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SOME STABILITY RESULTS FOR THE SEMI-AFFINE
VARIATIONAL INEQUALITY PROBLEM

NGUYEN NANG TAM

Abstract. This paper establishes two theorems on the stability of a semi-
affine variational inequality problem and gives a characterization of the sta-
bility of the generalized linear complementarity problem when the defining
matrix is copositive plus on the constraint cone. One of our results gives an
affirmative answer to the second open problem stated by M. S. Gowda and
T. S. Seidman in their paper “Generalized linear complementarity problems”
(Math. Programming Vol. 46, 1990, 329–340).

1. Introduction

Let ∆ ⊂ Rn be a nonempty, closed, convex set, M ∈ Rn×n a matrix and q ∈ Rn

a vector. The semi-affine variational inequality problem defined by (M, q,∆),
which is denoted by VI(M, q,∆), is the problem of finding a vector x such that

x ∈ ∆, 〈Mx + q, y − x〉 ≥ 0 for all y ∈ ∆.(1.1)

Here 〈·, ·〉 denotes the scalar product in Rn. The solution set of VI(M, q, ∆) is
denoted by Sol(VI(M, q,∆)). It is well known [1, p. 422] that when ∆ is a cone
in Rn, (1.1) is equivalent to the problem of finding an x such that

x ∈ ∆, Mx + q ∈ ∆∗ and 〈Mx + q, x〉 = 0,

which is denoted by GLCP(M, q,∆) and which is called the generalized linear
complementarity problem. Here and in the sequel,

K∗ = {y ∈ Rn : 〈y, z〉 ≥ 0 for all z ∈ K}
is the positive dual cone of a cone K ⊂ Rn.

Robinson [5] has characterized the stability of VI(M, q, ∆) by the nonemptiness
and the boundedness of Sol(VI(M, q,∆)) for the case where ∆ is a polyhedral
convex set and M is a positive semidefinite matrix. Gowda and Pang [1] obtained
several sufficient conditions for the stability of VI(M, q,∆). Gowda and Seidman
[2] considered the problem GLCP(M, q,∆) and characterized its stability with
respect to perturbations of q for the case where M is copositive plus on the cone
∆. In the cited paper [2], Gowda and Seidman stated the following open problem:

Received November 27, 2003.
2000 Mathematics Subject Classification. 49J40, 90C33.
Key words and phrases. Semi-affine variational inequality problem, generalized linear com-

plementarity problem, stability, Hartman-Stampacchia Theorem, copositive plus matrix.



272 NGUYEN NANG TAM

Whether it is true that if M is copositive plus on ∆ and the solution set of
GLCP(M, q,∆) is nonempty and bounded, then there exists ε > 0 such that the
solution set of GLCP(M ′, q′, ∆) is nonempty for any (M ′, q′) ∈ Rn×n × Rn and
q′ ∈ Rn with max{‖M ′ −M‖, ‖q′ − q‖} < ε}?

Note that Gowda and Pang have obtained a result on the stability of GLCP(M, q,∆)
in the case where ∆ ⊂ Rn

+ is a polyhedral convex cone and the matrix M is copos-
itive plus on ∆ (see [1, Proposition 7]). This result gives a partial answer to the
above open problem.

In this paper we obtain several perturbation results for the problem VI(M, q,∆),
where the matrix M is copositive plus on the recession cone of ∆. One of our
results provides an affirmative answer to the above open problem. Our main tools
are the Hartman-Stampacchia Theorem ([3, Chap. 1]) and some arguments in
[4, Chap. 7]. Note that our method of proof is somewhat elementary; it is quite
different from those of [1] and [5]. By definition (see [2]), a matrix M ∈ Rn×n is
said to be copositive plus on a cone K ⊂ Rn if

(i) v ∈ K implies 〈Mv, v〉 ≥ 0,

(ii) (v ∈ K, 〈Mv, v〉 = 0) implies (M + MT )v = 0,

where superscript T denotes the matrix transposition. It is a well known fact
that if M is positive semidefinite, then M is copositive plus in any cone K ⊂ Rn.
Indeed, if 〈Mx, x〉 ≥ 0 for any x ∈ Rn, then condition (i) is valid. Moreover,
if 〈Mv, v〉 = 0 then v is the minimum point of the convex quadratic program
min{〈(M + MT )x, x〉 : x ∈ Rn}. By the Fermat rule, (M + MT )v = 0; thus (ii)
is valid. The reader is referred to [4, Chap. 6] for an example of matrices which
are copositive plus on Rn

