EXISTENCE OF SOLUTIONS OF GENERALIZED QUASIVARIATIONAL INEQUALITIES WITH SET-VALUED MAPS

LE ANH TUAN AND PHAM HUU SACH

ABSTRACT. This paper gives existence theorems for solutions of the problem of finding a point $(z_0, x_0, y_0) \in B(z_0, x_0) \times A(x_0) \times F(z_0, x_0, x_0)$ such that, for all $x \in A(x_0)$, $F(z_0, x_0, x) - y_0 \not\subset C(z_0, x_0, x_0)$, where A, B, C and F are setvalued maps between topological vector spaces. Our results generalize some known existence theorems for quasivariational inequalities.

1. Introduction

Let X,Y and Z be locally convex Hausdorff topological vector spaces, and $K \subset X$ and $E \subset Z$ be nonempty subsets. Let $A:K \longrightarrow 2^K$, $B:E \times K \longrightarrow 2^E$, $C:E \times K \times K \longrightarrow 2^Y$ and $F:E \times K \times K \longrightarrow 2^Y$ be set-valued maps with nonempty values. In this paper, we are interested in the existence of solutions of the following generalized quasivariational inequality problem with set-valued maps:

(P) Find $(z_0, x_0) \in E \times K$ such that $x_0 \in A(x_0), z_0 \in B(z_0, x_0)$ and there exists $y_0 \in F(z_0, x_0, x_0)$ such that

$$(1.1) F(z_0, x_0, x) - y_0 \not\subset C(z_0, x_0, x_0), \quad \forall x \in A(x_0).$$

If $C(z_0, x_0, x_0)$ is the negative half-line and F is a (single-valued) function satisfying the condition

$$(1.2) F(z_0, x_0, x_0) \ge 0,$$

then (1.1) implies that

$$F(z_0, x_0, x) \ge 0, \quad \forall x \in A(x_0),$$

i.e., (z_0, x_0) is a solution of the generalized quasivariational inequality problems investigated in [2, 7, 5]. Observe that (1.2) is an assumption often used in proving the existence of solutions of such problems (see e.g. [7, 5]).

If F is single-valued, and B does not depend on the first variable z, then Problem (P) was investigated in [6] with $C(z_0, x_0, x_0)$ being the nonempty interior of a closed convex cone and in [2] with $C(z_0, x_0, x_0)$ being the positive half-line.

Received June 28, 2004; in revised form September 30, 2004.

Key words and phrases. Generalized quasivariational inequalities, set-valued maps, acyclic maps, proper quasiconcavity.

We will see in Section 3 that our main result (Theorem 3.1) includes as special cases Theorem 3.1 and Corollary 3.1 of [2], Theorem 3 of [7], Theorem 1 of [5] and Theorem 2.1 of [6].

If we additionally assume that $C(z_0, x_0, x_0) \equiv -\text{int } D(z_0, x_0)$ and $F(z_0, x_0, x_0) \subset D(z_0, x_0)$, where $D(z_0, x_0)$ is a closed convex cone with nonempty interior, then from (1.1) it follows that

(1.3)
$$F(z_0, x_0, x) \not\subset -\text{int } D(z_0, x_0), \quad \forall x \in A(x_0),$$

(see Theorem 3.2 of Section 3). The requirement (1.3) is considered in Corollary 1 of [10] under the additional assumption that both F and D do not depend on the first variable z. Also, it is worth noticing that, unlike Corollary 1 of [10], we do not use the pseudomonotonicity property in proving (1.3).

We will see in Section 3 that the existence of a solution of (P) is equivalent to the existence of a fixed point of a suitable set-valued map. The fixed point theorem used in this paper is due to Park [11] it will be recalled in Section 2.

2. Preliminaries

Let X be a topological space. Each subset of X can be seen as a topological space with the topology induced by the given topology of X. For $x \in X$, let us denote by $U(x), U_1(x), U_2(x), ...$ open neighbourhoods of x. The empty set is denoted by \emptyset .

