ACTA MATHEMATICA VIETNAMICA 259
Volume 29, Number 3, 2004, pp. 259-270

COMMUTATIVE GROUP ALGEBRAS OF
p“t" - PROJECTIVE ABELIAN GROUPS

PETER DANCHEV

ABSTRACT. Suppose G is an abelian group and R is a unitary commutative
ring of prime characteristic p. The first main result is that the p*'-projective
p-group G is a direct factor of the group of normed units V(RG) and V(RG)/G
is totally projective provided R is perfect. The second main result is that the
complete set of invariants for the R-algebra RG consists of G, in the cases
when G is splitting or G is with torsion-free rank one and in both situations
the torsion part of G is a p**1-projective p-group. These claims strengthen a
theorem due to Beers-Richman-Walker.

1. INTRODUCTION

Let R be a commutative ring with identity of prime characteristic p and G a
multiplicatively written abelian group. A problem of some interest and impor-
tance, in which we concentrate, is that of deducing information about GG from the
group algebra RG over R (often called the Problem of Invariants). Of particular
interest are the conditions under which RG determines G up to an isomorphism,
or equivalently, conditions under which the isomorphism of RG and RH as R-
algebras for any group H implies an isomorphism between G and H (see, for
instance, cf. [4, 11, 14]).

Throughout the rest of this paper, F' will denote a field of characteristic p # 0
and Fj, the field with p-elements (i.e. a simple field of characteristic p). Let Gy
denote the maximal torsion subgroup of G, and G, the p-primary part of G with
socle G[p]. Moreover, V(RG) denotes the group of all normed units in RG, and
S(RG) is its Sylow p-subgroup, i.e. its p-torsion component.

The principal known results concerning this theme are the following two the-
orems of Beers-Richman-Walker.

Theorem A ([1]). If G and H are abelian groups and F,G = F,H as F,-algebras,
then G[p| and H|[p] are isometric.

Since Gp] as a valuated vector space over the simple field F}, serves to classify
every p-group G that belongs to the class of p“*l-projective groups ([16, 17]),
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Beers-Richman and Walker have argued the following extra attainment conse-
quence.

Theorem B ([1]). Let G and H be p**-projective p-groups. Then the F,-
isomorphism F,H = F,G implies H = G.

In the present research exploration, we shall generalize the latter statement
and moreover we shall study the behaviour of the p“T"-projective p-groups, in-
troduced in [23, 24] by Nunke, in RG. Our main results are listed in the next
sections. In the first one, we deal with the characterization of certain normal-
ized units in group rings. We use successfully the established results to derive
in the second section two independent theorems on the direct factor. Referring
to the preceding claims, we obtain in the last third section two types of isomor-
phism classifications pertaining to the modular group algebras of p*T™-projective
abelian p-groups.

2. DESCRIPTIONS OF UNIT GROUPS

For simplicity of the notation, the symbol ®¢ plainly designates direct sums
of cyclic groups. A most part of the notions and terminology from the abelian
group theory is the same as in [15]. In addition, we shall let U(R) denote the
unit group of a ring R.

The following two lemmas are well-known and documented, and are included

here only for the sake of completeness and for the convenience of the reader (see
[6, 10, 13]).

Lemma 1. For each ordinal v the following formulas are fulfilled:

U (R) = U(R");

UP"(RG) = U(RP"G?");
VP (RG) = V(R GP");
SP"(RG) = S(RP"GP").
Lemma 2. Let R be a ring with no nilpotents. Then S(RG) = 1 if and only if

G, =1.

Denote by N(R) the nilradical (a Baer’s radical) of a ring R. If H is a subgroup
of G, the letter I(RG; H) will denote the relative augmentation ideal of RG with
respect to H.

The following technical matter is crucial.

Lemma 3. The following isomorphism dependences hold:

(i) 1+ I(RG; H)]/[1+I(RG;B)]| =21+ I(R(G/B); H/B), where B< H <G
and H is p-torsion.

(ii) V(RG)/[1 4+ I(RG; B)] 2 V(R(G/B)) hence
S(RG)/[1+ I(RG;B)] =2 S(R(G/B)), where B < G and B is p-torsion.

