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EXISTENCE OF SOLUTIONS
OF GENERALIZED QUASIVARIATIONAL

INEQUALITIES WITH SET-VALUED MAPS

LE ANH TUAN AND PHAM HUU SACH

Abstract. This paper gives existence theorems for solutions of the problem
of finding a point (z0, x0, y0) ∈ B(z0, x0)×A(x0)×F (z0, x0, x0) such that, for
all x ∈ A(x0), F (z0, x0, x)− y0 6⊂ C(z0, x0, x0), where A, B, C and F are set-
valued maps between topological vector spaces. Our results generalize some
known existence theorems for quasivariational inequalities.

1. Introduction

Let X, Y and Z be locally convex Hausdorff topological vector spaces, and
K ⊂ X and E ⊂ Z be nonempty subsets. Let A : K −→ 2K , B : E ×K −→ 2E ,
C : E × K × K −→ 2Y and F : E × K × K −→ 2Y be set-valued maps with
nonempty values. In this paper, we are interested in the existence of solutions
of the following generalized quasivariational inequality problem with set-valued
maps:

(P ) Find (z0, x0) ∈ E ×K such that x0 ∈ A(x0), z0 ∈ B(z0, x0) and there
exists y0 ∈ F (z0, x0, x0) such that

F (z0, x0, x)− y0 6⊂ C(z0, x0, x0), ∀x ∈ A(x0).(1.1)

If C(z0, x0, x0) is the negative half-line and F is a (single-valued) function
satisfying the condition

F (z0, x0, x0) ≥ 0,(1.2)

then (1.1) implies that

F (z0, x0, x) ≥ 0, ∀x ∈ A(x0),

i.e., (z0, x0) is a solution of the generalized quasivariational inequality problems
investigated in [2, 7, 5]. Observe that (1.2) is an assumption often used in proving
the existence of solutions of such problems (see e.g. [7, 5]).

If F is single-valued, and B does not depend on the first variable z, then
Problem (P ) was investigated in [6] with C(z0, x0, x0) being the nonempty interior
of a closed convex cone and in [2] with C(z0, x0, x0) being the positive half-line.
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We will see in Section 3 that our main result (Theorem 3.1) includes as special
cases Theorem 3.1 and Corollary 3.1 of [2], Theorem 3 of [7], Theorem 1 of [5]
and Theorem 2.1 of [6].

If we additionally assume that C(z0, x0, x0) ≡ −int D(z0, x0) and F (z0, x0, x0)
⊂ D(z0, x0), where D(z0, x0) is a closed convex cone with nonempty interior, then
from (1.1) it follows that

F (z0, x0, x) 6⊂ −int D(z0, x0), ∀x ∈ A(x0),(1.3)

(see Theorem 3.2 of Section 3). The requirement (1.3) is considered in Corollary
1 of [10] under the additional assumption that both F and D do not depend on
the first variable z. Also, it is worth noticing that, unlike Corollary 1 of [10], we
do not use the pseudomonotonicity property in proving (1.3).

We will see in Section 3 that the existence of a solution of (P ) is equivalent
to the existence of a fixed point of a suitable set-valued map. The fixed point
theorem used in this paper is due to Park [11] it will be recalled in Section 2.

2. Preliminaries

Let X be a topological space. Each subset of X can be seen as a topological
space with the topology induced by the given topology of X. For x ∈ X, let
us denote by U(x), U1(x), U2(x), ... open neighbourhoods of x. The empty set is
denoted by ∅.

For a set-valued map F : X −→ 2Y between two topological spaces X and Y
we denote by im F and gr F the image and graph of F :

im F =
⋃

x∈X

F (x),

gr F = {(x, y) ∈ X × Y : y ∈ F (x)}.
By definition F is upper semicontinuous (usc) if for any x ∈ X and any open

set N ⊃ F (x) there exists U(x) such that N ⊃ F (x′) for all x′ ∈ U(x). F is lower
semicontinuous (lsc) if for any x ∈ X and any open set N with F (x) ∩ N 6= ∅
there exists U(x) such that F (x′) ∩N 6= ∅ for all x′ ∈ U(x). F is continuous if it
is both usc and lsc. F is closed if its graph is a closed set of X ×Y. F is compact
if im F is contained in a compact set of Y. F is acyclic if it is usc and if, for any
x ∈ X,F (x) is nonempty, compact and acyclic. Recall that a topological space
is called acyclic if all of its reduced Čech homology groups over rationals vanish.
It is well known that contractible spaces are acyclic; and hence, convex sets and
star-shaped sets are acyclic.

