ON THE CAUCHY PROBLEM FOR MULTIDIMENSIONAL MONGE-AMPÈRE EQUATIONS

HA TIEN NGOAN AND NGUYEN THI NGA

ABSTRACT. The Cauchy problem for Monge-Ampère equations with several variables is formulated and reduced to that for a normal system of first-order nonlinear partial differential equations. The noncharacteristic condition for the Cauchy problem of multidimensional Monge-Ampère is given. The local solvability of the noncharacteristic Cauchy problem for these equations in the class of analytic functions is proved.

1. Introduction

The classical hyperbolic Monge-Ampère equation with two variables is of the form

(1)
$$F(x, y, z, p, q, r, s, t) = Ar + Bs + Ct + D(rt - s^2) - E = 0,$$

where z=z(x,y) is an unknown function defined for $(x,y)\in R^2$, $p=\frac{\partial z}{\partial x}$, $q=\frac{\partial z}{\partial y}$, $r=\frac{\partial^2 z}{\partial x^2}$, $s=\frac{\partial^2 z}{\partial x\partial y}$ and $t=\frac{\partial^2 z}{\partial y^2}$. The coefficients A,B,C,D and E are real smooth functions of (x,y,z,p,q) and satisfy the condition of hyperbolicity:

$$\Delta := B^2 - 4(AC + DE) > 0.$$

In this case the characteristic equation

(2)
$$\lambda^2 + B\lambda + (AC + DE) = 0$$

has two different real roots $\lambda_1 = \lambda_1(x, y, z, p, q)$, $\lambda_2 = \lambda_2(x, y, z, p, q)$. This equation was well studied by G. Darboux and E. Goursat [1], [2].

Received February 5, 2004; in revised form June 24, 2004.

¹⁹⁹¹ Mathematics Subject Classification. Primary 35L70; Secondary 53C21, 58C27, 58G17. Key words and phrases. Monge-Ampère equation, Cauchy problem, noncharacteristic Cauchy data

Supported in part by the National Basic Research Program in Natural Sciences (Vietnam).

In this article we consider the following Monge-Ampère equations with several variables

(3)
$$\begin{vmatrix} z_{x_1x_1} + a_{11} & z_{x_1x_2} + a_{12} & \dots & z_{x_1x_n} + a_{1n} \\ z_{x_2x_1} + a_{21} & z_{x_2x_2} + a_{22} & \dots & z_{x_2x_n} + a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{x_nx_1} + a_{n1} & z_{x_nx_2} + a_{n2} & \dots & z_{x_nx_n} + a_{nn} \end{vmatrix} = 0,$$

where z = z(x) is an unknown function of $x = (x_1, x_2, ..., x_n)$. The coefficients a_{ij} are smooth functions of x, z and $p = (p_1, p_2, ..., p_n)$, where $p_j = z_{x_j}$.

Proposition 1. Suppose that D = 1 and equation (1) is hyperbolic. Then it can be written in the form of (3), i.e.

$$\begin{vmatrix} z_{xx} + C & z_{xy} + \lambda_1 \\ z_{xy} + \lambda_2 & z_{yy} + A \end{vmatrix} = 0,$$

where λ_1 and λ_2 are the roots of equation (2)

Proof. Since
$$\lambda_1 + \lambda_2 = -B$$
 and $\lambda_1 \lambda_2 = AC + E$, we have $Ar + Bs + Ct + (rt - s^2) - E = Ar + Ct + (rt - s^2) + Bs - E$

$$= Ar + Ct + (rt - s^2) - (\lambda_1 + \lambda_2)s$$

$$- \lambda_1 \lambda_2 + AC$$

$$= (r + C)(t + A) - (s + \lambda_1)(s + \lambda_2)$$

$$= \begin{vmatrix} z_{xx} + C & z_{xy} + \lambda_1 \\ z_{xy} + \lambda_2 & z_{yy} + A \end{vmatrix}.$$

The assertion of the proposition immediately follows

Equation (1) was investigated in [1], [2] by G. Darboux and E. Goursat under the assumption that it has two independent first integrals. This equation had been also considered in [3], [4], [6], [7] by reducing it to a hyperbolic quasilinear system of first-order partial differential equations with two variables. The multi-dimensional equation (3) is more difficult to study, and it was considered in [5] by M. Tsuji in the case where it possesses n independent first integrals. Though the local existence of an analytic solution to the Cauchy problem for equation (3) has been proved by the theorem of Cauchy-Kovalevski, we are interested in the structure of the equations. In this paper we do not assume that equation (3) possesses n independent first integrals and we shall investigate it by reducing it to a normal system of first-order partial differential equations.

The outline of this paper is as follows. In Section 2 we formulate the Cauchy problem for equation (3). In Section 3 we outline an idea for solving it. In Section 4 we make a change of variables and instead of the Cauchy problem for (3) we obtain an other for a system of first-order partial differential equations. In Section 5 we reduce this system of equations to a normal one of 2n + 1 equations with 2n + 1 unknowns. In Section 6 we obtain the noncharacteristic condition for the Cauchy problem for (3). As an application, in Section 7 we apply the

Cauchy-Kovalevski theorem to obtain another proof of local solvability to the noncharacteristic Cauchy problem for equation (3) in the class of analytic functions.

A short version of this paper was published in [8]. In this paper we expose all main results with detailed proofs.