(ili) S(RG) = 1+ I(RG;G)p), when N(R) = 0.
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Proof. (i) Clearly, 1 + I(RG; H) is a multiplicative p-group since I(RG; H) is a
nil-ideal. Similarly for 1 + I(RG; B). It is a plain technical matter to see that
the natural map G — G/B induces an R-algebra epimorphism RG — R(G/B)
with kernel I(RG; B). Analogously for H — H/B. Thus they induce a group
surjection 14+ I(RG; H) — 1+ 1(R(G/B); H/B) with kernel 1+ I(RG; B), which
gives (i).

(ii) Follows by the same arguments as in (i), using the fact that (4/B), = A,/B
holds for B < A, and any abelian groups A and B.

(iii) Follows by application of (ii) and Lemma 2 at B = G,,. O

We shall continue with the following assertion documented in [6] (see [5] or
[12, 13] too).

Proposition 1. Suppose H is a p-primary pure subgroup of G. Then 1+I(RG; H)
is ®¢ if and only if H is ®¢.

We can now enlarge the above proposition to a statement announced in [5],
which is our goal here, namely:

Theorem 1. Let H be a p-primary pure subgroup of G. Then 1+ I(RG; H) is
p“ T projective if and only if H is p*T"-projective.

Proof. First, we note that the following useful affirmation is valid (cf. [23] or
2, 3]).

Criterion (Nunke [23]). An abelian p-group G is p“*T"-projective (n € Ny =
N U{0}) if and only if there exists a subgroup B C G[p"] such that G/B = ®¢.

An immediate consequence is that an arbitrary subgroup of a p“*"-projective
p-group is with the same property. Moreover, each ®¢ is p“t"-projective, and
even more, it is p®-projective for all a > w.

Now, we will use the cited criterion to achieve our aim.
By the above commentary, H is p“t"-projective provided that sois 1+1(RG; H).

Now, we treat the more difficult converse question. For this purpose, let H be
p“t-projective. Certainly, then there is B C H[p"] so that H/B is ®¢.

Furthermore,
1+ I(RG;B) C 1+ I(RG;H[p"]) C (1+ I(RG;H))[p"]
and owing to (i) we conclude
14+ I(RG;H)]/[1+I(RG;B)] =21+ I1(R(G/B); H/B).
Since H/B is pure in G/B, then Proposition 1 and the Nunke’s criterion yield
the result. O

The next statement is helpful for applications (see [8] and [5]).

Corollary 1. Suppose G is p-torsion. Then V(RG) is p*T"-projective if and
only if so is G. Moreover, if G is arbitrary and N(R) = 0, S(RG) is p“t"-
projective if and only if so is Gp.
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Proof. Setting H = G or H = Gy, we observe that Theorem 1 and (iii) are
applicable. This completes the proof. O

A new result of this aspect, however, is the following supplement to the above
theorem, namely:

Proposition 2. Suppose G is a p*T"-projective p-group. Then V(RG)/G is
p“ T _projective.

Before proving this claim, we need a few conventions.

Lemma 4. Assumel € L < R and A,B < G. Then
(GV(RA))NV(LB) = BV(L(AN B)).

Proof. Given z in the left-hand side. Hence
T = Zaibi = ngiai,

where o; € L, b; € B; g € G, r; € R, a; € A. On the other hand, the canonical
forms yield «; = r; and b; = ga; for each natural number 7. Thus am}l = bib;1
for every positive integers i and j. Consequently,

z=b1 Y oibiby' € BV(L(ANB)).

1

Indeed S a;b;by! is in L(A N B) and besides it is a normed unit because so is
i

> ayb;. This verifies that the right-hand side contains the left-hand one. The

i

reverse is elementary. The lemma is proved. O

Proof of Proposition 2. In fact, consuming the Nunke’s criterion, there is B C
G[p"] with G/B = ®¢, whence employing the Kulikov’s criterion appeared in [15],
G=UGi G; CGiy1 and G;NGP C B C G;. Furthermore, GV (RB)/G C

<w

(V(RG)/G)[p"] and
V(RG)/GV(RB) = | JIGV(RG;)/GV (RB)).

