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SOME FIXED POINT THEOREMS FOR
MAPPINGS OF TWO VARIABLES

TRAN QUOC BINH

Abstract. The existence of fixed points x = T (x, x) and the convergence of
implicit iteration xn = T (xn, xn−1) to the fixed points for generalized nonex-
pansive type mappings of two variables are investigated.

1. Introduction

The aim of this paper is to study the existence of fixed points x = T (x, x) of
mappings of two variables and to investigate the convergence of implicit iteration
xn = T (xn, xn−1) to fixed points of the mapping T (x, y).

The implicit iteration xn = T (xn, xn−1) was studied by Kurpel in [13]. It con-
tains some iteration methods such as Picard and Seidel method as special cases.
In [13], [17] and other works the implicit iteration was applied to nonlinear in-
tegral equations, Volterra integral equations, differential equations of parabolic
type, linear and nonlinear systems of integral equations, Cauchy problem, bound-
ary value problems of linear itegro-differential equations, eigenvalue problems etc.

In this paper we give some extensions of fixed point theorems of Meir-Keeler
and Boyd-Wong contraction and nonlinear contraction theorems for mappings
of two variables. The fixed point theorems for nonexpansive and condensing
mappings with measure of weak noncompactness are also given. Under our as-
sumptions the implicit iteration converges to the fixed points, while the Picard
iteration may not. The paper is a continuation of [1, 2, 3].

2. Main results

Throughout the paper we denote by D a nonemty closed subset of a complete
metric space X, T a mapping of D ×D into D and for x, y, z, t ∈ D,
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m(T (x, y), T (z, t)) =

max
{

d(x, z), d(y, t), d(x, T (x, y)), d(z, T (z, t)),
1
2
[d(x, T (z, t)) + d(z, T (x, y))]

}
.

First we extend Meir-Keeler’s theorem [15] for mappings of two variables. The
Meir-Keeler contractive mappings, and contractive mappings in general, are in-
vestigated (see [14], [9],... and references therein). We shall consider mappings
which satisfy the following condition: ∀ε > 0, ∃δ > 0,

ε ≤ m(T (x, y), T (z, t)) < ε + δ =⇒
d(T (x, y), T (z, t)) < ε if (x, y) 6= (z, t) and x 6= y or/and z 6= t; and(1)

d(T (x, y), T (z, t)) ≤ ε otherwise.

Note that condition (1) implies

d(T (x, y), T (z, t)) ≤ m(T (x, y), T (z, t)) and the inequality(2)

holds strictly if (x, y) 6= (z, t) and x 6= y or/and z 6= t.

Indeed, if (x, y) 6= (z, t) and x 6= y or z 6= t, then putting m(T (x, y), T (z, t)) =
ε > 0 we get from (1)

d(T (x, y), T (z, t)) < m(T (x, y), T (z, t)).

Otherwise, again by (1) we see that

d(T (x, y), T (z, t)) ≤ ε ≤ m(T (x, y), T (z, t)),

so (2) holds.

Theorem 2.1. Let T be a continuous mapping of D×D into D and let (1) hold
∀x, y, z, t ∈ D. Then T has a fixed point. Moreover, for any x0 ∈ D the sequence
xn = T (xn, xn−1) is well-defined for all n ≥ 1 and converges to a fixed point of T .

Proof. For an arbitrary fixed v ∈ D define a mapping Tv such that Tv(x) =
T (x, v). Then by condition (1) Tv satisfies the condition ∀ε > 0, ∃δ > 0,

ε ≤ max
{

d(x, z), d(x, Tv(x)), d(z, Tv(z)),
1
2
[d(x, Tv(z)) + d(z, Tv(x))]

}
< ε + δ

=⇒ d(Tv(x), Tv(z)) < ε,

since if x = z then d(Tv(x), Tv(z)) = 0 < ε, and if x 6= z then (x, v) 6= (z, v)
and x 6= v or z 6= v, hence by (1) d(Tv(x), Tv(z)) < ε. From [18, Theorem 1]
there exists a unique x such that x = Tv(x) = T (x, v). Thus for any x0 ∈ D the
sequence xn = T (xn, xn−1) is well-defined.