+ and which are not positive semidefinite.
Throughout this paper, for a nonempty, closed, convex set ∆ ⊂ Rn and a

matrix M ∈ Rn×n, the recession cone of ∆ is denoted by 0+∆ and the set
{Mx : x ∈ ∆} is denoted by M∆. The scalar product and the Euclidean norm in
Rn are denoted by 〈·, ·〉 and ‖ ·‖, respectively. The corresponding matrix norm in
Rn×n is also denoted by ‖ · ‖. The topological interior of a set X ⊂ Rn is denoted
by intX, and the set of the positive integers is denoted by N .

2. Perturbation results

The main results of this paper can be stated as follows.

Theorem 2.1. Let ∆ be a nonempty, closed, convex cone in Rn, M ∈ Rn×n

copositive plus on ∆. Then, the following properties are equivalent:

(a) The solution set of GLCP(M, q,∆) is nonempty and bounded.

(b) q ∈ int((0+∆)∗ −M∆).

(c) There exists ε > 0 such that for all M ′ ∈ Rn×n and q′ ∈ Rn with max{‖M ′−
M‖, ‖q′ − q‖} < ε, the solution set of GLCP(M ′, q′,∆) is nonempty.

Theorem 2.2. Let ∆ ⊂ Rn be a nonempty, closed, convex set, M ∈ Rn×n and
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q ∈ Rn. If M is positive semidefinite, then the following properties are equivalent:

(a) The set Sol(VI(M, q,∆)) is nonempty and bounded.

(b) q ∈ int((0+∆)∗ −M∆).

(c) There exists ε > 0 such that for all M ′ ∈ Rn×n and q′ ∈ Rn with max{‖M ′−
M‖, ‖q′ − q‖} < ε, the set Sol(VI(M ′, q′, ∆)) is nonempty.

Theorem 2.3. Let ∆ ⊂ Rn be a nonempty, closed, convex set, M ∈ Rn×n and
q ∈ Rn. Suppose that:

(i) M is copositive plus on 0+∆;

(ii) There exists α ∈ R such that 〈Mx, x〉 ≥ α for all x ∈ ∆.

Then the following properties are equivalent:

(a) The set Sol(VI(M, q,∆)) is nonempty and bounded.

(b) q ∈ int((0+∆)∗ −M∆).

(c) There exists ε > 0 such that for all M ′ ∈ Rn×n and q′ ∈ Rn with max{‖M ′−
M‖, ‖q′ − q‖} < ε, the set Sol(VI(M ′, q′, ∆)) is nonempty.

Remark 2.1. The equivalence between (a) and (c) in Theorem 2.1 solves affir-
matively the open problem stated by Gowda and Seidman [2, Problem 2] which
we have recalled in Section 1. The equivalence between (a) and (b) has been
established in [2, Theorem 6.1].

Remark 2.2. The implications (a) ⇒ (c) and (c) ⇒ (b) in Theorem 2.2 have
been established in [1, Corollary 3 and the remark following Theorem 4].

Now we proceed to proving the above three theorems.
The following technical lemma was established in [4, Chap. 7] for the case

where ∆ is a polyhedral convex set.

Lemma 2.1. Let ∆ be a nonempty, closed, convex set in Rn, M ∈ Rn×n and
q ∈ Rn. Then, the inclusion

q ∈ int
(
(0+∆)∗ −M∆

)
(2.1)

is equivalent to the following property:

∀v ∈ 0+∆ \ {0}, ∃x ∈ ∆ such that 〈Mx + q, v〉 > 0.(2.2)

Proof. Clearly, if (2.2) is not true then there exists v ∈ (0+∆) \ {0} such that

〈Mx + q, v〉 ≤ 0 ≤ 〈u, v〉 ∀x ∈ ∆, ∀u ∈ (0+∆)∗.(2.3)

This means that v separates {q} and (0+∆)∗ −M∆. Then (2.1) does not hold.
Conversely, if (2.1) does not hold then by separation theorem there exists v 6= 0

such that
〈q, v〉 ≤ 〈u−Mx, v〉 ∀u ∈ (0+∆)∗, ∀x ∈ ∆.
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This property implies (2.3), which shows that (2.2) does not hold.