<w
Moreover, according to the modular law and to Lemma 1 and Lemma 4, we
compute

[GV(RG,)| N [V(RY' G")GV(RB)] = GB(RB)[(GV(RG;)) N V(R G*")]
— GV(RB)V(R” (G; N G")) = GV(RB).
Hence, again by virtue of the criterion of Kulikov [15],
V(RG)/G/GV(RB)/G = V(RG)/GV (RB)

is ®¢ and complying with the Nunke’s criterion as well, we thus complete the
proof. O
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The next statement is stronger than Proposition 2.

Proposition 3. The factor-group [1+I(RG; H)]/H is p*T"-projective, provided
H is a pure p*T"-projective p-subgroup of G. In particular, if Gp is p*T"-
projective and N(R) = 0 then S(RG)/G, is p*T™-projective.

Proof. On the way of this formulation, we develop machinery which will be used
to prove the claim. In fact, in view of the above stated Nunke’s and Kulikov’s
criteria, H = U<, Hy, Hi < Hgiq, and
H,NG" C BC H,nH[p"
for all £ < w and some group B. We observe that
H[1+I(RG;B)|/H € (1+ I(RG; H)/H)[p"],

(1+I(RG;H))/H/H[1+ I(RG;B)|/H = (1+ I(RG; H))/H[1 + I(RG; B)].
Besides, we find that
(1+I(RG;H))/H[1+ I(RG; B)] = U [H[1 4+ I(RG; Hy)]/H[1 + I(RG; B)]],
k<w

where the latter is an ascending sequence of subgroups. Moreover, conforming
with the intersection ratios obtained in [10, 12], we see that

[H(1+ I(RG; Hy))] N [(1+ I(RYG™; H))H (1 + I(RG; B))]
= H(1+ I(RG; B)).[(H(1 + I(RG; Hy))) N (1 + I(R*" G*"; HP"))]
= H(1+ I(RG; B)).(1 + I(R”"G*"; Hy n G*")) = H(1 + I(RG; B)).

Thereby, in virtue of the consecutive application of the just applied Kulikov’s and
Nunke’s criteria, we detect that (1 + I(RG; H))/H is a p*T"-projective abelian
p-group, as desired.

If N(R) = 0, then S(RG) = 1+ I(RG;G,) by Lemma 3 (see, for instance,
also cf. [10]), hence setting H = G, we deduce the final part. The proof is
completed. ]

3. DIRECT FACTORS OF UNIT GROUPS

Exploiting a lemma of May (cf. [20, 21]), it is a routine exercise to check that
the p-group G is a direct factor of V(RG) if and only if

Gx V(R &) =V(R(]]6).
1<w 1<w
This fact will be freely used below without further comments.
We now quote one of our main results in this section, which extends a similar

result for ®¢, namely:

Theorem 2. (Direct Factor). Suppose G is a p“*!-projective abelian p-group.
Then G is a direct factor of V(RG) with p**'-projective complement.
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Proof. Put G’ = [] G;, where G; = G for all i < w. Observe that

(G x V(RG)[p] = G[p] x V(RG")[p].

Apparently, we can write

Glp) = [(9:) and V(RG)[p] = [](vy),
i€l jeJ
where g; and v; are elements of order p, and I and J are index sets. We observe
that |G[p]| = |I| > No or otherwise |G[p]| = pl!l < Rg. By the same token,
[V(RG")[p]| = |J] > R or in the remaining case |V (RG")[p]| = p!’| < Ng. Next,
consider the outer direct product

Glp) x V(RG] = [Tl * [T tws)-
icl jed

Because of the fact that G’ is infinite and V(RG")[p] 2 V(RG'; G'[p]) is one
also, we easily conclude that |G[p] x V(RG")[p]| = |V(RG')[p]|, since |I| < |J|.
We also exclude the case |V(RG')[p]| < Np that is obviously impossible. Since
every two cyclic groups of order p are isomorphic, then we elementarily obtain
that

Glp] x V(RG')[p] = V(RG')[p].