2. The Cauchy Problem

Suppose that in R_x^n there is an (n-1)-dimensional surface Γ that is given by equations:

(4)
$$\begin{cases} x_1 = X_1^0(\alpha'), \\ x_2 = X_2^0(\alpha'), \\ \dots \\ x_n = X_n^0(\alpha'). \end{cases}$$

Here and in what follows we put

$$\alpha' \equiv (\alpha_1, \alpha_2, \dots, \alpha_{n-1}) \in P \subset \mathbb{R}^{n-1}_{\alpha'}.$$

Suppose also that we are given n+1 functions $Z^0(\alpha')$, $P_j^0(\alpha')$, $j=1,2,\ldots,n$.

The Cauchy problem for the equation (3) consists in looking for a solution $z(x) \in C^2$ of (3) such that

(5)
$$\begin{cases} z(x)\big|_{x=X^{0}(\alpha')} &= Z^{0}(\alpha'), \\ z_{x_{j}}(x)\big|_{x=X^{0}(\alpha')} &= P_{j}^{0}(\alpha'), \quad j=1,2,\ldots,n, \end{cases}$$

where
$$X^{0}(\alpha') \equiv (X_{1}^{0}(\alpha'), X_{2}^{0}(\alpha'), \dots, X_{n}^{0}(\alpha')).$$

From (5) we obtain the following necessary conditions for the initial Cauchy data

(6)
$$\frac{\partial Z^{0}(\alpha')}{\partial \alpha_{k}} = \sum_{j=1}^{n} P_{j}^{0}(\alpha') \frac{\partial X_{j}^{0}(\alpha')}{\partial \alpha_{k}}, \quad k = 1, \dots, n-1,$$

which are assumed to be fulfilled.

3. A SOLUTION METHOD FOR (3)

Suppose that $\{\omega_j\}_{j=0,1,\dots,n}$ are one-forms defined in

$$R_{x,z,p}^{2n+1} = \{(x_1, \dots, x_n, z, p_1, \dots, p_n)\}$$

as follows

$$\omega_0 = dz - \sum_{j=1}^n p_j dx_j,$$

$$\omega_j = dp_j + \sum_{k=1}^n a_{jk}(x, z, p) dx_k, \quad j = 1, 2, \dots, n,$$

where $a_{jk}(x, z, p)$ are the same functions in the equation (3).

The following propositions can be easily verified from the theory of differential forms. (see e.g. [9]).

Proposition 2. Suppose that the following conditions 1) and 2) are satisfied

1) There is an n-dimensional C^1 -surface $M \subset R^{2n+1}_{x,z,p}$ that is given by

$$\begin{cases} z = Z(x) \\ p_j = P_j(x), \quad j = 1, 2, \dots, n; \end{cases}$$

2) $\omega_0 \equiv 0$ on M, that means the form ω_0 vanishes on the tangent space to M at any $(x^0, z^0, p^0) \in M$.

Then we have

(7)
$$P_{j}(x) = \frac{\partial Z(x)}{\partial x_{j}}, \quad j = 1, 2, \dots, n,$$

and consequently on M

$$dp_j = \sum_{k=1}^n Z_{x_j x_k}(x) dx_k, \quad j = 1, 2, \dots, n.$$

Proposition 3. Suppose that all the conditions of Proposition 2 hold. Then we have on M

$$\omega_j = \sum_{k=1}^n \left(\frac{\partial^2 Z(x)}{\partial x_j \partial x_k} + a_{jk}(x, Z(x), Z_x(x)) \right) dx_k,$$

and

(8)

$$\omega_1 \wedge \omega_2 \cdots \wedge \omega_n =$$

$$= \det \|Z_{x,x_k}(x) + a_{jk}(x, Z(x), Z_x(x))\| dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n,$$

where the operation \wedge stands for exterior product of differential forms.

From (8), in order to solve the equation (3), we must find an *n*-dimensional C^1 -surface $M \subset R^{2n+1}_{x,z,p}$, on which the following relations hold

$$\begin{cases} \omega_0 = 0 \\ \omega_1 \wedge \omega_2 \wedge \dots \wedge \omega_n = 0. \end{cases}$$

4. Change of Variables in (3)

Suppose that in equation (3) we change the variables $x = (x_1, x_2, ..., x_n)$ into the new ones $\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$ in such a way that

(9)
$$x_j = X_j(\alpha), \quad j = 1, 2, \dots, n$$

and

(10)
$$\frac{D(X_1, X_2, \dots, X_n)}{D(\alpha_1, \alpha_2, \dots, \alpha_n)} \neq 0,$$

where $\alpha' = (\alpha_1, \alpha_2, \dots, \alpha_{n-1})$ is the same variables as in (4). Note that from (9) and (10), it holds locally

(11)
$$\alpha_j = \varphi_j(x), \quad j = 1, 2, \dots, n.$$

From Proposition 2 we obtain the following result

Proposition 4. Let the C^1 -surface $M \subset R^{2n+1}_{x,z,p}$ be given by equations:

$$\begin{cases} x_j = X_j(\alpha), & j = 1, 2, \dots, n \\ z = Z(\alpha), & \\ p_j = P_j(\alpha), & j = 1, \dots, n \end{cases}$$

and the condition (10) be fulfilled.