We may assume that xn+1 6= xn ∀n. Denote an = d(xn, xn−1). Then by (2)

an+1 < max
{

d(xn+1, xn), d(xn, xn−1), 0, 0,
1
2
[d(xn+1, xn) + d(xn, xn+1)]

}
.

Hence {an} is decreasing and there exists a = lim
n

an. Suppose a > 0. Set
a = ε then there esists δ > 0 and N such that ∀n ≥ N : ε ≤ an < ε + δ. So by
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(1) an+1 = d(T (xn+1, xn), T (xn, xn−1)) < ε since xn+1 6= xn. The contradiction
shows that a = 0.

We will show that {xn} is a Cauchy sequence. Suppose not. Then there exists
ε > 0 such that ∀N, ∃n > m > N : d(xm, xn) ≥ 2ε. We choose δ from (1). Let
α = min{ε, δ}. Since lim

n
an = 0, there exists N such that an <

α

8
∀n ≥ N . As

in [15] we can assert the existence of l, m ≤ l ≤ n, such that

ε +
α

4
≤ d(xm, xl) ≤ ε +

3α

8
·

On the other hand,

d(xm, xl) = d(T (xm, xm−1), T (xl, xl−1))

< max
{

d(xm, xl), d(xm−1, xl−1), 0, 0,
1
2
[d(xm, xl) + d(xl, xm)]

}

= d(xm−1, xl−1).

Hence

ε ≤ d(xm, xl)− 2aN ≤ m(T (xm, xm−1), T (xl, xl−1))

≤ d(xm, xl) + 2aN < ε +
3α

8
+

α

4
< ε + δ.

From (1) we obtain

d(xm, xl) = d(T (xm, xm−1), T (xl, xl−1)) < ε,

which contradicts d(xm, xl) ≥ ε +
α

4
. Thus {xn} is a Cauchy sequence. Since

X is complete, D is closed and T is continuous, we have xn → u ∈ D and
u = T (u, u).

We note that under the assumptions of Theorem 2.1, if we put T0(x) = T (x, x)
then (1) becomes: ∀ε > 0, ∃δ > 0 such that

ε ≤ max
{

d(x, z), d(x, T0(x)), d(z, T0(z)),
1
2
[d(x, T0(z)) + d(z, T0(x))]

}
(3)

< ε + δ =⇒ d(T0(x), T0(z)) ≤ ε,

so the Picard iteration xn = T (xn−1, xn−1) may not converge to a fixed point of
T . Furthermore, (3) alone does not imply the existence of fixed points of T0.

In the sequel we give the extensions of Boyd-Wong contraction theorem and
Boyd-Wong nonlinear contraction theorem [4, Theorem 1].

Theorem 2.2. Let T be a continuous mapping of D ×D into D satisfying

d(T (x, y), T (z, t)) ≤ α(r, c)m(T (x, y), T (z, t)),(4)

∀x, y, z, t ∈ D, (x, y) 6= (z, t), where r = max{d(x, z), d(y, t)}, c = max{d(x, y),
d(z, t)}, α(r, c) : (0,∞) × [0,∞) → [0, 1] is a function upper semicontinuous
(u.s.c) from the right in r and nonincreasing in c. Moreover, assume that

0 ≤ α(r, c) < 1 if c > 0; 0 ≤ α(r, 0) ≤ 1 if c = 0.
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Besides, ∀ε > 0 ∃c0(ε) such that ∀c : 0 < c ≤ c0 and ∀b ∈ [ε, ε + c) the following
inequality holds

3c + α(b, c)ε < ε.(5)

Then the conclusion of Theorem 2.1 holds.

Proof. First we prove that the equation y = T (y, v) has a solution for each v ∈ D.
Then xn = T (xn, xn−1) are solvable ∀n,∀x0 ∈ D. Define

yn = T (yn−1, v), y0 ∈ D, cn = max{d(yn, v), d(yn−1, v)}, s = inf
n

cn.

If s = 0 then there exists a subsequence {cnj} → 0 or a number n0 such that
cn0 = 0. In the first case, ynj → v, ynj−1 → v, so v = T (v, v). In the other
case, yn0 = yn0−1 = v, hence we also have v = T (v, v). So, in both cases, v is a
solution of equation y = T (y, v).