On the other hand the isotypity of G’ in V(RG’) means that all heights will be
computed in G’. The last isomorphism between the investigated socles can be
chosen to be height preserving bearing in mind the fact that if g; is an element
of G[p] of order p and of p-height as calculated in G equal to «, then there exists
an index j € J so that v; is a generating element of a cyclic group in V(RG’)[p]
of order p and of height a. But as we have observed |I| < |J| and picking the
component isometries between the cyclic members, we get the wanted isometry
between the explored socles, whence the groups G x V(RG') and V(RG') have
isometric socles, as promised.

On the other hand G is p“*!-projective and hence so is G’ consulting with
[15]. Thus by virtue of Corollary 1 and [16, 17] we derive G x V(RG') =2 V(RG’).
Consequently, G is a direct factor of V(RG). The complementary factor is also
p“TLprojective since by Corollary 1 the same is V (RG). The proof is finished. [

Remark. The evidence of the previous attainment was based on the assertion
that the abelian groups G x V(RG') and V(RG') have isometric socles. To
say that they are isometric means that there is an isomorphism of the socles
which preserves heights in the full group. We indicate that (G x V(RG"))[p] #
V(RG")[p]. Such an equation is nonsense since the two socles containing different
kinds of elements are not equal; they are isomorphic but not equal.

We also point out the facts that
[Tcw =@ x][]ow
1<w <w

V(RG)[p] = G'[p] x M,
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whence
G[p] x V(RG)[p] = Glp] x G'lp] x M = [ Glp] x M = V(RG")[p],
<w
do not give our wanted isomorphism since the above decomposition raises a rather
arbitrary vector space complement, called M. The socles are vector spaces over
the integers modulo p, and certainly any subspace has a complementary subspace.

But in the category of valuated vector spaces, a vector space decomposition may
not be a decomposition in the category.

For a classical example, consider a group A generated by two independent
elements a and b of respective orders p and p?, that is

A = (a,b) = (a) x (b)
such that o(a) = p and o(b) = p?. Specifically, one can decompose A[p] as
{(a) x (bP) or as (a) x (abP), i.e.
Alp] = (a) x (b°) = (a) x (ab”).

The first is a coproduct of valuated vector spaces, while the second one is not.
This is so, because a® € A\ AP V1 <i<p-—1, b € A”\APQ; AP’ = 1 and
aP~t.ab? = WP € (a) x (ab?). Thus

height 4(a”~".ab?) = height 4 () = 1 > min {height 4(a” '), height 4 (ab”) } =

= min {height 4(a? '), height 4(a) } = 0.

The choice of a complement for (a) affects height computations in the coprod-

uct.

Now, we shall expand the direct factor theorem listed above in the following
light. Well, the achievement can be formulated as follows.

Theorem 3. (Direct Factor). Suppose G is a p**'-projective abelian p-torsion

group and RP = RP*. Then V(RQG)/G is totally projective and so G is a direct
factor of V(RG) with totally projective complement.

Proof. Since V(RG)/G is totally projective if and only if
V(RG)/G/(V(RG)/G)*" = V(RG)/GV (RPGP")

is p®-projective for all @ < w + 1, then owing to Proposition 2 and to the fact
we shall show in the sequel that V(RG)/GV (RPGP") is @¢, we will be done.
In fact, because G is p**!l-projective, there exists B < G/[p] such that G/B =

U (Gx/B) with Gy C Ggy1 and (Gx/B) N (G/B)P" = B. Thereby G = |J Gy,

k<w k<w
with G, N Gr* C B C G,NG[p] and GP* C B. That is why it is clear that
Gikﬂ = 1. Besides, if g € G and order(g) > p, then height(g) < k. Let R be

perfect, that is, RP = R. Then

V(RG)/GV(RG?") = | J [V(RGy)GV (RG"")/GV (RG™)].
k<w
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Next, we shall select height-finite subgroups T}, with the properties

V(RG)/GV(RG™) = | ] Tk
k<w
and Ty C Ti41. These groups may be constructed in the following manner:

