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ON THE CAUCHY PROBLEM FOR MULTIDIMENSIONAL
MONGE-AMPERE EQUATIONS

HA TIEN NGOAN AND NGUYEN THI NGA

ABSTRACT. The Cauchy problem for Monge-Ampere equations with several
variables is formulated and reduced to that for a normal system of first-order
nonlinear partial differential equations. The noncharacteristic condition for
the Cauchy problem of multidimensional Monge-Ampére is given. The local
solvability of the noncharacteristic Cauchy problem for these equations in the
class of analytic functions is proved.

1. INTRODUCTION

The classical hyperbolic Monge-Ampere equation with two variables is of the
form

(1) F(z,y,2,p,q,7,5,t) = Ar + Bs + Ct + D(rt — s*) — E =0,
. . 9 0z
where z = z(z,y) is an unknown function defined for (z,y) € R*, p = 3
x
2 2 2
q= g;, r= gaj, s = 8835823/ and t = gyi The coefficients A, B,C, D and FE are

real smooth functions of (z,y, z,p, ¢) and satisfy the condition of hyperbolicity:
A := B%* - 4(AC + DE) > 0.

In this case the characteristic equation

(2) A+ BA+ (AC + DE) =0

has two different real roots A\ = Ai(x,vy,2,p,q), A2 = Xa(z,y,2,p,q). This
equation was well studied by G. Darboux and E. Goursat [1], [2].
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In this article we consider the following Monge-Ampere equations with several
variables

Zyizp T Q11 Zaqzs T Q12 ... Zgyx, T Qln

Zgoxy T Q21 Zzox, Q22 ... Zgoax, T Q2n
(3) : : g : =0

Zyprer T Anl Zapze T 0n2 - .. Zg,x, T Qnn
where z = z(z) is an unknown function of x = (x1,x2,...,x,). The coefficients
a;;j are smooth functions of x,z and p = (p1,p2,...,pn), Wwhere p; = 2.

Proposition 1. Suppose that D = 1 and equation (1) is hyperbolic. Then it can
be written in the form of (3), i.e.

Zea + C ny“‘)\l 0
Zoy + A2 zyy + A ’

where A\ and Ao are the roots of equation (2).

Proof. Since Ay + Aa = —B and A\ Ao = AC + E, we have
Ar+Bs+Ct+(rt—s) —E=Ar+Ct+ (rt —s*) + Bs— E
= Ar + Ct+ (rt — s*) — (M1 + \2)s
— AN\ + AC
=(r+C)t+A) —(s+ A)(s+ N2)

_ Zpa +C ny+)\1
Zoy F A2 zyy +HA|

The assertion of the proposition immediately follows. ]

Equation (1) was investigated in [1], [2] by G. Darboux and E. Goursat under
the assumption that it has two independent first integrals. This equation had
been also considered in [3], [4], [6], [7] by reducing it to a hyperbolic quasilinear
system of first-order partial differential equations with two variables. The multi-
dimensional equation (3) is more difficult to study, and it was considered in [5]
by M. Tsuji in the case where it possesses n independent first integrals. Though
the local existence of an analytic solution to the Cauchy problem for equation
(3) has been proved by the theorem of Cauchy-Kovalevski, we are interested in
the structure of the equations. In this paper we do not assume that equation (3)
possesses n independent first integrals and we shall investigate it by reducing it
to a normal system of first-order partial differential equations.

The outline of this paper is as follows. In Section 2 we formulate the Cauchy
problem for equation (3). In Section 3 we outline an idea for solving it. In Sec-
tion 4 we make a change of variables and instead of the Cauchy problem for (3)
we obtain an other for a system of first-order partial differential equations. In
Section 5 we reduce this system of equations to a normal one of 2n + 1 equations
with 2n + 1 unknowns. In Section 6 we obtain the noncharacteristic condition
for the Cauchy problem for (3). As an application, in Section 7 we apply the
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Cauchy-Kovalevski theorem to obtain another proof of local solvability to the
noncharacteristic Cauchy problem for equation (3) in the class of analytic func-
tions.

