —int D(z,£) and F(z,€,§) C D(z,£), where
D(z,€) is a convex cone with nonempty interior. Then there exists (zo, o) €
E x K such that (z0,x0) € B(z0,20) X A(zg) and

F(20,20,x) ¢ —int D(z0,x0), Yz € A(xo).
Proof. By Theorem 3.1 there exists a solution of (P), denoted by (2o, o). Let us

prove that this point satisfies the conclusion of Theorem 3.2. Indeed, otherwise
F(z0,x0,2) C —int D(zg,zo) for some z € A(xg). From this we get

F(z0,z0,2) —yo C —int D(zg,z0) — D(z0,x0)
C —int D(zo, o),
a contradiction to (1.1) with C(zg, zo, z9) = —int D(z0,xo). O

Remark 3.1. When both maps F' and D do not depend on the first variable z,
Theorem 3.2 is established in Corollary 1 of [10] under some pseudomonotonicity
property of F.
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From Lemma 2.1 it follows that T'(z, &) is nonempty if the following condition
is satisfied: for each (z,£,2) € E x K x K, F(2,§,) is usc and C(z,§,x) =
—int D(z,§) where D(2,£) # Y is a closed convex cone with nonempty interior.
This remark together with Theorems 3.1 and 3.2 yields the following corollary.

Corollary 3.1. Let the map (z,§) € ExK — int D(z,&) have open graph where,
forall (z,§) € ExXK, D(z,§) #Y is a closed convex cone with nonempty interior.

Let F: Ex K x K — 2Y be an usc map with compact values such that, for any
(2,€) € E x K, the set

(3.12) T(z,&) ={x € A(&): 3y € F(z,£,2),V¢ € A(€)
F(z7§7€/) -y gZ —int D(Zag)}

is acyclic. Then there exists (zo,x0,y0) € E x K XY such that (z9,x9) €
B(z0,70) x A(wo), Yo € F(20,%0,70) and

F(z0,z0,x) —yo ¢ —int D(20,20), Yz € A(xo).

If, in addition, F(z,£,€) C D(z,§) for all (z,§) € E x K, then there exists
(z0,m0) € E x K such that (z0,z0) € B(z0,x0) X A(zo) and

F(20,20,x) ¢ —int D(z0,x0), Yz € A(xo).

Remark 3.2. Corollary 3.1 extends Theorem 1 in [5] and Theorem 2.1 in [6] to
the set-valued case.

Before giving a sufficient condition for the set (3.12) to be acyclic let us in-
troduce the following definition which is a generalization of the notion of proper
quasiconcavity [3] to the set-valued case. Let a C X be a convex subset, D C Y
be a convex cone and f : a — 2 be a set-valued map. We say that f is properly
D-quasiconcave on a if for all v € (0,1), x; € a, y; € f(zi) (i = 1,2) there exists
y € f(yx1 + (1 —y)x2) such that

either yy e y—D ory: €y— D.
Corollary 3.2. Let the map (z2,§) € E x K +— int D(z,£) have open graph,
where for all (z,§) € E x K, D(2,£) #Y s a closed convex cone with nonempty
interior. Let A(€) be convex for all € € K. Let F: E x K x K — 2 be an usc
map with compact values such that, for all (2,§) € E x K, F(2,§,-) is properly
[—D(z,&)]-quasiconcave on A(€). Then there exists (zo,xo,y0) € Ex K XY such
that (20,20) € B(20,70) X A(z0), Yo € F (20,0, Z0) and
F(z0,z0,2) —yo ¢ —int D(z0,x0), Ya € A(xg).

If, in addition, F(z,£,&) C D(z,§) for all (2,§) € E x K, then there exists
(z0,m0) € E X K such that (z0,x0) € B(z0,x0) X A(z) and

F(zy,x0,x) ¢ —int D(zp,x0), Yx € A(xp).

Proof. By Corollary 3.1, all we have to prove is the convexity of the set (3.12). Let
x; € T(2,€) (i=1,2) and p € (0,1). We must show that 2’ := pxy + (1 — p)zs €
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T(z,€). Since z; € T(z,£), we have x; € A(£), and there exists y; € F(z,&, x;)
such that, for all £ € A(§),

F(Z7£7§/) —Yi ¢ —int D(Z,f) (Z = 172)
Obviously, =’ € A(&) since A(§) is convex. Also, since F(z,&,-) is properly
[—D(z,§)]-quasiconcave on A(&) there exists y' € F(z,&,2') such that y € v/ +
D(z,§) where y € {y1,y2}. We now claim that 2’ € T'(z,§) and hence, T'(z,€) is
a convex set. More precisely, we claim that y' € F(z,£,2') is a point such that,
for all &' € A(¢),
F(Z,f,f,) - yl §Z —int D(Zvé)
Indeed, otherwise there exists £ € A(£) such that

F(2,6,¢) —y' C —int D(z,¢),
which implies that
F(2,6¢) -y (y —9) —int D(2,¢)
C —D(z,¢) —int D(z,¢€)
C —int D(z,¢).
This contradicts the condition F'(z,£,¢') — y ¢ —int D(z,£) which is valid since
Y€ {y1,y2}- O

Remark 3.3. Corollary 3.2 includes as special cases Theorem 3.1, Corollary 3.1
in [2] and Theorem 3 in [7].

Remark 3.4. Corollary 3.2 fails to hold if A is not assumed to have closed values.
This can be illustrated by the following example.

Example 3.1. Let us consider Problem (P) with X =Y =7 =R, D(z,¢) =
Ry, K =FE=101], F(z,§,z) = {(z,2 — {)}, A(z) = (0,1] and B(z,§) = {1},
Then all the assumptions of Corollary 3.2 are satisfied, but there does not exist
(z0,x0) € B(z0,x0) X A(xo) such that

F(z0,x0,2) > F(z0,x0,%0), Y € A(x0).

Indeed, if such a point exists then we have zg = 1,29 € (0,1] and (20,2 —x¢) > 0,
ie., x > xg for all z € (0,1]. This is impossible.
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