T, = MGV (RGP")/GV (RGP")

where M}, will be chosen as special subgroups of V(RG) with finite height spec-
trum of finite heights as computed in V(RG) and such that My C M. Indeed,
take

My, = (o (k) 4 Oz(Qk)g( T a%‘c)g%)‘agk), o eR,

o, e G (g, g®) C G\ uGT).
The last inclusion is equivalent to

P, gy na? < g

and it insures the property that gék), - gﬁ,]f) together with the products of all

their nontrivial degrees have in G heights < k or > w (see [12], too). Observe
that G C Mk C M1 and My C V(RGy). Evidently every element in My
has the form :cl ---a7', where z; are of the above kind and 0 < ¢; < order (z;)
(1 <i<t<w). Certainly, every element of M} can be written as cjvg, where
¢, € G and v has in the canonical form basis member 1 and either has a basis
member with height < k or all of its basis members are in heights > w. So, it is
a routine technical matter to verify that v; has height bounded at k or > w in
V(RG) for each k < w.

Moreover, given nonidentity yi € Tk, whence y, = a,GV(RGP") where aj, €
M, \ GV (RGP") possesses the above described properties. But by [12], we have
that GV(RGP”) = GVP"(RG) is nice in V(RG) and therefore height(yy) =
height(axbs) when b, € G because aib;, does not lie in V(RGP”). It is not hard
to see that height(ar) < height(yx) and consequently height(by) > height(ay).
Otherwise height(yx) = height(bx) < height(ax), which is false. Finally, by what
we have shown above, it is easy to observe that height(yy) = height(ay) according
to the present form of ay, or more especially owing to the fact that we may select

gik) = 1. Thus T} are height-finite subgroups with T}, C Tyy;. Moreover, we
easily infer that
U Tx = V(RG)/GV (RG™).
k<w
This completes the first half.
Now, suppose that RP = RP”. Since G is p“tl-projective, the same holds for
GP and thus by what we have just proved

V(RPGP)/GP = (V(RG)/G)P

is totally projective, i.e. via [24] so is the quotient group V(RG)/G. This con-
cludes the proof in general after all. O
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4. ISOMORPHISMS OF GROUP ALGEBRAS

We are now ready to prove the following generalization of the last half of
Theorem B and of [8, Proposition 1].

Proposition 4. (Isomorphism). Let G, be a p*t"-projective group. Then F,H =
F,G as F,-algebras for any group H implies H, = G),. Moreover, if G, is totally
projective of length w + n, then the F-isomorphism FH = FG for some group H
yields Hy, = Gy.

Proof. Since F,H = F,G guarantees S(F,G) = S(F,H), then we can apply
Corollary 1 to obtain Hj, is p*"-projective. But adapting the technique described
in [1] and analogous arguments, we can deduce that G[p"] = G,[p"| may be
retrieved from F,G as a valuated vector space, hence F,,H = F,G implies that
H,[p"] and Gp[p"] are isometric as filtered vector spaces and so by virtue of [16]
or [17], Gp = H,, as claimed.

For the second part, owing to [10],

w+k w+k

F(G/Gg
for 0 < k <n. On the other hand,
Gp/Gy

)= F(H/HY )

w+k w+k

)p

is p“t*-projective by [15]. Therefore, because of the isomorphism

);

— (G/G?

w+k w+k

S(F(G/GE"™")) = S(F(H/H?

the application of Corollary 1 ensures that

w+k w+k

(H/H£ )p = H}D/Hz{J

is p“t*_projective, i.e. H, is totally projective of length w +n. As a final step,
since the Ulm-Kaplansky cardinal functions of G, and H), are known by May (cf.
[19], [1]) to be equal, we extract via [15] that G, = H,, and thus we are done.
The proposition is verified. O

Remark. The second half of the above proposition partially settles a question
posed by W. May in [21] (see also [10]).

Corollary 2. [8]. Suppose G is a p*T"-projective p-group. Then F,H = F,G as
Fy-algebras for some group H if and only if H = G.