A short version of this paper was published in [8]. In this paper we expose all
main results with detailed proofs.

2. THE CAUCHY PROBLEM

Suppose that in R? there is an (n — 1)-dimensional surface I' that is given by
equations:

z1 = X) (o),
T2 = XO( /)
(4) ?
T, = X(d).
Here and in what follows we put
o =(ay,a9,...,ap_1) €EPC R”_l.

Suppose also that we are given n + 1 functions Z°(/), PO( N, ji=12,.

The Cauchy problem for the equation (3) consists in looking for a solutlon
z(x) € C? of (3) such that

Z(x)|x:X0(oc’) = Z%(d),
Zl“j(x)’x:XO(a/) :P]Q(a’), i=1,2,...,n,
where X%(o/) = (X9(/), X3(a),..., X2()).

From (5) we obtain the following necessary conditions for the initial Cauchy
data

(6)

()

020(a)) I~ o, 0X0(a)
P2 NP ) k=1, -
80ék- ]Z; 7 (O[ ) aak ’ k ]-7 y T ]-7

which are assumed to be fulfilled.
3. A SOLUTION METHOD FOR (3)

Suppose that {w;};j—0,1,..n are one-forms defined in
R:2vnz+p1 - {('Tla sy Iy 2, P15 - apn)}
as follows

n
wo =dz — ijdazj,
j=1

n
wj = dp; + Zajk(x,z,p)da:k, i=12,...,n
k=1

where a;i(x, z,p) are the same functions in the equation (3).
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The following propositions can be easily verified from the theory of differential
forms. (see e.g. [9]).

Proposition 2. Suppose that the following conditions 1) and 2) are satisfied

1) There is an n-dimensional C'-surface M C R?Ctjpl that is given by

z  =Z(x)
p; =Pix), j=1,2,....m

2) wop =0 on M, that means the form wy vanishes on the tangent space to M
at any (z°,2°,p°) € M.
Then we have

7) Pi(z) =

and consequently on M
dp; = ZZ’W% Ydzg, j=1,2,... n.

Proposition 3. Suppose that all the conditions of Proposition 2 hold. Then we
have on M

Zn: (822 + aji(z, Z(x), Zx(:r)))d:vk,

— Oxj0xy,
and

Wi ANwa - ANwy =
(8) =det || Zz;u, (%) + aji(x, Z(2), Zo(x))||dz1 AdXa A~ A dp,

where the operation N\ stands for exterior product of differential forms.

From (8), in order to solve the equation (3), we must find an n-dimensional
Cl-surface M C R?%t1. on which the following relations hold

T,2,p )

0=20
Wi Awg A+ Awy,, = 0.

4. CHANGE OF VARIABLES IN (3)

Suppose that in equation (3) we change the variables © = (21,2, ..., zy) into
the new ones a = (1, a9, ...,ay,) in such a way that
9) zj=Xj(a), j=1,2,...,n
and

D(X1,Xa,...,Xp)

10
( ) D(alaa%"'?an)

# 0,
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where o = (a1, a9, ...,a,-1) is the same variables as in (4). Note that from (9)
and (10), it holds locally
(11) aj=pj(x), 7=1,2,...,n

From Proposition 2 we obtain the following result

Proposition 4. Let the C'-surface M C R2“1 be given by equations:

T,2,p
z; =Xj(o), j=12,...,n
)
p; =Pjla), j=1,...,n
and the condition (10) be fulfilled.
Then wy =0 on M if and only if

ZP 8XZ —0; k=1,2,...,n.
Bak

8ak

From the definition of M it follows that on M

w; = Z ;Zdag + Z ajp(X (), Z(a), P(a)) Z %dag
Z (5c Zajk (@), P(a»é’x’“)dae

day

It is easy to see that the following indentity holds on M
w1 Awa A+ ANwp,

8X &
3044

(12) = detH + Z a;r(X (), P(av))

Hdal ANdag A -+ A doy,.