Proof of Theorem 2.3. (a)⇒ (b): Let Sol(VI(M, q, ∆)) be nonempty and bounded.
To obtain a contradiction, suppose that (b) does not hold. Then, by Lemma 2.1
there exists v̄ ∈ 0+∆ \ {0} satisfying

〈Mx + q, v̄〉 ≤ 0 ∀x ∈ ∆.(2.4)

Let x0 ∈ Sol(VI(M, q,∆)). For each t > 0, xt = x0 + tv̄ belongs to ∆ because
v̄ ∈ 0+∆. Substituting xt for x in (2.4) we get

〈Mx0 + q, v̄〉+ t〈Mv̄, v̄〉 ≤ 0 ∀t > 0.

This forces 〈Mv̄, v̄〉 ≤ 0. By assumption (i), 〈Mv̄, v̄〉 ≥ 0. So we have 〈Mv̄, v̄〉 =
0. Then

(M + MT )v̄ = 0,(2.5)

because M is copositive plus on 0+∆. Let y ∈ ∆ be given arbitrarily. Since
x0 ∈ Sol(VI(M, q,∆)) and 〈Mv̄, v̄〉 = 0, by (2.4) and (2.5) we have

〈Mxt + q, y − xt〉 = 〈Mx0 + tMv̄ + q, y − x0 − tv̄〉
= 〈Mx0 + q, y − x0〉+ t〈Mv̄, y − x0〉

− t〈Mx0 + q, v̄〉 − t2〈Mv̄, v̄〉
= 〈Mx0 + q, y − x0〉 − t〈v̄, My + q〉

− t〈(M + MT )v̄, x0〉
≥ 〈Mx0 + q, y − x0〉
≥ 0.

Since this holds for every y ∈ ∆, xt ∈ Sol(VI(M, q,∆)). Having the last inclusion
for all t > 0, we conclude that Sol(VI(M, q,∆)) is unbounded, a contradiction.
Thus (b) is valid.

(b) ⇒ (c): Suppose that (b) is valid, but (c) does not hold. Then there exists
a sequence {(Mk, qk)} ⊂ Rn×n ×Rn such that (Mk, qk) → (M, q) and

Sol(VI(Mk, qk,∆)) = ∅ ∀k = 1, 2, . . . .(2.6)

Since ∆ is nonempty, closed and convex, there exists j0 ∈ N such that

∆j := ∆ ∩ {x ∈ Rn : ‖x‖ ≤ j}
is a nonempty, compact and convex for every j ≥ j0. By the Hartman-Stampacchia
Theorem (see [3, Theorem 3.1]), Sol(VI(Mk, qk,∆j)) 6= ∅ for j ≥ j0. Fix any
xk,j ∈ Sol(VI(Mk, qk, ∆j)). We have

〈Mkxk,j + qk, y − xk,j〉 ≥ 0 ∀y ∈ ∆j .(2.7)

Note that

‖xk,j‖ = j ∀j ≥ j0.(2.8)
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Indeed, if ‖xk,j‖ < j then there exists β > 0 such that

B̄(xk,j , β) := {x ∈ Rn : ‖x− xk,j‖ ≤ β} ⊂ {x ∈ Rn : ‖x‖ ≤ j}.
Hence from (2.7) it follows that

〈Mkxk,j + qk, y − xk,j〉 ≥ 0 ∀y ∈ ∆ ∩ B̄(xk,j , β).(2.9)

It is clear that for each y ∈ ∆ there exists t = t(y) ∈ (0, 1) such that y(t) :=
xk,j + t(y − xk,j) belongs to ∆ ∩ B̄(xk,j , β). By (2.9),

〈Mkxk,j + qk), y(t)− xk,j〉 = t〈Mkxk,j + qk, y − xk,j〉 ≥ 0.