Then $\omega_0 = 0$ on M if and only if

$$\frac{\partial Z(\alpha)}{\partial \alpha_k} - \sum_{\ell=1}^n P_{\ell}(\alpha) \frac{\partial X_{\ell}(\alpha)}{\partial \alpha_k} = 0; \quad k = 1, 2, \dots, n.$$

From the definition of M it follows that on M

$$\omega_{j} = \sum_{\ell=1}^{n} \frac{\partial P_{j}}{\partial \alpha_{\ell}} d\alpha_{\ell} + \sum_{k=1}^{n} a_{jk}(X(\alpha), Z(\alpha), P(\alpha)) \sum_{\ell=1}^{n} \frac{\partial X_{k}}{\partial \alpha_{\ell}} d\alpha_{\ell}$$
$$= \sum_{\ell=1}^{n} \left(\frac{\partial P_{j}}{\partial \alpha_{\ell}} + \sum_{k=1}^{n} a_{jk}(X(\alpha), Z(\alpha), P(\alpha)) \frac{\partial X_{k}}{\partial \alpha_{\ell}} \right) d\alpha_{\ell}.$$

It is easy to see that the following indentity holds on M

$$\omega_1 \wedge \omega_2 \wedge \cdots \wedge \omega_n$$

(12)
$$= \det \left\| \frac{\partial P_j}{\partial \alpha_\ell} + \sum_{k=1}^n a_{jk}(X(\alpha), Z(\alpha), P(\alpha)) \frac{\partial X_k}{\partial \alpha_\ell} \right\| d\alpha_1 \wedge d\alpha_2 \wedge \dots \wedge d\alpha_n.$$

We note that the determinant in the right hand side of (12) is equal to 0 if the columns vectors are linearly dependent. So from (12) we arrive at the following

Proposition 5. Suppose that the C^1 -surface $M \subset R^{2n+1}_{x,z,p}$ is given by equations:

$$\begin{cases} x_j &= X_j(\alpha), j = 1, 2, \dots, n \\ z &= Z(\alpha), \\ p_j &= P_j(\alpha), j = 1, 2, \dots, n, \end{cases}$$

where $X_i(\alpha)$, $Z(\alpha)$, $P_i(\alpha)$ satisfy the system of equations

$$\sum_{\ell=1}^{n} \frac{\partial P_j}{\partial \alpha_{\ell}} + \sum_{\ell=1}^{n} \sum_{k=1}^{n} a_{jk}(X(\alpha), Z(\alpha), P(\alpha)) \frac{\partial X_k}{\partial \alpha_{\ell}} = 0, \quad j = 1, 2, \dots, n.$$

Then $\omega_1 \wedge \omega_2 \wedge \cdots \wedge \omega_n = 0$ on M.

Set

$$X(\alpha) = (X_1(\alpha), ..., X_n(\alpha)); P(\alpha) = (P_1(\alpha), ..., P_n(\alpha)).$$

From equations (3), (8), (12) and from Propositions 2, 3, 4 and 5 we obtain the following.

Theorem 1. Suppose that $(X(\alpha), Z(\alpha), P(\alpha))$ is a C^2 -solution of the following system of equations:

$$(13_1) \qquad \sum_{\ell=1}^{n} \frac{\partial P_j}{\partial \alpha_{\ell}} + \sum_{\ell=1}^{n} \sum_{k=1}^{n} a_{jk}(X(\alpha), Z(\alpha), P(\alpha)) \frac{\partial X_k}{\partial \alpha_{\ell}} = 0, \quad j = 1, 2, \dots, n$$

(13₂)
$$\frac{\partial Z}{\partial \alpha_k} - \sum_{\ell=1}^n P_{\ell}(\alpha) \frac{\partial X_{\ell}}{\partial \alpha_k} = 0, \quad k = 1, 2, \dots, n$$

and satisfies condition (10). Then the function

(14)
$$z(x) = Z(\varphi(x)) = Z(\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)),$$

where $\varphi(x) \equiv (\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x))$ are defined by (11) is a solution of the Monge-Ampère equation (3). Moreover, we also have $z_x(x) = P(\varphi(x))$.

We now formulate the Cauchy problem for the system (13).

Cauchy problem: Find $(X(\alpha), Z(\alpha), P(\alpha))$ of class C^1 that is a solution of (13) such that

(15₁)
$$X_j(\alpha)|_{\alpha=0} = X_j^0(\alpha'), \quad j=1,\ldots,n,$$

(15₂)
$$Z(\alpha)\big|_{\alpha_n=0} = Z^0(\alpha'),$$

(15₃)
$$P_j(\alpha)|_{\alpha_n=0} = P_j^0(\alpha'), \quad j=1,\ldots,n,$$

where the functions $X_j^0(\alpha'), Z^0(\alpha'), P_j^0(\alpha')$ are given above as in (5) and satisfy the condition (6).

5. Reducing (13) to a Normal System

We first prove some lemmas.

Lemma 1. Suppose that $(X(\alpha), Z(\alpha), P(\alpha))$ is a C^2 -solution of the system (13). If we set

(16)
$$\sum_{\ell=1}^{n} \frac{\partial X_i}{\partial \alpha_{\ell}} = g_i(\alpha), \quad i = 1, 2, \dots, n$$

(17)
$$f_j(\alpha) = -\sum_{k=1}^n a_{jk}(X(\alpha), Z(\alpha), P(\alpha))g_k(\alpha), \quad j = 1, 2, \dots, n,$$

then we have

(18)
$$\sum_{\ell=1}^{n} \frac{\partial P_i}{\partial \alpha_{\ell}} = f_i(\alpha); \quad i = 1, 2, \dots, n.$$

Proof. (18) follows from (13_1) , (16) and (17).