We note that the determinant in the right hand side of (12) is equal to 0 if the
columns vectors are linearly dependent. So from (12) we arrive at the following

Proposition 5. Suppose that the C*-surface M C R*™ 1 is given by equations:

T,zZ,p
€ g :Xj(a),jzl,Q,...,n
)
p; =Pj(a),j=1,2,...,n
where X;(a), Z(a), Pj(«) satisfy the system of equations

Zaa] +

14

00X},

aji(X(a), Z(a), P(a))-— D

1

=0, j=1,2,....n.

n n
/=1 k=
Then wi Awa A+ ANw, =0 on M.
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Set
X(a) = (X1(a),..., Xn(a)); P(a) = (Pi(a),..., Py(a)).

From equations (3), (8), (12) and from Propositions 2, 3, 4 and 5 we obtain
the following.

Theorem 1. Suppose that (X (), Z(a), P()) is a C%-solution of the following
system of equations:

LOP;  n 0X _
13) > et Zzajk(X(a),Z(a),P(a))aT’“ =0, j=12...,n
e By ¢
07 & 90X,
1 —_— = P, — = =1,2,...
( 32) (90% Z g(Oé) 80ék 07 k ) Ly , 1

and satisfies condition (10). Then the function

(14) 2(x) = Z(p(x)) = Z(p1(x),02(3), ..., n(2)),

where o(x) = (p1(x), p2(x),...,pn(x)) are defined by (11) is a solution of the
Monge-Ampére equation (3). Moreover, we also have z,(x) = P(p(x)).

We now formulate the Cauchy problem for the system (13).
Cauchy problem: Find (X(a), Z(a), P(a)) of class C! that is a solution of

(13) such that

(151) Xj(a)}an: =X)(d), j=1,....n,

(152) Z(a)}an_o = Zo(a,)a

(153) Pj(a)}an: = .PJQ(O/), ji=1,...,n,

where the functions X7 (o), Z%(a’), P}(c/) are given above as in (5) and satisfy

the condition (6).
5. REDUCING (13) TO A NORMAL SYSTEM

We first prove some lemmas.

Lemma 1. Suppose that (X («), Z(a), P()) is a C%-solution of the system (13).
If we set

oxX; .
(16) ;8014 =gi(a), i=1,2,...,n
17)  file) ==Y ap(X(a), Z(a), P(a)gr(e), j=1,2,....m,
k=1
then we have
— OP; .
(18) Foy = file); i=1,2,...,n.
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Proof. (18) follows from (13;), (16) and (17). O

‘We denote

(@) = (g1(a), g2(a), ..., gn(a)),

oP 8P1 8Pn>T

Lemma 2. Suppose that (X (), Z(a), P(a)) is a C?-solution of the system (13)
and satisfies (16), (17). Then we have the following necessary condition:

aX " IP,
(19) E fe(a 2t E gg(a)ié, k=1,2,...,n.
1

Proof. From (132) we have

0Z =, 0X;
07 "L 0X
(21) =3P "

Differentiating both sides of (20), (21) with respect to ay, and «y, respectively,
we get

n

0P, 0X, %X,
(22) 8ak8am Z Doy, Doy ZZ; Fe Ooy, 0y’

Z 0P, 0X, En: ?X,
8a 8ak ooy, A g@amaak

(23)

Since Z(a), X (a) € C?, from (22) and (23) we get

oP, 0X, OP, an
(24) ; Do, Doy, Z Do Ocvm

Summing both sides of (24) with respect to m from 1 to n we arrive at (19). O

Set
Az, z,p) = Hajk(w,z,p)

nxn

From (17) it follows that
(25) fla) = ~A(X (), Z(a), P(a))g(a).
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We introduce the column-vectors

. oP 0X

(26)  Tj(a) = 90, + AN (X(a), Z(a),P(a))@
= (vj1(a),vja(), ..., vin(@)t €R™, j=1,2,....,n— 1.