For a set-valued map $F: X \longrightarrow 2^Y$ between two topological spaces X and Y we denote by im F and gr F the image and graph of F:

$$im F = \bigcup_{x \in X} F(x),$$

gr
$$F = \{(x, y) \in X \times Y : y \in F(x)\}.$$

By definition F is upper semicontinuous (usc) if for any $x \in X$ and any open set $N \supset F(x)$ there exists U(x) such that $N \supset F(x')$ for all $x' \in U(x)$. F is lower semicontinuous (lsc) if for any $x \in X$ and any open set N with $F(x) \cap N \neq \emptyset$ there exists U(x) such that $F(x') \cap N \neq \emptyset$ for all $x' \in U(x)$. F is continuous if it is both usc and lsc. F is closed if its graph is a closed set of $X \times Y$. F is compact if im F is contained in a compact set of Y. F is acyclic if it is usc and if, for any $x \in X$, F(x) is nonempty, compact and acyclic. Recall that a topological space is called acyclic if all of its reduced Čech homology groups over rationals vanish. It is well known that contractible spaces are acyclic; and hence, convex sets and star-shaped sets are acyclic.

We will need the following fixed point theorem due to Park [11, Theorem 7].

Theorem 2.1. Let K be a nonempty convex subset of a locally convex Hausdorff topological vector space X. If $F: K \longrightarrow 2^K$ is a compact acyclic map, then F has a fixed point, i.e., there exists $x_0 \in K$ such that $x_0 \in F(x_0)$.

Lemma 2.1. [4, 8] Let Y be a Hausdorff topological vector space, $Q \subset Y$ be a nonempty compact set and $D \subset Y$ be a closed convex cone with nonempty interior $(D \neq Y)$. Then there exists $q \in Q$ such that

$$(Q-q)\cap -intD=\emptyset.$$

3. Main result

Throughout this paper we assume that X, Y and Z are locally convex Hausdorff topological vector spaces, $K \subset X$ and $E \subset Z$ are nonempty convex subsets, $A: K \longrightarrow 2^K$ is a compact continuous map with nonempty closed values, $B: E \times K \longrightarrow 2^E$ is a compact acyclic map, and $C: E \times K \times K \longrightarrow 2^Y$ and $F: E \times K \times K \longrightarrow 2^Y$ are set-valued maps with nonempty values.

Consider the set-valued maps $T: E \times K \longrightarrow 2^K$ and $\tau: E \times K \longrightarrow 2^{E \times K}$ defined by setting

(3.1)

$$T(z,\xi) = \{ x \in A(\xi) : \exists y \in F(z,\xi,x), \forall \xi' \in A(\xi), \ F(z,\xi,\xi') - y \not\subset C(z,\xi,x) \},$$

(3.2)
$$\tau(z,\xi) = B(z,\xi) \times T(z,\xi),$$

for each $(z,\xi) \in E \times K$. Obviously, $(z_0,x_0) \in E \times K$ is a solution of (P) if and only if it is a fixed point of the map τ . So, solving (P) is equivalent to finding a fixed point of τ .

Theorem 3.1. Let $F: E \times K \times K \longrightarrow 2^Y$ be an usc map with compact values, and $C: E \times K \times K \longrightarrow 2^Y$ be a map with open graph such that, for all $(z, \xi) \in E \times K$, the set $T(z, \xi)$ is nonempty and acyclic. Then there exists a solution of (P).

Proof. Let τ be defined by (3.2). As we have mentioned above, to prove the theorem it suffices to show that τ has a fixed point. The existence of such a fixed point is assured by Theorem 2.1. Indeed, we first claim that T is usc. For each $(z, \xi) \in E \times K$, the set $T(z, \xi)$ can be rewritten as

$$T(z,\xi) = T_1(z,\xi) \cap A(\xi),$$

where

$$T_1(z,\xi) = \{ x \in K : \exists y \in F(z,\xi,x), \forall \xi' \in A(\xi), \ F(z,\xi,\xi') - y \not\subset C(z,\xi,x) \}.$$

Since A is use and compact-valued, it follows from [1, Proposition 2, p.71] that T is use if $T_1: E\times K\longrightarrow 2^K$ is closed. To prove this property we have to show that the complement of gr T_1 in the topological space $E\times K\times K$ is open. In other words, we have to show that for any point $(\bar{z}, \bar{\xi}, \bar{x}) \notin \operatorname{gr} T_1$ there exist neighbourhoods $U(\bar{z}), U(\bar{\xi})$ and $U(\bar{x})$ such that

$$(3.3) \qquad \forall (z,\xi,x) \in U(\bar{z}) \times U(\bar{\xi}) \times U(\bar{x}) : (z,\xi,x) \notin \operatorname{gr} T_1.$$