We denote

$$\vec{g}(\alpha) \equiv (g_1(\alpha), g_2(\alpha), \dots, g_n(\alpha))^T,$$

$$\vec{f}(\alpha) \equiv (f_1(\alpha), f_2(\alpha), \dots, f_n(\alpha))^T,$$

$$\frac{\partial P}{\partial \alpha_j} \equiv \left(\frac{\partial P_1}{\partial \alpha_j}, \dots, \frac{\partial P_n}{\partial \alpha_j}\right)^T \in R^n \quad j = 1, 2, \dots, n,$$

$$\frac{\partial X}{\partial \alpha_j} \equiv \left(\frac{\partial X_1}{\partial \alpha_j}, \dots, \frac{\partial X_n}{\partial \alpha_j}\right)^T \in R^n \quad j = 1, 2, \dots, n.$$

Lemma 2. Suppose that $(X(\alpha), Z(\alpha), P(\alpha))$ is a C^2 -solution of the system (13) and satisfies (16), (17). Then we have the following necessary condition:

(19)
$$\sum_{\ell=1}^{n} f_{\ell}(\alpha) \frac{\partial X_{\ell}}{\partial \alpha_{k}} = \sum_{\ell=1}^{n} g_{\ell}(\alpha) \frac{\partial P_{\ell}}{\partial \alpha_{k}}, \quad k = 1, 2, \dots, n.$$

Proof. From (13_2) we have

(20)
$$\frac{\partial Z}{\partial \alpha_k} = \sum_{\ell=1}^n P_\ell \frac{\partial X_\ell}{\partial \alpha_k},$$

(21)
$$\frac{\partial Z}{\partial \alpha_m} = \sum_{\ell=1}^n P_\ell \frac{\partial X_\ell}{\partial \alpha_m}.$$

Differentiating both sides of (20), (21) with respect to α_m and α_k , respectively, we get

(22)
$$\frac{\partial^2 Z}{\partial \alpha_k \partial \alpha_m} = \sum_{\ell=1}^n \frac{\partial P_\ell}{\partial \alpha_m} \frac{\partial X_\ell}{\partial \alpha_k} + \sum_{\ell=1}^n P_\ell \frac{\partial^2 X_\ell}{\partial \alpha_k \partial \alpha_m},$$

(23)
$$\frac{\partial^2 Z}{\partial \alpha_m \partial \alpha_k} = \sum_{\ell=1}^n \frac{\partial P_\ell}{\partial \alpha_k} \frac{\partial X_\ell}{\partial \alpha_m} + \sum_{\ell=1}^n P_\ell \frac{\partial^2 X_\ell}{\partial \alpha_m \partial \alpha_k}.$$

Since $Z(\alpha), X(\alpha) \in \mathbb{C}^2$, from (22) and (23) we get

(24)
$$\sum_{\ell=1}^{n} \frac{\partial P_{\ell}}{\partial \alpha_{m}} \frac{\partial X_{\ell}}{\partial \alpha_{k}} = \sum_{\ell=1}^{n} \frac{\partial P_{\ell}}{\partial \alpha_{k}} \frac{\partial X_{\ell}}{\partial \alpha_{m}}.$$

Summing both sides of (24) with respect to m from 1 to n we arrive at (19). \square

Set

$$A(x, z, p) = \left\| a_{jk}(x, z, p) \right\|_{n \times n}.$$

From (17) it follows that

(25)
$$\vec{f}(\alpha) = -A(X(\alpha), Z(\alpha), P(\alpha))\vec{g}(\alpha).$$

We introduce the column-vectors

(26)
$$\vec{v}_{j}(\alpha) \equiv \frac{\partial P}{\partial \alpha_{j}} + A^{T}(X(\alpha), Z(\alpha), P(\alpha)) \frac{\partial X}{\partial \alpha_{j}}$$
$$= (v_{j1}(\alpha), v_{j2}(\alpha), \dots, v_{jn}(\alpha))^{T} \in \mathbb{R}^{n}, \quad j = 1, 2, \dots, n - 1.$$

Lemma 3. Suppose that $(X(\alpha), Z(\alpha), P(\alpha))$ is a C^2 -solution of the system (13) and satisfies (16) and (17). Assume that the vector $\vec{g}(\alpha) \equiv (g_1(\alpha), g_2, \dots, g_n(\alpha))^T$ is given by the formula

(27)
$$\vec{g}(\alpha) = \vec{v}_1(\alpha) \times \vec{v}_2(\alpha) \times \dots \times \vec{v}_{n-1}(\alpha) \in \mathbb{R}^n,$$

where the vectors $\vec{v}_j(\alpha)$ are defined by (26) and the vector product (27) is defined by

(28)
$$\vec{v}_{1} \times \vec{v}_{2} \times \cdots \times \vec{v}_{n-1} = \begin{vmatrix} v_{11} & v_{21} & \dots & v_{n-1,1} & \vec{e}_{1} \\ v_{12} & v_{22} & \dots & v_{n-1,2} & \vec{e}_{2} \\ v_{13} & v_{23} & \dots & v_{n-1,3} & \vec{e}_{3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ v_{1n} & v_{2n} & \dots & v_{n-1,n} & \vec{e}_{n} \end{vmatrix} \in R^{n}.$$

with the vectors $\vec{e}_1, \vec{e}_2, \dots, \vec{e}_n$ being unit column-vectors on coordinate axes Ox_1 , Ox_2, \dots, Ox_n respectively. Then the condition (19) is equivalent to

(29)
$$\langle \vec{g}(\alpha), \vec{v}_k(\alpha) \rangle = 0, \quad k = 1, 2, \dots, n-1, \forall \alpha,$$

where \langle , \rangle is a scalar product in \mathbb{R}^n and the vectors $\vec{v}_k(\alpha)$ are defined by (26).