Suppose that s > 0. We will show that {yn} is a Cauchy sequence, hence
its limit is a solution of y = T (y, v). Assume yn+1 6= yn ∀n and define dn =
d(yn, yn−1). Since α(r, c) is nonincreasing in c and d(yn−1, yn+1) ≤ dn + dn+1 we
obtain from (4)

d(yn+1, yn) ≤ α(dn, s) max
{

dn, 0, dn+1, dn,
1
2
[0 + d(yn−1, yn+1)]

}

< max{dn, dn+1} = dn.

Hence {dn} is decreasing and there exists d = lim
n

dn. Suppose d > 0. Then, since

dn+1 ≤ α(dn, s)dn and α(r, s) is u.s.c from the right, we get d ≤ α(d, s)d < d, a
contradiction. So d = 0.

Suppose {yn} is not a Cauchy sequence. Then ∃ε > 0 ∀n ∃pn > qn > n such
that

d(ypn , yqn) ≥ ε, d(ypn−1, yqn) < ε.

Denote en = d(ypn+1, yqn+1), bn = d(ypn , yqn). Then

ε ≤ bn ≤ d(ypn , ypn−1) + d(ypn−1, yqn) < ε + dpn ,

so {bn} tends to ε from the right. Besides, for n sufficiently large,

max{d(ypn , v), d(yqn , v)} ≥ d(ypn , v) ≥ max{d(ypn , v), d(ypn−1, v)} − dpn ≥ s/2.

Therefore,

en ≤ α(bn, s/2)max
{

bn, 0, dpn+1, dqn+1,
1
2
[d(ypn , yqn+1) + d(yqn , ypn+1)]

}

≤ α(bn, s/2)(bn + dpn+1 + dqn+1).

Hence

ε ≤ α
(
bn,

s

2

)
(bn + dpn+1 + dqn+1) + 2dqn+1.

Letting n →∞ we get ε ≤ α
(
ε,

s

2

)
ε < ε. This contradiction shows that {yn} is

a Cauchy sequence. So xn = T (xn, xn−1) are well-defined.



SOME FIXED POINT THEOREMS FOR MAPPINGS 303

It remains to show that {xn} is a Cauchy sequence. Assume xn+1 6= xn∀n.
Denote an = d(xn, xn−1). It is easy to see from (4) that an+1 < an, hence there
exists a = lim

n
an. Suppose a > 0. Then from an+1 ≤ α(an, a)an and passing to

the limit as n →∞ we get a ≤ α(a, a)a < a, a contradiction. This implies a = 0.
Suppose {xn} is not a Cauchy sequence. Then ∃ε > 0 ∀n ∃pn > qn > n such

that

d(xpn , xqn) ≥ ε, d(xpn−1, xqn) < ε.

Denote e′n = d(xpn+1, xqn+1), b′n = d(xpn , xqn). Then

ε ≤ b′n < ε + apn ≤ ε + aqn+1(6)

and ε ≤ e′n + apn+1 + aqn+1 ≤ e′n + 2aqn+1. By (4),

e′n ≤ α(b′n, aqn+1)max
{

e′n, b′n, 0, 0,
1
2
[e′n + e′n]

}
,

hence e′n < b′n and therefore e′n ≤ α(b′n, aqn+1)b′n. It follows that

ε ≤ α(b′n, aqn+1)b′n + 2aqn+1 ≤ α(b′n, aqn+1)ε + 3aqn+1.(7)

By (5), (6), (7) and since lim
n

an = 0, for n sufficiently large, we get ε < ε,

a contradiction. So {xn} is a Cauchy sequence. The proof of Theorem 2.2 is
complete.

Example. We give an example of the function α(r, c) of Theorem 2.2. Define

α(r, c) =

{
1−√c/(r + 1) if 0 < c ≤ 1,

1− 1/(r + 1) if c > 1.

When c0 is small, (5) can be rewritten as

ε[1−√c0/(ε + c0 + 1)] + 3c0 < ε,

which is true if 3c0 ≤ ε
√

c0/(2ε+1). This inequality holds when 3
√

c0 ≤ ε/2 and
ε ≤ 1/2. Thus, if we choose c0 = ε2/36, then (5) will hold.

We also notice that in Theorem 2.2 the Picard iteration may not converge.
The following theorem will be stated without proof because its proof is similar

and simpler than that of Theorem 2.2.