We will need the following fixed point theorem due to Park [11, Theorem 7].

Theorem 2.1. Let K be a nonempty convex subset of a locally convex Hausdorff
topological vector space X. If F : K −→ 2K is a compact acyclic map, then F
has a fixed point, i.e., there exists x0 ∈ K such that x0 ∈ F (x0).
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Lemma 2.1. [4, 8] Let Y be a Hausdorff topological vector space, Q ⊂ Y be a
nonempty compact set and D ⊂ Y be a closed convex cone with nonempty interior
(D 6= Y ). Then there exists q ∈ Q such that

(Q− q) ∩ −intD = ∅.
3. Main result

Throughout this paper we assume that X, Y and Z are locally convex Haus-
dorff topological vector spaces, K ⊂ X and E ⊂ Z are nonempty convex sub-
sets, A : K −→ 2K is a compact continuous map with nonempty closed values,
B : E × K −→ 2E is a compact acyclic map, and C : E × K × K −→ 2Y and
F : E ×K ×K −→ 2Y are set-valued maps with nonempty values.

Consider the set-valued maps T : E × K −→ 2K and τ : E × K −→ 2E×K

defined by setting

T (z, ξ) = {x ∈ A(ξ) : ∃y ∈ F (z, ξ, x), ∀ξ′ ∈ A(ξ), F (z, ξ, ξ′)− y 6⊂ C(z, ξ, x)},
(3.1)

τ(z, ξ) = B(z, ξ)× T (z, ξ),(3.2)

for each (z, ξ) ∈ E ×K. Obviously, (z0, x0) ∈ E ×K is a solution of (P ) if and
only if it is a fixed point of the map τ. So, solving (P ) is equivalent to finding a
fixed point of τ.

Theorem 3.1. Let F : E×K×K −→ 2Y be an usc map with compact values, and
C : E×K×K −→ 2Y be a map with open graph such that, for all (z, ξ) ∈ E×K,
the set T (z, ξ) is nonempty and acyclic. Then there exists a solution of (P ).

Proof. Let τ be defined by (3.2). As we have mentioned above, to prove the
theorem it suffices to show that τ has a fixed point. The existence of such a fixed
point is assured by Theorem 2.1. Indeed, we first claim that T is usc. For each
(z, ξ) ∈ E ×K, the set T (z, ξ) can be rewritten as

T (z, ξ) = T1(z, ξ) ∩A(ξ),

where

T1(z, ξ) = {x ∈ K : ∃y ∈ F (z, ξ, x), ∀ξ′ ∈ A(ξ), F (z, ξ, ξ′)− y 6⊂ C(z, ξ, x)}.
Since A is usc and compact-valued, it follows from [1, Proposition 2, p.71] that

T is usc if T1 : E × K −→ 2K is closed. To prove this property we have to
show that the complement of gr T1 in the topological space E ×K ×K is open.
In other words, we have to show that for any point (z̄, ξ̄, x̄) /∈ gr T1 there exist
neighbourhoods U(z̄), U(ξ̄) and U(x̄) such that

∀(z, ξ, x) ∈ U(z̄)× U(ξ̄)× U(x̄) : (z, ξ, x) /∈ gr T1.(3.3)

Equivalently, we have to prove that

(3.4) ∀(z, ξ, x) ∈ U(z̄)× U(ξ̄)× U(x̄), ∀y ∈ F (z, ξ, x), ∃ξ̂ ∈ A(ξ) :

F (z, ξ, ξ̂)− y ⊂ C(z, ξ, x).
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Indeed, let (z̄, ξ̄, x̄) /∈ gr T1. Then, for any y ∈ F (z̄, ξ̄, x̄), there exists ξ′ ∈ A(ξ̄)
such that F (z̄, ξ̄, ξ′)− y ⊂ C(z̄, ξ̄, x̄), i.e.,

(z̄, ξ̄, x̄, F (z̄, ξ̄, ξ′)− y) ⊂ gr C.(3.5)