Lemma 3. Suppose that (X (), Z(a), P(a)) is a C?-solution of the system (13
and satisfies (16) and (17). Assume that the vector g(a) = (91(c), g2, - - -, gn(a))T
is given by the formula
(27) gla) =t (a) x Ua(a) X -+ X Up_1(a) € R",
where the vectors Uj(c) are defined by (26) and the vector product (27) is defined
by

Uil V21 ... Up—11 €1
Vi2 V22 ... Up—12 €2
(28) Ul X Ug X o+ X Upq = |V13 V23 ... Un-13 €3] ¢c R™
Uln V2n ... Un—1n €n
with the vectors €1, €s, ...,y being unit column-vectors on coordinate axes Oxq,
Oxa, ..., Ox, respectively. Then the condition (19) is equivalent to
(29) ((a),Ux(a))y =0, k=1,2,...,n—1,Va,

where (,) is a scalar product in R™ and the vectors Uy («) are defined by (26).

Proof. We write (19) in the equivalent form:
0P i X

g )= =1,2,...,n.
(30) (§la), 5) = (Fla). go) k=12
Setting f = —A(X(a), Z(a), P(a))F(a) in (30) we get
oP 0X
g, —) = —(Ag, — =1,2,...,n.
9 o) = (AT 5o 1 E=12m
or
oP 0X
1 g, ——+AT —)=0, k=1,2...,n
(3 ) <g7 80% + aak> 07 » = 7n
From (16), (17), (18) and (26) the equivalence of (31) and (29) follows. O
Theorem 2. The system (13) can be reduced to the following system
" 0X; .
(321) Zaag =gi(e), 1=1,2,...,n,
(=1
(322) > o = > gl Py,
Qy
=1 =1
", 9P ,
(323) Zaag = fila) i=1,2,...,n.
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where the vector G(a) = (g1(a), g2(a), ..., gn(a))T is defined by (27), and the

—

vector f(a) = (fi(a), fa(a), ..., fn(a))T is defined by (25).
Remark 1. From (26) and (27) it follows that all the g;(a) depend on z(«), z(«),

Oxy O
p(a), on the first derivatives ﬁ, ﬂ, {=1,2,...,n—1 and they are homoge-
Oay’ Day
nous with respect to these derivatves of degree (n — 1). On the other hand, the
0 Jz 0
system (32) is solvable with respect to :Ek, & , pk, then (32) is a normal
Oay,” Oay, Oay,

system of first-order partial differential equations. In the case n = 2 this system
is quasilinear.

Proof. The equations (32;) follow from (16). The equations (323) follow from
(18), (17) and (131). The equation (323) follows from (132) and (321). In order
that the condition (19) is automatically satisfied we choose g by (27). O

We now state and prove the main result of the paper.

T

Theorem 3. Let the vectors (o) = (g1(a), g2(@), ..., gn())" and

Fle) = (fi(), fa(a), ..., fo(@))T be defined by (27) and (25) respectively. Sup-
pose that (X (a), Z(a), P()) is a C?-solution of the Cauchy problem (32), (15).
Then it is also a solution of the Cauchy problem (13), (15).