Equivalently, we have to prove that

$$(3.4) \quad \forall (z,\xi,x) \in U(\bar{z}) \times U(\bar{\xi}) \times U(\bar{x}), \forall y \in F(z,\xi,x), \exists \widehat{\xi} \in A(\xi):$$

$$F(z,\xi,\widehat{\xi}) - y \subset C(z,\xi,x).$$

Indeed, let $(\bar{z}, \bar{\xi}, \bar{x}) \notin \operatorname{gr} T_1$. Then, for any $y \in F(\bar{z}, \bar{\xi}, \bar{x})$, there exists $\xi' \in A(\bar{\xi})$ such that $F(\bar{z}, \bar{\xi}, \xi') - y \subset C(\bar{z}, \bar{\xi}, \bar{x})$, i.e.,

$$(3.5) (\bar{z}, \bar{\xi}, \bar{x}, F(\bar{z}, \bar{\xi}, \xi') - y) \subset \operatorname{gr} C.$$

By the openess of gr C and the compactness of $F(\bar{z}, \bar{\xi}, \xi')$ there exist open neighbourhoods $U_{y,\xi'}(\bar{z}), U_{y,\xi'}(\bar{\xi}), U_{y,\xi'}(\bar{x})$ and $U_{y,\xi'}(0_Y)$, which depend on y and ξ' , such that

$$(3.6) \quad U_{y,\xi'}(\bar{z}) \times U_{y,\xi'}(\bar{\xi}) \times U_{y,\xi'}(\bar{x}) \times (F(\bar{z},\bar{\xi},\xi') - y + U_{y,\xi'}(0_Y) + U_{y,\xi'}(0_Y))$$

$$\subset \operatorname{gr} C.$$

where $U_{y,\xi'}(0_Y)$ is a balanced neighbourhood of the origin 0_Y of Y.

When y runs over $F(\bar{z}, \bar{\xi}, \bar{x})$, the open neighbourhoods $y + U_{y,\xi'}(0_Y)$ cover the compact set $F(\bar{z}, \bar{\xi}, \bar{x})$. Hence there exist $y_i \in F(\bar{z}, \bar{\xi}, \bar{x})$ and $\xi'_i \in A(\bar{\xi})$ (i = 1, 2, ..., n) such that

$$\bigcup_{i=1}^{n} (y_i + U_{y_i,\xi_i'}(0_Y)) \supset F(\bar{z},\bar{\xi},\bar{x}).$$

By the upper semicontinuity of F there exist neighbourhoods $U_1(\bar{z})$, $U_1(\bar{\xi})$ and $U(\bar{x})$ such that

$$(3.7) \qquad \forall (z,\xi,x) \in U_1(\bar{z}) \times U_1(\bar{\xi}) \times U(\bar{x}) : \bigcup_{i=1}^n (y_i + U_{y_i,\xi_i'}(0_Y)) \supset F(z,\xi,x).$$

Without loss of generality we may assume that

$$U_1(\bar{z}) \subset \bigcap_{i=1}^n U_{y_i,\xi_i'}(\bar{z}), \quad U_1(\bar{\xi}) \subset \bigcap_{i=1}^n U_{y_i,\xi_i'}(\bar{\xi}), \quad U(\bar{x}) \subset \bigcap_{i=1}^n U_{y_i,\xi_i'}(\bar{x}).$$

Using (3.6) with y_i and ξ'_i instead of y and ξ' we have

(3.8)

$$U_{y_{i},\xi'_{i}}(\bar{z}) \times U_{y_{i},\xi'_{i}}(\bar{\xi}) \times U_{y_{i},\xi'_{i}}(\bar{x}) \times (F(\bar{z},\bar{\xi},\xi'_{i}) - y_{i} + U_{y_{i},\xi'_{i}}(0_{Y}) + U_{y_{i},\xi'_{i}}(0_{Y})) \subset \operatorname{gr} C.$$

Also, since F is use there exist neighbourhoods $U_2(\bar{z}), U_2(\bar{\xi})$ and $U(\xi_i')$ such that

(3.9)
$$\forall i = 1, 2, ..., n, \ \forall (z, \xi, \eta) \in U_2(\bar{z}) \times U_2(\bar{\xi}) \times U(\xi_i') :$$

$$F(z,\xi,\eta) \subset F(\bar{z},\bar{\xi},\xi_i') + U_{y_i,\xi_i'}(0_Y).$$

Observe that $A(\bar{\xi}) \cap U(\xi_i') \neq \emptyset$ since $\xi_i' \in A(\bar{\xi}) \cap U(\xi_i')$. By the lower semicontinuity of A there exists a neighbourhood $U_3(\bar{\xi})$ such that

$$(3.10) \forall i = 1, 2, ..., n, \ \forall \xi \in U_3(\bar{\xi}) : A(\xi) \cap U(\xi_i') \neq \emptyset.$$