By the openess of gr C and the compactness of F (z̄, ξ̄, ξ′) there exist open neigh-
bourhoods Uy,ξ′(z̄), Uy,ξ′(ξ̄), Uy,ξ′(x̄) and Uy,ξ′(0Y ), which depend on y and ξ′,
such that

(3.6) Uy,ξ′(z̄)× Uy,ξ′(ξ̄)× Uy,ξ′(x̄)× (F (z̄, ξ̄, ξ′)− y + Uy,ξ′(0Y ) + Uy,ξ′(0Y ))
⊂ gr C,

where Uy,ξ′(0Y ) is a balanced neighbourhood of the origin 0Y of Y.

When y runs over F (z̄, ξ̄, x̄), the open neighbourhoods y + Uy,ξ′(0Y ) cover the
compact set F (z̄, ξ̄, x̄). Hence there exist yi ∈ F (z̄, ξ̄, x̄) and ξ′i ∈ A(ξ̄) (i =
1, 2, ..., n) such that

n⋃

i=1

(yi + Uyi,ξ′i(0Y )) ⊃ F (z̄, ξ̄, x̄).

By the upper semicontinuity of F there exist neighbourhoods U1(z̄), U1(ξ̄) and
U(x̄) such that

∀(z, ξ, x) ∈ U1(z̄)× U1(ξ̄)× U(x̄) :
n⋃

i=1

(yi + Uyi,ξ′i(0Y )) ⊃ F (z, ξ, x).(3.7)

Without loss of generality we may assume that

U1(z̄) ⊂
n⋂

i=1

Uyi,ξ′i(z̄), U1(ξ̄) ⊂
n⋂

i=1

Uyi,ξ′i(ξ̄), U(x̄) ⊂
n⋂

i=1

Uyi,ξ′i(x̄).

Using (3.6) with yi and ξ′i instead of y and ξ′ we have

(3.8)
Uyi,ξ′i(z̄)× Uyi,ξ′i(ξ̄)× Uyi,ξ′i(x̄)× (F (z̄, ξ̄, ξ′i)− yi + Uyi,ξ′i(0Y ) + Uyi,ξ′i(0Y ))

⊂ gr C.

Also, since F is usc there exist neighbourhoods U2(z̄), U2(ξ̄) and U(ξ′i) such that

(3.9) ∀i = 1, 2, ..., n, ∀(z, ξ, η) ∈ U2(z̄)× U2(ξ̄)× U(ξ′i) :

F (z, ξ, η) ⊂ F (z̄, ξ̄, ξ′i) + Uyi,ξ′i(0Y ).

Observe that A(ξ̄)∩U(ξ′i) 6= ∅ since ξ′i ∈ A(ξ̄)∩U(ξ′i). By the lower semicontinuity
of A there exists a neighbourhood U3(ξ̄) such that

∀i = 1, 2, ..., n, ∀ξ ∈ U3(ξ̄) : A(ξ) ∩ U(ξ′i) 6= ∅.(3.10)

Setting

U(z̄) =
2⋂

i=1

Ui(z̄), U(ξ̄) =
3⋂

i=1

Ui(ξ̄),
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we claim that (3.3) holds. In other words, taking (z, ξ, x) ∈ U(z̄)× U(ξ̄)× U(x̄)
and y ∈ F (z, ξ, x) we must find ξ̂ ∈ A(ξ) satisfying (3.4).

By (3.7) there exist yi ∈ F (z̄, ξ̄, x̄) and ξ′i ∈ A(ξ̄) such that

y ∈ yi + Uyi,ξ′i(0Y ).

Since ξ ∈ U(ξ̄) ⊂ U3(ξ̄) we can find ξ̂ ∈ A(ξ) such that ξ̂ ∈ U(ξ′i) (see (3.10)).

Now, using (3.9) with η = ξ̂ we get

(3.11) F (z, ξ, ξ̂)− y ⊂ F (z̄, ξ̄, ξ′i)− yi + yi − y + Uyi,ξ′i(0Y )

⊂ F (z̄, ξ̄, ξ′i)− yi + Uyi,ξ′i(0Y ) + Uyi,ξ′i(0Y ).