Proof. We write (19) in the equivalent form:

(30)
$$\langle \vec{g}(\alpha), \frac{\partial P}{\partial \alpha_k} \rangle = \langle \vec{f}(\alpha), \frac{\partial X}{\partial \alpha_k} \rangle \quad k = 1, 2, \dots, n.$$

Setting $\vec{f} = -A(X(\alpha), Z(\alpha), P(\alpha))\vec{g}(\alpha)$ in (30) we get

$$\langle \vec{g}, \frac{\partial P}{\partial \alpha_k} \rangle = -\langle A\vec{g}, \frac{\partial X}{\partial \alpha_k} \rangle, \quad k = 1, 2, \dots, n.$$

or

(31)
$$\langle \vec{g}, \frac{\partial P}{\partial \alpha_k} + A^T \frac{\partial X}{\partial \alpha_k} \rangle = 0, \quad k = 1, 2, \dots, n.$$

From (16), (17), (18) and (26) the equivalence of (31) and (29) follows.

Theorem 2. The system (13) can be reduced to the following system

(32₁)
$$\sum_{\ell=1}^{n} \frac{\partial X_i}{\partial \alpha_{\ell}} = g_i(\alpha), \quad i = 1, 2, \dots, n,$$

(32₂)
$$\sum_{\ell=1}^{n} \frac{\partial Z}{\partial \alpha_{\ell}} = \sum_{\ell=1}^{n} g_{\ell}(\alpha) P_{\ell},$$

(32₃)
$$\sum_{\ell=1}^{n} \frac{\partial P_i}{\partial \alpha_{\ell}} = f_i(\alpha) \quad i = 1, 2, \dots, n.$$

where the vector $\vec{g}(\alpha) \equiv (g_1(\alpha), g_2(\alpha), \dots, g_n(\alpha))^T$ is defined by (27), and the vector $\vec{f}(\alpha) \equiv (f_1(\alpha), f_2(\alpha), \dots, f_n(\alpha))^T$ is defined by (25).

Remark 1. From (26) and (27) it follows that all the $g_j(\alpha)$ depend on $x(\alpha), z(\alpha)$, $p(\alpha)$, on the first derivatives $\frac{\partial x_k}{\partial \alpha_\ell}, \frac{\partial p_k}{\partial \alpha_\ell}, \quad \ell = 1, 2, \dots, n-1$ and they are homogenous with respect to these derivatives of degree (n-1). On the other hand, the system (32) is solvable with respect to $\frac{\partial x_k}{\partial \alpha_n}, \frac{\partial z}{\partial \alpha_n}, \frac{\partial p_k}{\partial \alpha_n}$, then (32) is a normal system of first-order partial differential equations. In the case n = 2 this system is quasilinear.

Proof. The equations (32_1) follow from (16). The equations (32_3) follow from (18), (17) and (13_1) . The equation (32_2) follows from (13_2) and (32_1) . In order that the condition (19) is automatically satisfied we choose \vec{g} by (27).

We now state and prove the main result of the paper.

Theorem 3. Let the vectors $\vec{g}(\alpha) \equiv (g_1(\alpha), g_2(\alpha), \dots, g_n(\alpha))^T$ and $\vec{f}(\alpha) \equiv (f_1(\alpha), f_2(\alpha), \dots, f_n(\alpha))^T$ be defined by (27) and (25) respectively. Suppose that $(X(\alpha), Z(\alpha), P(\alpha))$ is a C^2 -solution of the Cauchy problem (32), (15). Then it is also a solution of the Cauchy problem (13), (15).

We first prepare the following two lemmas. By applying the classical characteristic method to Cauchy problem for first-order partial differential equations, we can get the following

Lemma 4. The unique solution $u(\alpha)$ of the Cauchy problem:

$$\begin{cases} \sum_{k=1}^{n} \frac{\partial u}{\partial \alpha_k} &= F(\alpha) \\ u|_{\alpha_n=0} &= u_0(\alpha') \end{cases}$$

can be written in the form

$$u(\alpha_1, \alpha_2, \dots, \alpha_n) = u_0(\alpha_1 - \alpha_n, \alpha_2 - \alpha_n, \dots, \alpha_{n-1} - \alpha_n)$$

+
$$\int_0^{\alpha_n} F(\alpha_1 - \alpha_n + s, \alpha_2 - \alpha_n + s, \dots, \alpha_{n-1} - \alpha_n + s, s) ds.$$

We set

$$h_k(\alpha) \equiv \frac{\partial Z(\alpha)}{\partial \alpha_k} - \sum_{\ell=1}^n P_{\ell}(\alpha) \frac{\partial X_{\ell}(\alpha)}{\partial \alpha_k}, \quad k = 1, 2, \dots, n.$$

Lemma 5. Suppose that (32₂) and

$$h_k(\alpha) \equiv 0, \ k = 1, 2, \dots, n - 1.$$

hold. Then we have

$$h_n(\alpha) \equiv 0.$$

Proof. The assumptions of Lemma 5 and (32_2) yield

$$\sum_{k=1}^{n} \frac{\partial Z}{\partial \alpha_k} - \sum_{\ell=1}^{n} P_{\ell} \sum_{k=1}^{n} \frac{\partial X_{\ell}}{\partial \alpha_k} = 0.$$

Thus,

$$\sum_{k=1}^{n} \left(\frac{\partial Z}{\partial \alpha_k} - \sum_{\ell=1}^{n} P_{\ell} \frac{\partial X_{\ell}}{\partial \alpha_k} \right) = 0.$$

So we have

$$\sum_{k=1}^{n} h_k = 0,$$

from which the assertion of the lemma follows.

Proof of Theorem 3. Equations (13₁) follow from (32₁) and (32₃). We need only to prove (13₂). In view of Lemma 5, we show that $h_k \equiv 0, k = 1, 2, \ldots, n-1$. We will prove, for example, that $h_1(\alpha) \equiv 0$.