Setting

$$U(\bar{z}) = \bigcap_{i=1}^{2} U_i(\bar{z}), \quad U(\bar{\xi}) = \bigcap_{i=1}^{3} U_i(\bar{\xi}),$$

we claim that (3.3) holds. In other words, taking $(z, \xi, x) \in U(\bar{z}) \times U(\bar{\xi}) \times U(\bar{x})$ and $y \in F(z, \xi, x)$ we must find $\hat{\xi} \in A(\xi)$ satisfying (3.4).

By (3.7) there exist $y_i \in F(\bar{z}, \bar{\xi}, \bar{x})$ and $\xi_i' \in A(\bar{\xi})$ such that

$$y \in y_i + U_{y_i,\xi'_i}(0_Y).$$

Since $\xi \in U(\bar{\xi}) \subset U_3(\bar{\xi})$ we can find $\hat{\xi} \in A(\xi)$ such that $\hat{\xi} \in U(\xi_i')$ (see (3.10)). Now, using (3.9) with $\eta = \hat{\xi}$ we get

(3.11)
$$F(z,\xi,\widehat{\xi}) - y \subset F(\bar{z},\bar{\xi},\xi_i') - y_i + y_i - y + U_{y_i,\xi_i'}(0_Y) \\ \subset F(\bar{z},\bar{\xi},\xi_i') - y_i + U_{y_i,\xi_i'}(0_Y) + U_{y_i,\xi_i'}(0_Y).$$

On the other hand,

$$(z,\xi,x) \in U(\bar{z}) \times U(\bar{\xi}) \times U(\bar{x}) \subset U_{y_i,\xi_i'}(\bar{z}) \times U_{y_i,\xi_i'}(\bar{\xi}) \times U_{y_i,\xi_i'}(\bar{x}).$$

Hence, by (3.8) and (3.11) we have

$$(z, \xi, x, F(z, \xi, \widehat{\xi}) - y) \subset \operatorname{gr} C,$$

i.e., (3.4) holds, as desired.

Thus T_1 is closed, hence T is usc.

Observe now that τ defined by (3.2) is use with nonempty compact values since it is the product of the use maps B and T with nonempty compact values (see [1, Proposition 7, p.73]). Observe also that for each $(z, \xi) \in E \times K$, the set $\tau(z, \xi)$ is acyclic since it is the product of two acyclic sets (see the Künneth formula in [9]). Thus, τ is acyclic. In addition, since im $\tau \subset \text{im } B \times \text{im } A$ and A and B are compact maps, τ is a compact map. We have seen that all the assumptions of Theorem 2.1 are satisfied for τ . Therefore, τ has a fixed point, i.e., (P) has a solution.

Theorem 3.2. In addition to the assumptions of Theorem 3.1, assume that for each $(z,\xi) \in E \times K$, $C(z,\xi,\xi) = -int D(z,\xi)$ and $F(z,\xi,\xi) \subset D(z,\xi)$, where $D(z,\xi)$ is a convex cone with nonempty interior. Then there exists $(z_0,x_0) \in E \times K$ such that $(z_0,x_0) \in B(z_0,x_0) \times A(x_0)$ and

$$F(z_0, x_0, x) \not\subset -int D(z_0, x_0), \quad \forall x \in A(x_0).$$

Proof. By Theorem 3.1 there exists a solution of (P), denoted by (z_0, x_0) . Let us prove that this point satisfies the conclusion of Theorem 3.2. Indeed, otherwise $F(z_0, x_0, x) \subset -\text{int } D(z_0, x_0)$ for some $x \in A(x_0)$. From this we get

$$F(z_0, x_0, x) - y_0 \subset -\text{int } D(z_0, x_0) - D(z_0, x_0)$$

 $\subset -\text{int } D(z_0, x_0),$

a contradiction to (1.1) with $C(z_0, x_0, x_0) = -\text{int } D(z_0, x_0)$.

Remark 3.1. When both maps F and D do not depend on the first variable z, Theorem 3.2 is established in Corollary 1 of [10] under some pseudomonotonicity property of F.