This implies that 〈Mkxk,j + qk, y − xk,j〉 ≥ 0 for every y ∈ ∆. Hence xk,j ∈
Sol(VI(Mk, qk, ∆)), contrary to (2.6). Fixing an index j ≥ j0, we note that
{xk,j}k∈N has a convergent subsequence. By (2.8), without loss of generality, we
may suppose that

lim
k→∞

xk,j = xj for some xj ∈ ∆ with ‖xj‖ = j.(2.10)

Letting k →∞, from (2.7) and (2.10), we get

〈Mxj + q, y − xj〉 ≥ 0 ∀y ∈ ∆j .(2.11)

On account of (2.10), without loss of generality we can assume that

xj

‖xj‖ → v̄ ∈ Rn with ‖v̄‖ = 1.

Since xj ∈ ∆ and ‖xj‖−1 → 0, by Theorem 8.2 from [6] we have v̄ ∈ 0+∆ \ {0}.
It is clear that for each y ∈ ∆ there exists an index jy ≥ j0 such that y ∈ ∆j

for every j ≥ jy. From (2.11) we deduce that

〈Mxj + q, y − xj〉 ≥ 0 ∀j ≥ jy.

Hence

〈Mxj + q, y〉 ≥ 〈Mxj , xj〉+ 〈q, xj〉 ∀j ≥ jy.(2.12)

Dividing the last inequality by ‖xj‖2 and letting j →∞, we get 0 ≥ 〈Mv̄, v̄〉. By
assumption (i), 〈Mv̄, v̄〉 ≥ 0. So 〈Mv̄, v̄〉 = 0. Since M is copositive plus, this
equality yields

Mv̄ = −MT v̄.(2.13)

Since xj ∈ ∆ for all j, by assumption (ii) we have 〈Mxj , xj〉 ≥ α for all j. From
(2.12) it follows that

〈Mxj + q, y〉 ≥ α + 〈q, xj〉 ∀j ≥ jy.

Dividing the last inequality by ‖xj‖ and letting j →∞, we get 〈Mv̄, y〉 ≥ 〈q, v̄〉.
Combining this with (2.13) gives 〈My + q, v̄〉 ≤ 0. Since the latter holds for every
y ∈ ∆ and since v̄ ∈ 0+∆ \ {0}, Lemma 2.1 shows that (b) cannot hold. We have
arrived at a contradiction.

(c) ⇒ (a): Suppose that (c) holds. Then there exists ε > 0 such that
for all M ′ ∈ Rn×n and q′ ∈ Rn with max{‖M ′ − M‖, ‖q′ − q‖} < ε, the
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set Sol(VI(M ′, q′,∆)) is nonempty. In particular, Sol(VI(M, q,∆)) 6= ∅. If
Sol(VI(M, q,∆)) is unbounded, then there exists a sequence

{xk} ⊂ Sol(VI(M, q,∆))

such that ‖xk‖ → ∞ and xk 6= 0 for all k. There is no loss of generality in
assuming that

‖xk‖−1xk → v̄ ∈ Rn with ‖v̄‖ = 1.

Since xk ∈ ∆ and ‖xk‖−1 → 0, by Theorem 8.2 from [6] we have v̄ ∈ 0+∆ \ {0}.
For each k we have

〈Mxk + q, y − xk〉 ≥ 0 ∀y ∈ ∆.

Hence

〈Mxk + q, y〉 ≥ 〈Mxk, xk〉+ 〈q, xk〉 ∀y ∈ ∆.(2.14)

Fixing any y ∈ ∆, dividing the last inequality by ‖xk‖2 and letting k → ∞, we
obtain 0 ≥ 〈Mv̄, v̄〉. By assumption (i), this inequality yields

〈Mv̄, v̄〉 = 0 and MT v̄ = −Mv̄.(2.15)

Since xk ∈ ∆, by assumption (ii) and by (2.14) we have

〈Mxk + q, y〉 ≥ α + 〈q, xk〉 ∀k = 1, 2, . . .