On the other hand,

(z, ξ, x) ∈ U(z̄)× U(ξ̄)× U(x̄) ⊂ Uyi,ξ′i(z̄)× Uyi,ξ′i(ξ̄)× Uyi,ξ′i(x̄).

Hence, by (3.8) and (3.11) we have

(z, ξ, x, F (z, ξ, ξ̂)− y) ⊂ gr C,

i.e., (3.4) holds, as desired.
Thus T1 is closed, hence T is usc.
Observe now that τ defined by (3.2) is usc with nonempty compact values since

it is the product of the usc maps B and T with nonempty compact values (see [1,
Proposition 7, p.73]). Observe also that for each (z, ξ) ∈ E ×K, the set τ(z, ξ)
is acyclic since it is the product of two acyclic sets (see the Künneth formula in
[9]). Thus, τ is acyclic. In addition, since im τ ⊂ im B × im A and A and B
are compact maps, τ is a compact map. We have seen that all the assumptions
of Theorem 2.1 are satisfied for τ. Therefore, τ has a fixed point, i.e., (P ) has a
solution.

Theorem 3.2. In addition to the assumptions of Theorem 3.1, assume that for
each (z, ξ) ∈ E × K, C(z, ξ, ξ) = −int D(z, ξ) and F (z, ξ, ξ) ⊂ D(z, ξ), where
D(z, ξ) is a convex cone with nonempty interior. Then there exists (z0, x0) ∈
E ×K such that (z0, x0) ∈ B(z0, x0)×A(x0) and

F (z0, x0, x) 6⊂ −int D(z0, x0), ∀x ∈ A(x0).

Proof. By Theorem 3.1 there exists a solution of (P ), denoted by (z0, x0). Let us
prove that this point satisfies the conclusion of Theorem 3.2. Indeed, otherwise
F (z0, x0, x) ⊂ −int D(z0, x0) for some x ∈ A(x0). From this we get

F (z0, x0, x)− y0 ⊂ −int D(z0, x0)−D(z0, x0)

⊂ −int D(z0, x0),

a contradiction to (1.1) with C(z0, x0, x0) = −int D(z0, x0).

Remark 3.1. When both maps F and D do not depend on the first variable z,
Theorem 3.2 is established in Corollary 1 of [10] under some pseudomonotonicity
property of F.
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From Lemma 2.1 it follows that T (z, ξ) is nonempty if the following condition
is satisfied: for each (z, ξ, x) ∈ E × K × K, F (z, ξ, ·) is usc and C(z, ξ, x) =
−int D(z, ξ) where D(z, ξ) 6= Y is a closed convex cone with nonempty interior.
This remark together with Theorems 3.1 and 3.2 yields the following corollary.

Corollary 3.1. Let the map (z, ξ) ∈ E×K 7→ int D(z, ξ) have open graph where,
for all (z, ξ) ∈ E×K, D(z, ξ) 6= Y is a closed convex cone with nonempty interior.
Let F : E×K ×K −→ 2Y be an usc map with compact values such that, for any
(z, ξ) ∈ E ×K, the set

(3.12) T (z, ξ) = {x ∈ A(ξ) : ∃y ∈ F (z, ξ, x), ∀ξ′ ∈ A(ξ)

F (z, ξ, ξ′)− y 6⊂ −int D(z, ξ)}
is acyclic. Then there exists (z0, x0, y0) ∈ E × K × Y such that (z0, x0) ∈
B(z0, x0)×A(x0), y0 ∈ F (z0, x0, x0) and

F (z0, x0, x)− y0 6⊂ −int D(z0, x0), ∀x ∈ A(x0).

If, in addition, F (z, ξ, ξ) ⊂ D(z, ξ) for all (z, ξ) ∈ E × K, then there exists
(z0, x0) ∈ E ×K such that (z0, x0) ∈ B(z0, x0)×A(x0) and

F (z0, x0, x) 6⊂ −int D(z0, x0), ∀x ∈ A(x0).

Remark 3.2. Corollary 3.1 extends Theorem 1 in [5] and Theorem 2.1 in [6] to
the set-valued case.