Applying Lemma 4 to each equation of (32) with the Cauchy data (15) we have

$$(33) X_{\ell}(\alpha) = X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})$$

$$+ \int_{0}^{\alpha_{n}} g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds,$$

$$Z(\alpha) = Z^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})$$

$$+ \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) \times$$

$$\times g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds,$$

$$P_{\ell}(\alpha) = P_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})$$

$$+ \int_{0}^{\alpha_{n}} f_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds.$$

$$(35)$$

We now prove that

(36)
$$\frac{\partial Z}{\partial \alpha_1} - \sum_{\ell=1}^n P_\ell \frac{\partial X_\ell(\alpha)}{\partial \alpha_1} \equiv 0.$$

We have

(37)
$$\frac{\partial X_{\ell}(\alpha)}{\partial \alpha_{1}} = \frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} + \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds,$$

From (35) and (37) we have

$$\sum_{\ell=1}^{n} P_{\ell}(\alpha) \frac{\partial X_{\ell}(\alpha)}{\partial \alpha_{1}} = \sum_{\ell=1}^{n} P_{\ell}(\alpha) \left[\frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} \right]$$

$$+ \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$= \sum_{\ell=1}^{n} P_{\ell}(\alpha) \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$+ \sum_{\ell=1}^{n} P_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n}) \frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}}$$

$$+ \sum_{\ell=1}^{n} \frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} \times$$

$$\times \int_{0}^{\alpha_{n}} f_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds.$$

$$(38)$$

Let us calculate $\frac{\partial Z(\alpha)}{\partial \alpha_1}$. From (34) we have

$$\frac{\partial Z(\alpha)}{\partial \alpha_{1}} = \frac{\partial Z^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} \\
+ \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} \frac{\partial P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \times \\
\times g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds \\
+ \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) \times \\
\times \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds.$$
(39)

Since the condition (29) is satisfied, so is the condition (19). So for the second term of (39) we have

$$\int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} \frac{\partial P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \times g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds$$

$$= \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} \frac{\partial X_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \times f_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds$$

$$= \sum_{\ell=1}^{n} \int_{0}^{\alpha_{n}} \frac{\partial X_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \times f_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds.$$
(40)
$$\times f_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds.$$
We set
$$F_{\ell}(s) = \int_{0}^{s} f_{\ell}(\alpha_{1} - \alpha_{n} + t, \dots, \alpha_{n-1} - \alpha_{n} + t, t) dt.$$

$$F_{\ell}(s) = \int_{\alpha_n}^{s} f_{\ell}(\alpha_1 - \alpha_n + t, \dots, \alpha_{n-1} - \alpha_n + t, t) dt.$$

Then

$$F'_{\ell}(s) = f_{\ell}(\alpha_1 - \alpha_n + s, \dots, \alpha_{n-1} - \alpha_n + s, s)$$
 and $F_{\ell}(\alpha_n) = 0$.

From (40) we get

$$\int_{0}^{\infty} \sum_{\ell=1}^{n} \frac{\partial P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \times g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds$$

$$= \sum_{\ell=1}^{n} \int_{0}^{\alpha_{n}} \frac{\partial X_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \cdot F_{\ell}(s) ds$$

$$= \sum_{\ell=1}^{n} \left[\frac{\partial X_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \cdot F_{\ell}(s) \Big|_{0}^{\alpha_{n}} - \int_{0}^{\alpha_{n}} F_{\ell}(s) \frac{d}{ds} \left(\frac{\partial X_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} \right) ds \right]$$

$$= -\sum_{\ell=1}^{n} \left[\frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} \times \right]$$

$$\times \int_{\alpha_{n}}^{0} f_{\ell}(\alpha_{1} - \alpha_{n} + t, \dots, \alpha_{n-1} - \alpha_{n} + t, t) dt$$

$$-\int_{0}^{\alpha_{n}} F_{\ell}(s) \cdot \frac{\partial}{\partial \alpha_{1}} \left(\sum_{k=1}^{n} \frac{\partial X_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{k}} \right) ds$$

$$= \sum_{\ell=1}^{n} \left[\frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} \times \int_{0}^{\alpha_{n}} f_{\ell}(\alpha_{1} - \alpha_{n} + t, \dots, \alpha_{n-1} - \alpha_{n} + t, t) dt - \int_{0}^{\alpha_{n}} F_{\ell}(s) \cdot \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds \right].$$

$$(41)$$

Now we consider the third term in (39). Setting

$$G_{\ell}(s) = \int_{0}^{s} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds,$$

we have

$$G'_{\ell}(s) = \frac{\partial g_{\ell}(\alpha_1 - \alpha_n + s, \dots, \alpha_{n-1} - \alpha_n + s, s)}{\partial \alpha_1}$$

and

$$G_{\ell}(0) = 0.$$

Since $F_{\ell}(\alpha_n) = G_{\ell}(0) = 0$, we have

$$\int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) \times \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$= \sum_{\ell=1}^{n} \int_{0}^{\alpha_{n}} P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) \cdot G'_{\ell}(s) ds$$

$$= \sum_{\ell=1}^{n} P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s).G_{\ell}(s)|_{0}^{\alpha_{n}}$$

$$- \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} G_{\ell}(s) \cdot \frac{d}{ds} \left(P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) \right) ds$$

$$= \sum_{\ell=1}^{n} P_{\ell}(\alpha). \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$- \int_{0}^{\alpha_{n}} G_{\ell}(s). \sum_{k=1}^{n} \frac{\partial P_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{k}} ds$$