Theorem 2.3. Let T be a continuous mapping of D ×D into D satisfying

d(T (x, y), T (z, t)) ≤ α(r)m(T (x, y), T (z, t)),(8)

∀x, y, z, t ∈ D, (x, y) 6= (z, t), where r = max{d(x, z), d(y, t)}, α : (0,∞) → [0, 1)
is a function upper semicontinuous from the right. Then T has a unique fixed
point u. Moreover, for any x0 ∈ D, the sequence xn = T (xn, xn−1) is well-defined
and converges to u.
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Theorem 2.4. Let T be a continuous mapping of D ×D into D satisfying

d(T (x, y), T (z, t)) ≤ ψ(m(T (x, y), T (z, t)), c),(9)

∀x, y, z, t ∈ D. Here c is as in Theorem 2.2, ψ(r, c) : [0,∞) × [0,∞) → [0,∞)
is a function upper semicontinuous in r and nonincreasing in c. Moreover, for
r > 0, 0 < ψ(r, c) < r if c > 0, 0 < ψ(r, 0) ≤ r if c = 0. Assume that ∀ε > 0
∃c0(ε) such that ∀c : 0 < c ≤ c0 ∀b ∈ [ε, ε + c) the following condition is satisfied

2c + ψ(b, c) < ε.(10)

Then the conclusion of Theorem 2.1 holds.

Proof. Define yn, cn, s as in Theorem 2.2. If s = 0 then as before we see that
y = T (y, v) has v as a solution. Suppose that s > 0. By the similar argument as in
Theorem 2.2 one can show that {yn} is a Cauchy sequence. So xn = T (xn, xn−1)
are well-defined.

We shall prove that {xn} is a Cauchy sequence. Assume xn+1 6= xn ∀n. Define
an = d(xn, xn−1) we have

an+1 ≤ ψ(max{an+1, an, 0, 0,
1
2
[d(xn+1, xn) + d(xn, xn+1)]}, c)

< max{an+1, an}.
So {an} is decreasing and there exists a = lim

n
an. Since an+1 ≤ ψ(an, a) then

a = 0.
Suppose that {xn} is not a Cauchy sequence. Then ∃ε > 0 ∀n ∃pn > qn > n

such that

d(xpn , xqn) ≥ ε, d(xpn−1, xqn) < ε.

Denote en = d(xpn+1, xqn+1), b′n = d(xpn , xqn). Then ε ≤ b′n < ε+apn ≤ ε+aqn+1,
and by (9)

en ≤ ψ(max{en, b′n, 0, 0,
1
2
[en + en]}, aqn+1) < max{en, b′n}.

Hence en ≤ ψ(b′n, aqn+1), and then ε ≤ 2aqn+1 + ψ(b′n, aqn+1) < ε by (10). The
contradiction shows that {xn} is a Cauchy sequence and the conclusion follows.

Example. We give an example of the function ψ(r, c) of Theorem 2.4. Define

ψ(r, c) = r/(1 +
√

c), r, c ≥ 0.

Condition (10) is satisfied if for a small ε > 0 there exists c0 such that

2c0(1 +
√

c0) < ε(1 +
√

c0)− ε− c0 = ε
√

c0 − c0, or
√

c0(3 + 2
√

c0) < ε.

Choose c0 = ε4 then the last inequality becomes 3ε2 + 2ε4 < ε, or equivalently
ε3 < (1− 3ε)/2, which holds when ε ≤ 1/6. So (10) holds for all c ≤ c0 = ε4.

The following theorem will be given without proof. In this theorem one does
not need the continuity of T .
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Theorem 2.5. Let T be a mapping of D ×D into D satisfying

d(T (x, y), T (z, t)) ≤ ψ(m(T (x, y), T (z, t))),(11)

∀x, y, z, t ∈ D, where ψ : [0,∞) → [0,∞) is an upper semicontinuous function
with 0 < ψ(r) < r for all r > 0. Then the conclusion of Theorem 2.3 holds.

In the sequel we consider condensing mappings with measure of weak noncom-
pactness in Banach spaces. The concept of measure of weak noncompactness was
introduced by De Blasi in [5].