We recall now that
s(Fy) = {i € No = NU{0} : Byles) # Fylein)}

where ¢; is a primitive ¢’-th root of unity. This set is called a spectrum of F,
with respect to ¢ (¢ a prime) and was introduced by T. Mollov. We come now to
the main affirmation in this direction.
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Theorem 4. (Invariants). Let G be a splitting abelian group so that Go/G), is
finite and Gy, is p**1-projective. Then F,H = F,G as Fy-algebras for some group
H if and only if the following hold:

(1) H is splitting abelian;

(2) Hy = Gyp;

(3) H/Ho = G/Go;

(4) |Ho/Hp| = [Go/Ghl;

(5) |(Ho)? /Hp| = |(Go)¥ /G| for all primes q # p and all i € s4(F}).

Proof. “Necessity”. And so, (2) is guaranteed by virtue of Proposition 3, and (3)
follows from [19]. Further, owing to [19] or [10], F,,(G/G)p) = F,(H/H,) and so
we can apply our algorithm in [9] to get that

Fp((G/Gp)O) = Fp(GO/Gp) = FP(HO/HP) = Fp((H/Hp)O)-

Hence, by application of a result of T. Mollov (cf. [7, 9] for example), we con-
clude (4) and (5). Now we shall show that (1) is true. Indeed, G, is a di-
rect factor of G, hence obviously V(F,G,) is a direct factor of V(F,G). Thus
V(F,G) =2 V(F,Gp) x M for some subgroup M. But (2) and the hypothesis
ensure V(F,H) = V(F,H,) x M. After this, Theorems 2 or 3, both combined
with a mild modification of ([20], Lemma 2), lead us to the fact that H), is a
direct factor of V(F,H), whence even of H as a subgroup. On the other hand,
(4) assures that Hy/H, is finite and thus it is a direct factor of H/H, as its pure
subgroup utilizing [15]. Finally,

H = H,x H/H,~ H, x Hy/H, x H/Hy = Hy x H/H,

and so H is splitting, as stated.
“Sufficiency”. Write

G=GyxG/Gy=G,xGy/Gy x GGy
and by a reason of symmetry H = H, x Hy/H, x H/H,. Consequently
FpG = FpGp ®Fp Fp(GO/Gp) ®Fp Fp(G/GO)
and by the same token
FpH = FpHp QF, Fp(HO/Hp) ®F, Fp(H/HO)-

It is easily seen that (2) and (3) imply F,G), = F,H, and F,(G/Gy) = F,(H/Hy),
respectively. After this, (4) and (5) in view of the cited above result of Mollov
yield F,(Go/G,) = F,(Ho/Hp). Finally, we deduce that F,G = F,,H, as desired.
The proof is complete after all. O

We obtain an immediate consequence.

Corollary 3. (Isomorphism). Suppose G is splitting whose Gy is a p“+-projective
p-group. Then F,H = F,G as Fy,-algebras for any group H if and only if H = G.
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Remark. The last two statements improve the corresponding assertions for ®¢
(4, 9)).

After this, we consider the question pertaining to the isomorphism of commu-
tative group algebras of rank one mixed abelian groups. But first and foremost
we state outline a group - theoretical fact, which plays a key role and which is

formulated only for a complete information; it was proved in [18] (see [22] and
[25] as well).

Criterion (Fuchs -Toubassi). Let G and H be two abelian groups of torsion-free
rank one and let Gy and Hy be p“t-projective p-groups. Then G = H if and
only if the following are true:

(i) there is a height-preserving isomorphism ¢, : Glp| — H|p|;

(i) ¢p preserves limits, i.e. any sequence {go;}ict € Golp] converges in the
p-adic topology to an element g € G of infinite order if and only if {¢p(goi) }icr €
Hylp] converges in the p-adic topology to an element h € H of infinite order, and
such that for every integer k > 1 the convergence of a sequence {goi}ticr € Golp)
to some g € G with

g = xpk.a(a € Golpl;z € G,0(z) = 003 j, k € Np)
implies that {¢p(g0i) }icr € Holp] converges to some h € H so that
j k
W =y dp(a)(y € H,o(y) = o)
and vice versa - here again, the p-adic topologies are meant.

We proceed by proving now the central affirmation in this direction.