$$= \sum_{\ell=1}^{n} P_{\ell}(\alpha). \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$- \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} G_{\ell}(s).f_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s) ds$$

$$= \sum_{\ell=1}^{n} P_{\ell}(\alpha). \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$- \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} G_{\ell}(s).F'_{\ell}(s) ds$$

$$= \sum_{\ell=1}^{n} P_{\ell}(\alpha). \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$+ \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} G'_{\ell}(s).F_{\ell}(s) ds.$$

$$(42)$$

From (39), (41) and (42) we have

$$\frac{\partial Z(\alpha)}{\partial \alpha_1} = \frac{\partial Z^0(\alpha_1 - \alpha_n, \dots, \alpha_{n-1} - \alpha_n)}{\partial \alpha_1} + \sum_{\ell=1}^n \left[\frac{\partial X_\ell^0(\alpha_1 - \alpha_n, \dots, \alpha_{n-1} - \alpha_n)}{\partial \alpha_1} \times \int_0^{\alpha_n} f_\ell(\alpha_1 - \alpha_n + t, \dots, \alpha_{n-1} - \alpha_n + t, t) dt \right]$$

$$-\int_{0}^{\alpha_{n}} F_{\ell}(s) \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds \Big]$$

$$+ \sum_{\ell=1}^{n} P_{\ell}(\alpha) \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds$$

$$+ \int_{0}^{\alpha_{n}} \sum_{\ell=1}^{n} G'_{\ell}(s) . F_{\ell}(s) ds$$

$$= \frac{\partial Z^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}}$$

$$+ \sum_{\ell=1}^{n} \frac{\partial X_{\ell}^{0}(\alpha_{1} - \alpha_{n}, \dots, \alpha_{n-1} - \alpha_{n})}{\partial \alpha_{1}} \times$$

$$\times \int_{0}^{\alpha_{n}} f_{\ell}(\alpha_{1} - \alpha_{n} + t, \dots, \alpha_{n-1} - \alpha_{n} + t, t) dt$$

$$+ \sum_{\ell=1}^{n} P_{\ell}(\alpha) \int_{0}^{\alpha_{n}} \frac{\partial g_{\ell}(\alpha_{1} - \alpha_{n} + s, \dots, \alpha_{n-1} - \alpha_{n} + s, s)}{\partial \alpha_{1}} ds,$$

$$(43)$$

since

$$G'_{\ell}(s) = \frac{\partial g_{\ell}(\alpha_1 - \alpha_n + s, \dots, \alpha_{n-1} - \alpha_n + s, s)}{\partial \alpha_1}.$$

From (43), (6) and (38) we obtain (36).

6. Non-Characteristic condition

It is obvious that the change of variables is locally not degenerate if

(44)
$$\frac{D(X_1, X_2, \dots, X_n)}{D(\alpha_1, \alpha_2, \dots, \alpha_n)} \Big|_{\alpha_n = 0} \neq 0.$$

We investigate now conditions under which the condition (44) is fulfilled. We set according to (27)

$$\vec{g}^{0}(\alpha') = (g_{1}^{0}(\alpha'), g_{2}^{0}(\alpha'), \dots, g_{n}^{0}(\alpha'))^{T}$$

$$\equiv \vec{g}(\alpha)\big|_{\alpha_{n}=0}$$

$$= \vec{v}_{1}^{0}(\alpha') \times \vec{v}_{2}^{0}(\alpha') \times \dots \times \vec{v}_{n-1}^{0}(\alpha'),$$
(45)

where the vector product in (45) is defined by (28), and according to (26)

(46)
$$\vec{v}_{j}^{0}(\alpha') = (v_{j1}^{0}(\alpha'), v_{j2}^{0}(\alpha'), \dots, v_{jn}^{0}(\alpha'))^{T}$$

$$\equiv \vec{v}_{j}(\alpha)\big|_{\alpha_{n}=0}$$

$$= \frac{\partial P^{0}(\alpha')}{\partial \alpha_{j}} + A^{T}(X^{0}(\alpha'), Z^{0}(\alpha'), P^{0}(\alpha')) \frac{\partial X^{0}(\alpha')}{\partial \alpha_{j}},$$

$$i = 1, 2, \dots, n-1.$$

Proposition 6. Suppose

(47)
$$\begin{vmatrix} \frac{\partial X_1^0(\alpha')}{\partial \alpha_1} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_1} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial X_1^0(\alpha')}{\partial \alpha_{n-1}} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_{n-1}} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_{n-1}} \\ g_1^0(\alpha') & g_2^0(\alpha') & \dots & g_n^0(\alpha') \end{vmatrix} \neq 0, \quad \forall \alpha',$$

where the vector $\vec{g}^0(\alpha') = (g_1^0(\alpha'), g_2^0(\alpha'), \dots, g_n^0(\alpha'))^T$ is defined by (45). Then the condition (44) is fulfilled.