Let X be a Banach space, Kω the family of all weak compact subsets of X, B
the closed unit ball of X and U a nonempty bounded subset of X. Following De
Blasi, we call a measure of weak noncompactness of U the following number

ω(U) = inf{t > 0 : ∃C ∈ Kω such that U ⊂ C + tB}.
It was shown in [5] that ω(U) = 0 if and only if U is weakly precompact and
ω(B) = 1 if X is not reflexive. The measure ω(.) has many properties as the
Kuratowski and Hausdorff measures. Fixed point theorems for weakly continuous
mappings T : D → D were established in [6], where D is a closed bounded convex
subset of X, T maps bounded sets into bounded sets and satisfies ω(T (U)) ≤
λω(U), ∀U ⊂ D, 0 ≤ λ < 1, or ω(T (U)) < ω(U) for any U ⊂ D with ω(U) > 0.

The following theorem is the weak noncompactness version of [11, Theorem 2].

Theorem 2.6. Let D be a nonempty closed bounded convex subset of a Banach
space X, T : D × D → D a weakly continuous mapping which satisfies the
nonexpansive condition

‖T (x, y)− T (z, t)‖ ≤ max{‖x− z‖, ‖y − t‖}; and(12)

the inequality holds strictly when ‖x− z‖ 6= ‖y − t‖
∀x, y, z, t ∈ D. Suppose further that

ω(T (U, V )) < max{ω(U), ω(V )}(13)

for subsets U, V ⊂ D such that ω(U \ V ) > 0. Then T has a fixed point.

Proof. Let x0 ∈ D, a ∈ (0, 1), and λn ∈ [a, 1) such that there exists λ = lim
n

λn,

λ ∈ [a, 1). Defined the sequence {xn} as follows

xn = λnxn−1 + (1− λn)xn,(14)

where xn = T (xn, xn−1), n ≥ 1. By (13) the mapping Tv(.) = T (., v) is condens-
ing in the weak topology of X, Tv is weakly continuous and maps bounded sets
into bounded sets, so from [6, Theorem 6] Tv has a fixed point, for any v ∈ D.
Then xn, and so xn, are well-defined.

By [11, Proposition 1] we have lim
n

‖xn − xn+1‖ = 0. As in [2], ω({xn}) ≤
ω({xn}). We show that ω({xn}) = 0. In order to prove this assertion we follow
the proof informed by Professor W. A. Kirk. Because D is convex, there are an
uncountable of points in every neighborhood of xn in D. Since the sequence {xn}
is countable, it is possible to choose x′n ∈ D such that xn 6= x′m ∀m and also so
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that ‖xn−x′n‖ ≤ 1/n (and therefore ‖T (xn, xn−1)−T (xn, x′n−1)‖ ≤ 1/(n− 1) by
the contractive condition).

By the well-known properties of ω(.) [5] we can see that

ω({x′n}) = ω({x′n − xn + xn}) ≤ ω({x′n − xn}) + ω({xn}) = ω({xn})
since ω({x′n − xn}) = 0 and similarly ω({xn}) ≤ ω({x′n}). Therefore,

ω({xn}) = ω({x′n}),
and analogously ω({T (xn, xn−1)}) = ω({T (xn, x′n−1)}).

Consequently, if ω({xn}) > 0, then

ω({xn}) = ω({T (xn, xn−1)})
= ω({T (xn, x′n−1)})
≤ ω(T ({xn}, {x′n}))
< max{ω({xn}), ω({x′n})}
= max{ω({xn}), ω({xn})}
≤ ω({xn}).

This contradiction shows that ω({xn}) = 0. Hence ω({xn}) = ω({xn}) = 0.
Thus {xn} and {xn} are weakly precompact. Therefore, there exist subse-

quences {xnj} and {xnj+1} which converges weakly to u and u respectively. Since
lim
n

‖xn − xn+1‖ = 0 we get u = u. By the weak continuity of T we see that u is
a fixed point of T .

We say that a Banach space X satisfies Opial’s condition if for any sequence
{xn} in X which converges weakly to x0, we have

lim inf ‖xn − x0‖ < lim inf ‖xn − x‖ ∀x 6= x0, x ∈ X.

It is known [8] that for any Banach space X, the existence of a weakly sequentially
continuous duality map (which holds for Hilbert spaces and the spaces lp, 1 <
p < ∞) implies that X satisfies Opial’s condition which in turn implies that
every weakly compact convex subset of X has normal structure, but none of the
converse implications hold.