From Lemma 2.1 it follows that $T(z,\xi)$ is nonempty if the following condition is satisfied: for each $(z,\xi,x)\in E\times K\times K,\ F(z,\xi,\cdot)$ is use and $C(z,\xi,x)=-$ int $D(z,\xi)$ where $D(z,\xi)\neq Y$ is a closed convex cone with nonempty interior. This remark together with Theorems 3.1 and 3.2 yields the following corollary.

Corollary 3.1. Let the map $(z,\xi) \in E \times K \mapsto int \ D(z,\xi)$ have open graph where, for all $(z,\xi) \in E \times K$, $D(z,\xi) \neq Y$ is a closed convex cone with nonempty interior. Let $F: E \times K \times K \longrightarrow 2^Y$ be an usc map with compact values such that, for any $(z,\xi) \in E \times K$, the set

$$(3.12) \quad T(z,\xi) = \{ x \in A(\xi) : \exists y \in F(z,\xi,x), \forall \xi' \in A(\xi) \}$$

$$F(z,\xi,\xi') - y \not\subset -int D(z,\xi)$$

is acyclic. Then there exists $(z_0, x_0, y_0) \in E \times K \times Y$ such that $(z_0, x_0) \in B(z_0, x_0) \times A(x_0)$, $y_0 \in F(z_0, x_0, x_0)$ and

$$F(z_0, x_0, x) - y_0 \not\subset -int \ D(z_0, x_0), \ \forall x \in A(x_0).$$

If, in addition, $F(z,\xi,\xi) \subset D(z,\xi)$ for all $(z,\xi) \in E \times K$, then there exists $(z_0,x_0) \in E \times K$ such that $(z_0,x_0) \in B(z_0,x_0) \times A(x_0)$ and

$$F(z_0, x_0, x) \not\subset -int \ D(z_0, x_0), \ \forall x \in A(x_0).$$

Remark 3.2. Corollary 3.1 extends Theorem 1 in [5] and Theorem 2.1 in [6] to the set-valued case.

Before giving a sufficient condition for the set (3.12) to be acyclic let us introduce the following definition which is a generalization of the notion of proper quasiconcavity [3] to the set-valued case. Let $a \subset X$ be a convex subset, $D \subset Y$ be a convex cone and $f: a \longrightarrow 2^Y$ be a set-valued map. We say that f is properly D-quasiconcave on a if for all $\gamma \in (0,1)$, $x_i \in a$, $y_i \in f(x_i)$ (i=1,2) there exists $y \in f(\gamma x_1 + (1-\gamma)x_2)$ such that

either
$$y_1 \in y - D$$
 or $y_2 \in y - D$.

Corollary 3.2. Let the map $(z,\xi) \in E \times K \mapsto int D(z,\xi)$ have open graph, where for all $(z,\xi) \in E \times K$, $D(z,\xi) \neq Y$ is a closed convex cone with nonempty interior. Let $A(\xi)$ be convex for all $\xi \in K$. Let $F : E \times K \times K \longrightarrow 2^Y$ be an use map with compact values such that, for all $(z,\xi) \in E \times K$, $F(z,\xi,\cdot)$ is properly $[-D(z,\xi)]$ -quasiconcave on $A(\xi)$. Then there exists $(z_0,x_0,y_0) \in E \times K \times Y$ such that $(z_0,x_0) \in B(z_0,x_0) \times A(x_0)$, $y_0 \in F(z_0,x_0,x_0)$ and

$$F(z_0, x_0, x) - y_0 \not\subset -int \ D(z_0, x_0), \ \forall x \in A(x_0).$$

If, in addition, $F(z,\xi,\xi) \subset D(z,\xi)$ for all $(z,\xi) \in E \times K$, then there exists $(z_0,x_0) \in E \times K$ such that $(z_0,x_0) \in B(z_0,x_0) \times A(x_0)$ and

$$F(z_0, x_0, x) \not\subset -int D(z_0, x_0), \quad \forall x \in A(x_0).$$

Proof. By Corollary 3.1, all we have to prove is the convexity of the set (3.12). Let $x_i \in T(z, \xi)$ (i = 1, 2) and $\mu \in (0, 1)$. We must show that $x' := \mu x_1 + (1 - \mu)x_2 \in$