We first prepare the following two lemmas. By applying the classical charac-
teristic method to Cauchy problem for first-order partial differential equations,
we can get the following

Lemma 4. The unique solution u(«) of the Cauchy problem:

LG
=L = F(a)
j=1 0oy,
u‘anzo = up(a’)
can be written in the form
u(on, g, ... o) = ug(0 — Gy g — Ay e ooy Q1 — Qi)

Qn
+/ Floa —an+s,as —ap+8,...,0n-1 —ap + 8,5)ds.
0

We set

07 = 0X
hi(a) 80(:‘) ~ 3" Pya) 82(:‘), k=1,2,...,n.
/=1

Lemma 5. Suppose that (322) and
hp(a) =0, k=1,2,...,n— 1.
hold. Then we have
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Proof. The assumptions of Lemma 5 and (322) yield

ZP@ 8XZ =0.

k=1 =1 k=1
Thus,
" 07 . 0X,
_—— P——)=0
; (8ak zz:; ¢ Oak)

So we have

> =0,

k=1
from which the assertion of the lemma follows. O

Proof of Theorem 3. Equations (13;) follow from (32;) and (323). We need
only to prove (132). In view of Lemma 5, we show that hy =0,k =1,2,...,n—1.
We will prove, for example, that hi(a) = 0.

Applying Lemma 4 to each equation of (32) with the Cauchy data (15) we
have

Xo(a) = X?(ozl — Qpyeey Q] — Q)
Qn
(33) —l—/gg(al —Qn+S,...,ap_1 — ap + 8,8)ds,
0
Z(a) = Zo(a1 — Qe Q] — Q)

ann

/Zpﬁal_an‘}'s Oénfl—()én—FS,S)X

(34) X gg(al —ap+S8,...,ap_1 — Qp + 8,8)ds,
Py(a) = PY(o1 — ap, ...y 1 — i)
(35) + /fg(oq —Qp+S,...,0n_1 — ap + 8, 8)ds.

We now prove that

(36) oz _ Zn: p 0%l _

We have
0Xo(a) OXP (a1 — any ..oy a1 — ap)
8041 B 8041

Qn
/393(@1 —ap+ S8, ..., 0p-1— Qp+5,8)
60[1

(37) + ds,

0
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From (35) and (37) we have

ZPe(a)an(a) _ zn:Pg(a) [BXg(al — Q. Qo1 — Q)

— 8041 — 6041
Qn
+/agg(oz1 — Oyt S, 0 —an—i—s,s)ds]
80&1
0
n O‘”a
_ Pg(a) / gf(al — Op + S, aaa Qp—1 — Qp + S, S) ds
=1 9 1

n
OXP(a1 — amy .oy g — )
0 ¢ 1 ns s hn—1 n
+ZPz(a1—0én,-~7an—1—Oén)
—1 8a1

n

+Z E)X?(ozl — Qe y Q] — Q) 9

— 8041
(38) X /fg(oq —ap+S8,...,an-1— ap+8,s)ds.
0
0Z ()

Let us calculate . From (34) we have

a1

0Z(a) 0Z% a1 — Q.. o1 — Q)

Oay Oay
an
OPj(ag —ap + 8. .., p1 — iy + 8, 5)
X
<[y 5
X go(ar — an +8,...,ap_1 — Qy + 8, 8)ds
an
+/ZPg(a1—an+s,...,an_1—an+s,s)><
0 421
(39) % agﬁ(al*an+57-~-,anfl*an"’sas)ds'

dayy

Since the condition (29) is satisfied, so is the condition (19). So for the second
term of (39) we have
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Qn

/n OP;(aq — ay + s, an_l—an—i—s,s)x
80&1
0

(=1

X go( al—an+s S Qp_1 — Qn + 8, 8)ds
:/ 8Xga1—an+s an_l—an—l—s,s)x
0 8041
X fg(Oq —ap+ 8,01 —ap + 8, 8)ds
B - /a” 0Xp(ap —ap + 8, yap—1 —ap + 8, 8) "
= Jo Oaq
(40) X folar —an+8,...,an_1 — an + s,5)ds.
We set .
Fy(s) = folag —ap +t,... an—1 — ay, + t, t)dt.
Then "