Corollary 2.7. Let all conditions of Theorem 2.6 hold. Suppose further that X
satisfies Opial’s condition. Then the sequence {xn} defined by (14) converges
weakly to a fixed point of T .

Proof. By Theorem 2.6 the sequence {xn} is weakly precompact and every weak
cluster point of {xn} is a fixed point of T . Suppose that there exist two dis-
tinct weak cluster points of {xn}, say p1 and p2, and two weakly convergent
subsequences {xnj} → p1, {xni} → p2.

For any pi (i = 1, 2) we get from contractive condition (12) that

‖xn − pi‖ = ‖T (xn, xn−1)− T (pi, pi)‖ ≤ ‖xn−1 − pi‖,
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hence

‖xn − pi‖ = ‖λn(xn−1 − pi) + (1− λn)(xn − pi)‖ ≤ ‖xn−1 − pi‖.
Then there exists lim

n
‖xn − pi‖. Opial’s condition implies that

lim ‖xn − p1‖ = lim inf ‖xnj − p1‖ < lim inf ‖xnj − p2‖ = lim ‖xn − p2‖,
and similarly,

lim ‖xn − p2‖ = lim inf ‖xni − p2‖ < lim inf ‖xni − p1‖ = lim ‖xn − p1‖.
This contradiction shows that exactly one weak cluster point p of {xn} exists,
hence {xn} converges weakly to p.

Acknowledgement

The author would like to thank Professor Do Hong Tan and Professor Pham
Ky Anh for remarks which improved the presentation of this paper.

References

[1] T. Q. Binh and N. M. Chuong, On a fixed point theorem, Funct. Anal. and its Appl. 30
(1996), 220-221 (English transl.).

[2] T. Q. Binh and N. M. Chuong, On a fixed point theorem for nonexpansive nonlinear oper-
ators, Acta Math. Vietnamica 24 (1999), 1-8.

[3] T. Q. Binh and N. M. Chuong, Approximation of nonlinear operator equations, Numer.
Funct. Anal. and Optimiz. 22 (2001), 831-844.

[4] D. W. Boyd and J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc. 20
(1969), 458-464.

[5] F. S. De Blasi, On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci.
Math. Roum. 21 (1977), 259-262.

[6] G. Emmanuele, Measure of weak noncompactness and fixed point theorems, Bull. Math.
Soc. Sci. Math. Roum. 25 (1981), 353-358.

[7] K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. Press,
Cambridge 1990.

[8] J. P. Gossez and E. Lami Dozo, Some geometric properties related to the fixed point theory
for nonexpansive mappings, Pacific J. Math. 40 (1972), 565-573.

[9] G. Jungck and H. K. Pathak, Fixed points via “Biased maps”, Proc. Amer. Math. Soc. 123
(1995), 2049-2060.

[10] W. A. Kirk, Nonexpansive mappings and asymptotic regularity, Nonlinear Analysis 40
(2000), 323-332.

[11] W. A. Kirk, Approximating solutions of the equation x = T (x, x), Acta Math. Vietnamica
27 (2002), 27-33.

[12] W. A. Kirk and S. S. Shin, Fixed point theorems in hyperconvex spaces, Houston J. Math
23 (1997), 175-188.

[13] N. S. Kurpel, Projection-iterative methods for solution of operator equations, American
Mathematical Society, Providence, RI 1976.

[14] Z. Liu, J. Lee and J. K. Kim, On Meir-Keeler type contractive mappings with diminishing
orbital diameters, Nonlinear Funct. Anal. and Appl. 8 (2000), 73-83.

[15] A. Meir and E. Keeler, A theorem on contractive mappings, J. Math. Anal. Appl. 28 (1969),
326-329.

[16] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive
mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.



308 TRAN QUOC BINH

[17] Yu. D. Sokolov, On sufficient conditions of convergence of the method of averaging func-
tional amendments, Ukrain Math. J. 17 (1965), 91-102 (in Russian).

[18] D. H. Tan and N. A. Minh, Some fixed point theorems for mappings of contractive type,
Acta Math. Vietnamica 3 (1978), 24-42.

Department of Mathematics
Vietnam National University
334 Nguyen Trai, Hanoi, Vietnam

E-mail address: quocbinh64@yahoo.com