 $T(z,\xi)$. Since $x_i \in T(z,\xi)$, we have $x_i \in A(\xi)$, and there exists $y_i \in F(z,\xi,x_i)$ such that, for all $\xi' \in A(\xi)$,

$$F(z, \xi, \xi') - y_i \not\subset -\text{int } D(z, \xi) \ (i = 1, 2).$$

Obviously, $x' \in A(\xi)$ since $A(\xi)$ is convex. Also, since $F(z, \xi, \cdot)$ is properly $[-D(z, \xi)]$ -quasiconcave on $A(\xi)$ there exists $y' \in F(z, \xi, x')$ such that $\widehat{y} \in y' + D(z, \xi)$ where $\widehat{y} \in \{y_1, y_2\}$. We now claim that $x' \in T(z, \xi)$ and hence, $T(z, \xi)$ is a convex set. More precisely, we claim that $y' \in F(z, \xi, x')$ is a point such that, for all $\xi' \in A(\xi)$,

$$F(z,\xi,\xi') - y' \not\subset -\text{int } D(z,\xi).$$

Indeed, otherwise there exists $\xi' \in A(\xi)$ such that

$$F(z,\xi,\xi') - y' \subset -\text{int } D(z,\xi),$$

which implies that

$$F(z,\xi,\xi') - \widehat{y} \subset (y' - \widehat{y}) - \text{int } D(z,\xi)$$
$$\subset -D(z,\xi) - \text{int } D(z,\xi)$$
$$\subset -\text{int } D(z,\xi).$$

This contradicts the condition $F(z, \xi, \xi') - \widehat{y} \not\subset -\text{int } D(z, \xi)$ which is valid since $\widehat{y} \in \{y_1, y_2\}.$

Remark 3.3. Corollary 3.2 includes as special cases Theorem 3.1, Corollary 3.1 in [2] and Theorem 3 in [7].

Remark 3.4. Corollary 3.2 fails to hold if A is not assumed to have closed values. This can be illustrated by the following example.

Example 3.1. Let us consider Problem (P) with $X = Y = Z = \mathbb{R}$, $D(z,\xi) \equiv \mathbb{R}_+, K = E = [0,1], F(z,\xi,x) = \{\langle z,x-\xi \rangle\}, A(x) \equiv (0,1] \text{ and } B(z,\xi) \equiv \{1\}.$ Then all the assumptions of Corollary 3.2 are satisfied, but there does not exist $(z_0,x_0) \in B(z_0,x_0) \times A(x_0)$ such that

$$F(z_0, x_0, x) \ge F(z_0, x_0, x_0), \ \forall x \in A(x_0).$$

Indeed, if such a point exists then we have $z_0 = 1, x_0 \in (0, 1]$ and $\langle z_0, x - x_0 \rangle \ge 0$, i.e., $x \ge x_0$ for all $x \in (0, 1]$. This is impossible.

References

- [1] J.-P. Aubin, Mathematical Methods of Game and Economic Theory, North-Holland, Amsterdam, 1979.
- [2] D. Chan and J. S. Pang, The generalized quasi-variational inequality problems, Math. Oper. Res. 7 (1982), 211-222.
- [3] F. Ferro, A Minimax theorem for vector-valued functions, J. Optim. Theory Appl. 60 (1989), 19-31.
- [4] J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Verlag Peter Lang GmbH, Frankfurt am Main, 1986.
- [5] S. H. Kum, A generalization of generalized quasi-variational inequalities, J. Math. Anal. Appl. 182 (1994), 158-164.
- [6] G. M. Lee, B. S. Lee and S. S. Chang, On vector quasivariational inequalities, J. Math. Anal. Appl. 203 (1996), 626-638.

- [7] L. J. Lin, Pre-vector variational inequalities, Bull. Austral. Math. Soc. 53 (1996), 63-70.
- [8] D. T. Luc, Theory of Vector Optimization, Lectures Notes in Economics and Mathematical Systems, Springer-Verlag, Berlin, Germany, Vol. 319, 1989.
- [9] W. S. Massey, Singular Homology Theory, Springer-Verlag, New York, 1970.
- [10] W. Oettli and D. Schläger, Existence of equilibria for monotone multivalued mappings, Math. Meth. Oper. Res. 48 (1998), 219-228.
- [11] S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, In "Proceedings of 2nd International Conference on Fixed Point Theory and Applications, Halifax, June 9-14, 1991", pp. 73-81, World Scientific Publishing Co. Pte Ltd., 1992, pp. 248-277.

NINH THUAN COLLEGE OF PEDAGOGY,

NINH THUAN, VIETNAM

E-mail address: latuan02@yahoo.com

INSTITUTE OF MATHEMATICS, 18 HOANG QUOC VIET ROAD,

10307, Hanoi, Vietnam

E-mail address: phsach@math.ac.vn