Dividing the last inequality by ‖xk‖ and letting k →∞, we get

〈Mv̄, y〉 ≥ 〈q, v̄〉.
Combining this with (2.15) we can assert that

〈My + q, v̄〉 ≤ 0 ∀y ∈ ∆.(2.16)

For any ε1 ∈ (0, ε) and for q′ = q− ε1v̄, we have ‖q′− q‖ = ε1 < ε and, by (2.16),

〈My + q′, v̄〉 = 〈My + q, v̄〉 − ε1〈v̄, v̄〉 ≤ −ε1 < 0 ∀y ∈ ∆.

From this it follows easily that Sol(VI(M, q′, ∆)) = ∅. This contradicts the choice
of ε and q′. We have shown that if (c) is valid then (a) must hold. The proof is
complete.

Proof of Theorem 2.1. Since ∆ is a convex cone, we have ∆ = 0+∆. Note that
the assumption (ii) in Theorem 2.3 is satisfied with α = 0, because M is copos-
itive plus on ∆. As we have mentioned in Section 1, when ∆ is a cone in Rn,
VI(M, q, ∆) is equivalent to the problem GLCP(M, q,∆). By Theorem 2.3, the
properties (a), (b) and (c) are equivalent.

Proof of Theorem 2.2. If M is positive semidefinite, then M is copositive plus on
any closed convex cone in Rn and 〈Mx, x〉 ≥ 0 for any x ∈ Rn. So, by Theorem
2.3, the properties (a), (b) and (c) are equivalent.

We have seen that Theorem 2.3 implies Theorems 2.1 and 2.2.
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3. Examples

The following example illustrates the applicability of Theorem 2.3 to concrete
variational inequality problems.

Example 3.1. Consider problem VI(M, q, ∆), where n = 2,

M =
[−1 1
−1 0

]
, q =

(
0
1

)
,

∆ =
{
x = (x1, x2)T : −1 ≤ x1 ≤ 0, x2 ≥ x2

1

}
.

We have
0+∆ = {v = (v1, v2)T : v1 = 0, v2 ≥ 0},

〈Mx, x〉 = −x2
1 ≥ −1 ∀x ∈ ∆, 〈Mv, v〉 = −v2

1 = 0 ∀v ∈ 0+∆,

and

(M + MT )v =
(−2v1

0

)
=

(
0
0

)
∀v ∈ 0+∆.

Hence the assumptions (i) and (ii) in Theorem 2.3 are satisfied. For any v =
(v1, v2)T ∈ 0+∆ \ {0} and x = (x1, x2)T ∈ ∆, −1 < x1 ≤ 0, we have

〈Mx + q, v〉 = (−x1 + x2)v1 + (−x1 + 1)v2

= (−x1 + 1)v2 > 0.

Hence q ∈ int
(
(0+∆)∗ −M∆) by Lemma 2.1. According to Theorem 2.3, there

exists ε > 0 such that for all M ′ ∈ Rn×n and q′ ∈ Rn with max{‖M ′−M‖, ‖q′−
q‖} < ε, the set Sol(VI(M ′, q′, ∆)) is nonempty. Note that ∆ is not a polyhedral
convex set and M is not a positive semidefinite matrix.

In the next two examples, we consider variational inequality problems
VI(M, q, ∆) with

∆ = {x ∈ Rn : gi(x) ≤ 0, i = 1, . . . , m},
where gi(x), i = 1, . . . , m, are differentiable convex functions and the Slater
condition holds; that is there exists x0 ∈ Rn such that gi(x0) < 0 for i = 1, . . . , m.
Clearly, x̄ ∈ ∆ is a solution of VI(M, q,∆) if and only if x̄ is a solution of the
following convex programming problem:

min{〈Mx̄ + q, y〉 : y ∈ ∆}.(3.1)

By [6, Corollary 28.3.1], the following Lagrange Multiplier Rule is valid for
VI(M, q, ∆): Vector x̄ ∈ Rn is a solution of VI(M, q,∆) if and only if there
exists λ = (λ1, . . . , λm) ∈ Rm which, together with x̄, satisfy the Kuhn-Tucker
conditions for (3.1):





Mx̄ + q +
m∑

i=1
λi∇gi(x̄) = 0,

λi ≥ 0, λigi(x̄) = 0, gi(x̄) ≤ 0, i = 1, . . . ,m,

where ∇gi(x̄) denotes the gradient of gi at x̄.
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Example 3.2. Consider problem VI(M, q, ∆), where n = 2, m = 2,

M =
[−3 0

0 0

]
, q =

(
0
1

)
,

∆ =
{
x = (x1, x2)T : g1(x) = x1 ≤ 0, g2(x) = x2

1 − x2 ≤ 0
}

.