Proof. From (44) and (32_1) it follows that

$$\frac{D(X_1, X_2, \dots, X_n)}{D(\alpha_1, \alpha_2, \dots, \alpha_n)}\Big|_{\alpha_n = 0} = \begin{vmatrix}
\frac{\partial X_1^0(\alpha')}{\partial \alpha_1} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_1} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_1} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial X_1^0(\alpha')}{\partial \alpha_{n-1}} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_{n-1}} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_{n-1}} \\
\frac{\partial X_1^0(\alpha')}{\partial \alpha_n} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_n} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_n}
\end{vmatrix} \\
= \begin{vmatrix}
\frac{\partial X_1^0(\alpha')}{\partial \alpha_1} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_1} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial X_1^0(\alpha')}{\partial \alpha_{n-1}} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_{n-1}} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_{n-1}} \\
-\sum_{\ell=1}^{n-1} \frac{\partial X_1^0(\alpha')}{\partial \alpha_\ell} & -\sum_{\ell=1}^{n-1} \frac{\partial X_2^0(\alpha')}{\partial \alpha_\ell} & \dots & -\sum_{\ell=1}^{n-1} \frac{\partial X_n^0(\alpha')}{\partial \alpha_\ell} \\
+g_1^0(\alpha') & +g_2^0(\alpha') & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_1}
\end{vmatrix} \\
= \begin{vmatrix}
\frac{\partial X_1^0(\alpha')}{\partial \alpha_1} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_1} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_n} \\
+g_1^0(\alpha') & \frac{\partial X_2^0(\alpha')}{\partial \alpha_{n-1}} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_{n-1}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial X_1^0(\alpha')}{\partial \alpha_{n-1}} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_{n-1}} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_{n-1}} \\
g_1^0(\alpha') & g_2^0(\alpha') & \dots & g_n^0(\alpha')
\end{vmatrix}.$$
(48)

Then (44) follows from (47) and (48).

Proposition 6 leads us to the following definition of noncharacteristic condition for the Cauchy problem (3), (5).

Definition 1. We say that the Cauchy problem (3), (5) is non-characteristic if the following condition holds:

(49)
$$\begin{vmatrix} \frac{\partial X_1^0(\alpha')}{\partial \alpha_1} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_1} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_1} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial X_1^0(\alpha')}{\partial \alpha_{n-1}} & \frac{\partial X_2^0(\alpha')}{\partial \alpha_{n-1}} & \dots & \frac{\partial X_n^0(\alpha')}{\partial \alpha_{n-1}} \\ g_1^0(\alpha') & g_2^0(\alpha') & \dots & g_n^0(\alpha') \end{vmatrix} \neq 0, \quad \forall \alpha',$$

where the vector $X^0(\alpha') = (X_1^0(\alpha'), X_2^0(\alpha'), \dots, X_n^0(\alpha'))$ is given in the initial condition (5) and $\bar{g}^0(\alpha') = (g_1^0(\alpha'), g_2^0(\alpha'), \dots, g_n^0(\alpha'))^T$ is given by (45).

Remark 2. We have the following remark on geometric interpretation of the noncharacteristic condition (49). Consider in R_x^n the surface Γ that is defined by equations (4). Then the vectors

$$\frac{\partial X^0(\alpha')}{\partial \alpha_k} = \left(\frac{\partial X^0_1(\alpha')}{\partial \alpha_k}, \dots, \frac{\partial X^0_n(\alpha')}{\partial \alpha_k}\right)^T, \quad k = 1, 2, \dots, n$$

are tangent to the surface Γ at the point $X^0(\alpha') = (X_1^0(\alpha'), \dots, X_n^0(\alpha'))$.

Thus the noncharacteristic condition (49) says that the vector $\vec{g}^0(\alpha')$, defined by (45) at the point $X^0(\alpha') = (X_1^0(\alpha'), \dots, X_n^0(\alpha')) \in \Gamma$, is not tangent to the surface Γ .

7. THE SOLVABILITY OF THE CAUCHY PROBLEM IN THE CLASS OF ANALYTIC FUNCTIONS

Applying the well-known Cauchy-Kovalevski theorem to the Cauchy problem (32), (15), we get the following consequence on local solvability of the Cauchy problem for the Monge-Ampère equation (3), (5) in the class of analytic functions.

Theorem 4. Suppose that the functions $a_{ij}(x, z, p)$, $X_j^0(\alpha')$, $Z^0(\alpha')$, $P_j^0(\alpha')$, j = 1, 2, ..., n are analytic, and satisfy the conditions (6), (49). Then the Cauchy problem (3), (5) possesses locally a unique analytic solution z(x).

References

- [1] G. Darboux, Leçons sur la théorie générale des surfaces, tome 3, Gauthier-Villars, Paris, 1894.
- [2] E. Goursat, Leçons sur l'intégration des équations aux dérivées partielles du second ordre, tome 1, Hermann, Paris, 1896.
- [3] J. Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Hermann, Paris, 1932.
- [4] H. T. Ngoan and N. T. Nga, On the Cauchy problem for hyperbolic Monge-Ampère equations, in Proceedings of the Conference on Partial Differential Equations and their Applications, Hanoi, December 27-29, 1999, pp. 77-91.

- [5] M. Tsuji, Formation of singularities for Monge-Ampère equations, Bull. Sci. Math. 119 (1995), 433-457.
- [6] M. Tsuji and H. T. Ngoan, Integration of hyperbolic Monge-Ampère equations, in Proceedings of the Fifth Vietnamese Mathematical Conference, Hanoi, 1997, 205-212.
- [7] M. Tsuji and N. D. Thai Son, Geometric solutions of nonlinear second order hyperbolic equations, Acta Math. Vietnam. 27 (2002), 97-117.
- [8] Ha Tien Ngoan and Nguyen Thi Nga, On the Cauchy problem for hyperbolic Monge-Ampère equations with several variables, Journal of Science, N^04 , (2002), 3-10.
- [9] V. I. Arnold, Mathematical Methods in Classical Mechanics, Nauka, Moscow, 1980.

INSTITUTE OF MATHEMATICS 18 HOANG QUOC VIET ROAD 10307 HANOI, VIETNAM