F)(s) = folan —an+8,...,an—1 —ay +5,8) and Fy(ay) =0.
From (40) we get

Qn
/anapg(ozl—an—l—s,...,an_l—ozn+578) y
) = O

1

X ge(ag — an + 8, .., Qp1 — iy + 8,8)ds
X - Un n—1 =" Yn ’
_2/8 (o — « +sa ,Qp_1—Qp+ 8 S).Fé(s)ds
=17 o
X — p gy bn—1 7 Un )
:Z[ﬁ (o —« —|—s8 Op_1 — Oy + 8 S)-Fe(s)g
o
=1
" d O0Xy(lag —an+S8,...,an-1—an+5,8)
—|F d]
/ ()ds( 8a1 )8

- (9X?(a1—ozn,...,an,1—an)
-3 x
80[1

(=1

x/fg(al—an—i—t,...,an1—an+t,t)dt
Qn

— Oay,

—7Fg(3)' 0 (zn:OXg(al—an+s,...,an1—an—|—s,s)>d8}
0
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[(9X?(oz1 — Qpyeney Q] — Q)
Oay

folar —an +t, ... an_1 — ay +t,t)dt

(41) -

Oge(a1 — ap + 8, ..., Qp_1 — iy + 8, 8) }
s) - ds|.
Ooy

Now we consider the third term in (39). Setting

S
dge(a — Qe — ,
GZ(S) = / ge(Oq an + 5, aala ! an + 5 8) dS,

0

we have

0 — e, Q] — ,
Gi(s) = ge(a an+saa1an1 an + 8, 8)

and

G(0) = 0.

Since Fy(aw,) = G¢(0) = 0, we have

an
/ZPg(al—an—l—s,...,an1—an+s,s) X
y 8gg(a1—ozn+s,...,an_1—an—i—s,s)ds

80(1
n 9%n
= /Pg(al — Q8,1 — ay + 8, 8).GY(s)ds
=17
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- Pl —an+s,...,an—1 — an +5,5).Ge(s)|g"
(=1
an o,
d
_/ GZ(S)-£(Pg(a1—ozn—{—s,...,an_l—an—i—s,s))ds
n Qn
0 — .. 1 —
5 g, O e s ),
an n
OP, — .. -
—/GK(S). Z(al an+578aaan 1 an+37s)ds
n ana
_ Pg(@)/ gg(Oq—an—f-s,.a..,an_l—an—i—s,s)d
an o,
—/ Go(s).folar —ap + 8,...,an—1 — an + 8, 8)ds
n a"a
_ Pg(a)/ gf(al_an+5> 'é'?anl_an+sas)d5
an
_ / Gols)-Fl(s)ds

Qn
n (a)'/agg(al—Ozn+s,...,an_1—an+s,s)ds

Oo
—1 1

Qn

(42) + /
0 ¢

From (39), (41) and (42) we have

0
Gy(s).Fy(s)ds.

=

0Z(a) 07% a1 — a1 — Q)
(9041 N aal

_i_i 8X?(a1 — Qpy ey Q1 — Q) "
(=1

8041

Qn
></fg(al—an+t,...7an_1—an—f—t,t)dt
0
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Qn
_/FZ(S)(?gg(al —ap+S,...,Qn 1 fozn+s,s)d8
8a1
0
n ana
n Pg(a)/ ge(ar —an 48, 1 —an +5,5) |
80&1
an 4,
—I—/ Gy(s).Fy(s)ds
B 0Z% a1 — a1 — Q)
N (90&1

n
aX?(al — Qpyeey Q] — Q)
X
2 oo

(070
x/fg(al—an—l—t,...,an1—an+t,t)dt
0

(43) +Z Pz(a)/agf(al —ap + S8, ‘a-o'évan—l _an+878)d87
=1 0 1
since
Oge(a) — ap + 8y .oy Q1 — iy + 8, 8)
! _ I ) )
GZ(S) - 6061 .
From (43), (6) and (38) we obtain (36). O

6. NON-CHARACTERISTIC CONDITION

It is obvious that the change of variables is locally not degenerate if

D(Xy,Xa,...,Xp)

44
( ) D(Oq,OéQ,...,Oén) an=0

£0.