We have
0+∆ = {v = (v1, v2)T : v1 = 0, v2 ≥ 0},

〈Mx, x〉 = −3x2
1 ∀x ∈ ∆, 〈Mv, v〉 = −3v2

1 = 0 ∀v ∈ 0+∆,

∇g1(x) =
(

1
0

)
, ∇g2(x) =

(
2x1

−1

)
,

and

(M + MT )v =
(−6v1

0

)
=

(
0
0

)
∀v ∈ 0+∆.

Hence the assumption (i) in Theorem 2.3 is satisfied, while the assumption (ii)
is violated. By the above-mentioned Lagrange Multiplier Rule, x̄ = (x̄1, x̄2) is a
solution of VI(M, q,∆) if and only if there exists λ = (λ1, λ2) such that





−3x̄1 + λ1 + 2λ2x̄1 = 0, 1− λ2 = 0,

λ1 ≥ 0, λ2 ≥ 0, λ1x̄1 = 0, λ2(x̄2
1 − x̄2) = 0,

x̄1 ≤ 0, x̄2
1 − x̄2 ≤ 0.

This gives x̄1 = 0, x̄2 = 0, λ1 = 0, λ2 = 1, and we have Sol(VI(M, q,∆)) =
{(0, 0)T }. Since 0 ∈ ∆ and 〈q, v〉 > 0 for all v ∈ 0+∆ \ {0}, by Lemma 2.1,
q ∈ int

(
(0+∆)∗ −M∆). Take

M(ε) =
[−3 0

ε 0

]
, q(ε) =

(
ε
1

)
,

where ε > 0. We now show that Sol(VI(M(ε), q(ε), ∆)) = ∅. By the Lagrange
Multiplier Rule, x̄ = (x̄1, x̄2) is a solution of VI(M(ε), q(ε), ∆) if and only if there
exists λ = (λ1, λ2) such that





−3x̄1 + ε + λ1 + 2λ2x̄1 = 0, εx̄1 + 1− λ2 = 0,

λ1 ≥ 0, λ2 ≥ 0, λ1x̄1 = 0, λ2(x̄2
1 − x̄2) = 0,

x̄1 ≤ 0, x̄2
1 − x̄2 ≤ 0.

(3.2)

If λ1 = λ2 = 0 then (3.2) gives

−3x̄1 + ε = 0, εx̄1 + 1 = 0, x̄1 ≤ 0,

a contradiction. If λ1 = 0, λ2 > 0 then (3.2) gives
{
−3x̄1 + ε + 2λ2x̄1 = 0, εx̄1 + 1− λ2 = 0,

x̄2
1 − x̄2 = 0, x̄1 ≤ 0.

From this it follows that

ε + x̄1(2εx̄1 − 1) = 0, x̄1 ≤ 0,
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a contradiction. If λ1 > 0, λ2 = 0 then (3.2) gives

λ1 + ε = 0, λ2 = 1, x̄1 = 0,

a contradiction. If λ1 > 0, λ2 > 0 then (3.2) gives

λ1 + ε = 0, x̄1 = x̄2 = 0,

a contradiction. Thus Sol(VI(M(ε), q(ε),∆)) = ∅. This example shows that, in
Theorem 2.3, one cannot omit the assumption (ii) while keeping other assump-
tions.

Example 3.3. Consider problem VI(M, q, ∆), where n = 2,m = 2,

M =
[
0 −1
0 0

]
, q =

(
0
1

)
,

∆ =
{
x = (x1, x2)T : g1(x) = x1 ≤ 0, g2(x) = −x2 ≤ 0

}
.

We have
0+∆ = {v = (v1, v2)T : v1 ≤ 0, v2 ≥ 0}.