Before giving a sufficient condition for the set (3.12) to be acyclic let us in-
troduce the following definition which is a generalization of the notion of proper
quasiconcavity [3] to the set-valued case. Let a ⊂ X be a convex subset, D ⊂ Y
be a convex cone and f : a −→ 2Y be a set-valued map. We say that f is properly
D-quasiconcave on a if for all γ ∈ (0, 1), xi ∈ a, yi ∈ f(xi) (i = 1, 2) there exists
y ∈ f(γx1 + (1− γ)x2) such that

either y1 ∈ y −D or y2 ∈ y −D.

Corollary 3.2. Let the map (z, ξ) ∈ E × K 7→ int D(z, ξ) have open graph,
where for all (z, ξ) ∈ E ×K, D(z, ξ) 6= Y is a closed convex cone with nonempty
interior. Let A(ξ) be convex for all ξ ∈ K. Let F : E ×K ×K −→ 2Y be an usc
map with compact values such that, for all (z, ξ) ∈ E ×K, F (z, ξ, ·) is properly
[−D(z, ξ)]-quasiconcave on A(ξ). Then there exists (z0, x0, y0) ∈ E×K×Y such
that (z0, x0) ∈ B(z0, x0)×A(x0), y0 ∈ F (z0, x0, x0) and

F (z0, x0, x)− y0 6⊂ −int D(z0, x0), ∀x ∈ A(x0).

If, in addition, F (z, ξ, ξ) ⊂ D(z, ξ) for all (z, ξ) ∈ E × K, then there exists
(z0, x0) ∈ E ×K such that (z0, x0) ∈ B(z0, x0)×A(x0) and

F (z0, x0, x) 6⊂ −int D(z0, x0), ∀x ∈ A(x0).

Proof. By Corollary 3.1, all we have to prove is the convexity of the set (3.12). Let
xi ∈ T (z, ξ) (i = 1, 2) and µ ∈ (0, 1). We must show that x′ := µx1 + (1− µ)x2 ∈
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T (z, ξ). Since xi ∈ T (z, ξ), we have xi ∈ A(ξ), and there exists yi ∈ F (z, ξ, xi)
such that, for all ξ′ ∈ A(ξ),

F (z, ξ, ξ′)− yi 6⊂ −int D(z, ξ) (i = 1, 2).

Obviously, x′ ∈ A(ξ) since A(ξ) is convex. Also, since F (z, ξ, ·) is properly
[−D(z, ξ)]-quasiconcave on A(ξ) there exists y′ ∈ F (z, ξ, x′) such that ŷ ∈ y′ +
D(z, ξ) where ŷ ∈ {y1, y2}. We now claim that x′ ∈ T (z, ξ) and hence, T (z, ξ) is
a convex set. More precisely, we claim that y′ ∈ F (z, ξ, x′) is a point such that,
for all ξ′ ∈ A(ξ),

F (z, ξ, ξ′)− y′ 6⊂ −int D(z, ξ).
Indeed, otherwise there exists ξ′ ∈ A(ξ) such that

F (z, ξ, ξ′)− y′ ⊂ −int D(z, ξ),

which implies that

F (z, ξ, ξ′)− ŷ ⊂ (y′ − ŷ)− int D(z, ξ)

⊂ −D(z, ξ)− int D(z, ξ)

⊂ −int D(z, ξ).

This contradicts the condition F (z, ξ, ξ′)− ŷ 6⊂ −int D(z, ξ) which is valid since
ŷ ∈ {y1, y2}.
Remark 3.3. Corollary 3.2 includes as special cases Theorem 3.1, Corollary 3.1
in [2] and Theorem 3 in [7].

Remark 3.4. Corollary 3.2 fails to hold if A is not assumed to have closed values.
This can be illustrated by the following example.

Example 3.1. Let us consider Problem (P ) with X = Y = Z = R, D(z, ξ) ≡
R+,K = E = [0, 1], F (z, ξ, x) = {〈z, x − ξ〉}, A(x) ≡ (0, 1] and B(z, ξ) ≡ {1}.
Then all the assumptions of Corollary 3.2 are satisfied, but there does not exist
(z0, x0) ∈ B(z0, x0)×A(x0) such that

F (z0, x0, x) ≥ F (z0, x0, x0), ∀x ∈ A(x0).

Indeed, if such a point exists then we have z0 = 1, x0 ∈ (0, 1] and 〈z0, x−x0〉 ≥ 0,
i.e., x ≥ x0 for all x ∈ (0, 1]. This is impossible.
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