We investigate now conditions under which the condition (44) is fulfilled. We set
according to (27)

(45) = (') x (') x - x T _y(a),
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where the vector product in (45) is defined by (28), and according to (26)

7)) = (V)1 (), v5a(@), ..., 0%, ()"
(46) = ’[)}(Ct) ‘anzo
oP°(a/) T/ w0 0X°%(c)
— AT (x / ZO / PO /
e AT(XOal), Z0el), P )
i=12,...,n—1.
Proposition 6. Suppose
0XV(a') 9X3() 0X0%(a)
80&1 8041 o 8&1
A7 : : g : 0, Vo,
(47) X% ') 0X3(a) 0X0(a’) 7
Oay 1 Oap—1 o Oap—q
g@)  gad) ... gp(a)

where the vector g°(a’) = (g%(a’), g8(’), ..., go(a'))T is defined by (45). Then
the condition (44) is fulfilled.

Proof. From (44) and (32;) it follows that

OX0(a) OXY) XU
dag Oo o Oaq
D(X1,Xs,...,Xn) B 0 / 0 , 0 /
D(ay,a9,...,0p) lan=0 X7 (o) 0X5() 90Xy (a')
8O[n—l aO[n—l 3an_1
oxia) axdla)  oxS(a)
oy, Oay, o day,
HX9(a) OX9(a) HX0(a)
6a1 8&1 o 6@1
| oaxba)  ax(@) OXY(c!)
8an_% 60én_(1) o Gan_%)
n=1 9X?(a/ n=1 X9 (a’ n=19X9(o/
B O ORI ()
=1 Qy =1 Qy =1 07,
+g(a) +99(a’) +gp(a’)
X)) X)) OXD(a)
60&1 6051 o 80[1
48 — )
e X)) OXY@)  OXIe)
Oay—1 Oay—1 o Oay—1
@) Bl ... g(d)

Then (44) follows from (47) and (48). O
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Proposition 6 leads us to the following definition of noncharacteristic condition
for the Cauchy problem (3), (5).

Definition 1. We say that the Cauchy problem (3), (5) is non-characteristic if
the following condition holds:

0xXV(a) 9X3(a) aX9()
8041 8&1 6@1
49 : : : 0, Vo,
) oXia) oXiw)  oxi)|” "
Oay 1 Oap—1 o Oap—1
gia) @) ... gad)

where the vector X%(a/) = (X%(o/), X9(c),..., X2(a’)) is given in the initial
condition (5) and §°(a/) = (¢9(), g9(a), ..., g2(a’))T is given by (45).

Remark 2. We have the following remark on geometric interpretation of the
noncharacteristic condition (49). Consider in R} the surface I' that is defined by
equations (4). Then the vectors

0X°(a) _ (3X?(o/) . an(o/))T7 k:

=1,2,...,n

ey

Oy, Oa, Oay,

are tangent to the surface I' at the point X%(a/) = (X?(a/),..., X2()).

Thus the noncharacteristic condition (49) says that the vector §°(a/), defined
by (45) at the point X%(a/) = (X)(o/),..., X%(’)) € T, is not tangent to the
surface I'.

7. THE SOLVABILITY OF THE CAUCHY PROBLEM IN
THE CLASS OF ANALYTIC FUNCTIONS

Applying the well-known Cauchy-Kovalevski theorem to the Cauchy problem
(32), (15), we get the following consequence on local solvability of the Cauchy
problem for the Monge-Ampere equation (3), (5) in the class of analytic functions.

Theorem 4. Suppose that the functions a;j(x, z,p), XJQ(O/), Z%(a), PJQ(O/), j=
1,2,...,n are analytic, and satisfy the conditions (6), (49). Then the Cauchy
problem (3), (5) possesses locally a unique analytic solution z(x).
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