Since
〈Mx, x〉 = −x1x2 ≥ 0 ∀x ∈ ∆,

the assumption (ii) in Theorem 2.3 is satisfied. As

〈Mv, v〉 = −v1v2 ≥ 0 ∀v ∈ 0+∆,

M is copositive on 0+∆. However,

(M + MT )v =
(−v2

−v1

)
6=

(
0
0

)
∀v ∈ 0+∆ \ {0}.

In particular, for v = (0, 1)T ∈ 0+∆ satisfying 〈Mv, v〉 = 0, one does not have
(M + MT )v = 0. Thus the assumption (i) in Theorem 2.3 is violated. By the
Lagrange Multiplier Rule, x̄ = (x̄1, x̄2) is a solution of VI(M, q,∆) if and only if
there exists λ = (λ1, λ2) such that





−x̄2 + λ1 = 0, 1− λ2 = 0,

λ1 ≥ 0, λ2 ≥ 0, λ1x̄1 = 0, λ2(−x̄2) = 0,

x̄1 ≤ 0, −x̄2 ≤ 0.

Arguing similarly as in Example 3.2, we can show that the above system is
equivalent to the following one:

x̄1 ≤ 0, x̄2 = 0, λ1 = 0, λ2 = 1.

So Sol(VI(M, q, ∆)) = {(x̄1, x̄2)T : x̄1 ≤ 0, x̄2 = 0}. We have

〈Mx + q, v〉 = −x2v1 + v2 ∀v ∈ 0+∆,∀x ∈ ∆.

For x̂ = (0, 1) ∈ ∆, we have

〈Mx̂ + q, v〉 = −v1 + v2 > 0 ∀v ∈ 0+∆ \ {0},
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which, by Lemma 2.1, implies q ∈ int
(
(0+∆)∗ −M∆). Take

q(ε) =
(

ε
1

)
,

where ε > 0. We claim that Sol(VI(M, q(ε), ∆)) = ∅. Indeed, by the Lagrange
Multiplier Rule, x̄ = (x̄1, x̄2) is a solution of VI(M, q(ε),∆) if and only if there
exists λ = (λ1, λ2) such that




−x̄2 + ε + λ1 = 0, 1− λ2 = 0,

λ1 ≥ 0, λ2 ≥ 0, λ1x̄1 = 0, λ2(−x̄2) = 0,

x̄1 ≤ 0, −x̄2 ≤ 0.

This system implies that

ε + λ1 = 0, λ2 = 1, λ1 ≥ 0, x̄2 = 0, x̄1 ≤ 0,

which is impossible. Thus Sol(VI(M, q(ε), ∆)) = ∅. Note that the set
Sol(VI(M, q,∆)) is unbounded. We have seen that the properties (a) and (c)
in Theorem 2.3 are not valid, while the property (b) holds. Thus, in general, the
assumption (ii) of Theorem 2.3 together with the copositiveness of M on 0+∆
cannot guarantee the validity of the equivalences (a) ⇔ (b) ⇔ (c).

Acknowledgments

The author would like to thank Prof. Nguyen Dong Yen for useful discussions
and the referee for several comments which lead to a better presentation of the
paper. In particular, the short proof of Lemma 2.1 in Section 2 is due to the
referee.

References

[1] M. S. Gowda and J. S. Pang, On the boundedness and stability of solutions to the affine
variational inequality problem, SIAM Journal on Control and Optimization 32 (1994), 421-
441.

[2] M. S. Gowda and T. S. Seidman, Generalized linear complementarity problems, Mathemat-
ical Programming 46 (1990), 329-340.

[3] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their
Applications, Academic Press, New York, 1980.

[4] G. M. Lee, N. N. Tam and N. D. Yen, Quadratic Programming and Affine Variational
Inequalities: A Qualitative Study, 2004. (A monograph; to appear in the Kluwer series
“Nonconvex Optimization and Its applications).

[5] S. M. Robinson, Generalized equations and their solutions, Part I: Basic theory, Mathe-
matical Programming Study 10 (1979), 128-144.

[6] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersey,
1970.

Department of Mathematics
Hanoi University of Pedagogy 2
Xuan Hoa, Phuc Yen, Vinh Phuc, Vietnam