Theorem 5. (Isomorphism). Suppose G is an abelian group of torsion-free rank
one such that Gg is p*Tt-projective p-primary. Then F,H = F,G as Fy-algebras
for any group H if and only if H = G.

Proof. Clearly, H is p-mixed of torsion-free rank one (see also cf. [19]). Next,
an appeal to Proposition 3 gives that Hy is p**!-projective and even more, that
Go = Hy.

The first condition (i) holds true in view of Theorem A.

We may assume without loss of generality that F,G = F,H. From [21, 10] it
follows that

V(F,G) = GS(F,G) = HS(F,H) = V(F,H).

Further, suppose for each k > 1 is fulfilled g € gOika such that ¢g?’ = xpk.a,
where the notions are as to the foregoing formulated in the Group Criterion.
Then by what we have already shown above along with Theorem A tell us that
there is h € H of infinite order so that h € hg;H P where hoi = ¢p(goi) and such

that h? = ypk.qbp(a). Taking into account that y is with infinite order, we infer
that point (ii) is really satisfied.

Finally, the above criterion riches us that G = H, as asserted. The proof is
finished in all generality. O



270 PETER DANCHEV

REFERENCES

[1] D. Beers, F. Richman, E. Walker, Group algebras of abelian groups, Rend. Sem. Mat. Univ.
Padova 69 (1983), 41-50.

[2] K. Benabdallah, J. Irwin, J. Lazaruk, On p“*"-projective abelian p-groups, Comment.
Math. Univ. St. Pauli 25 (1976), 101-105.

[3] K. Benabdallah, J. Irwin, M. Rafiq, On a core class for abelian p-groups, Symposia Math.
13 (1974), 195-206.

[4] P. Danchev, Isomorphism of commutative group algebras, Compt. rend. Acad. bulg. Sci. 48
(1995) (7), 9-11.

[5] , Units in abelian group rings of prime characteristic, Compt. rend. Acad. bulg. Sci.
48 (1995) (8), 5-8.

[6] , Topologically pure and basis subgroups in commutative group rings, Compt. rend.
Acad. bulg. Sci. 48 (1995) (9-10), 7-10.

[7] , Isomorphism of commutative group algebras of mized splitting groups, Compt. rend.
Acad. bulg. Sci. 51 (1998) (1-2), 13-16.

8] , Sylow p-subgroups of modular abelian group rings, Compt. rend. Acad. bulg. Sci.
54 (2001) (2), 5-8.

9] , Invariants for commutative group algebras of mized and torsion groups, Math.
Balkanica 13 (1999) (1-2), 1-6.

[10] , Commutative group algebras of o-summable abelian groups, Proc. Amer. Math.
Soc. 125 (1997) (9), 2559-2564.

[11] , Isomorphism of modular group algebras of direct sums of torsion-complete abelian

p-groups, Rend. Sem. Mat. Univ. Padova 101 (1999), 51-58.

[12] —, Commutative group algebras of direct sums of o-summable abelian p-groups, Math.
J. Okayama Univ. 45 (2003) (2), 1-15.

, Isomorphism of commutative modular group algebras, Serdica Math. J. 23 (1997)
(3-4), 211-224.

[14] | Isomorphism of modular group algebras of totally projective abelian groups, Com-
mun. Algebra 28 (2000) (5), 2521-2531.

[15] L. Fuchs, Infinite Abelian Groups, vols. 1 and 2, Mir, Moscow (1974) and (1977).

[16] , On p“t™-projective abelian p-groups, Publ. Math. Debrecen 23 (1976), 309-313.

[17] L. Fuchs, J. M. Irwin, On p“*™-projective p-groups, Proc. London Math. Soc. 3 (1975),
459-470.

[18] L. Fuchs, E. Toubassi, On rank one mized abelian groups with p
Comment. Math. Univ. St. Pauli 29 (1980) (2), 135-143.

[19] W. May, Commutative group algebras, Trans. Amer. Math. Soc. 136 (1969) (1), 139-149.

[20] , Modular group algebras of totally projective p-primary groups, Proc. Amer. Math.
Soc. 76 (1979) (1), 31-34.

, Modular group algebras of simply presented abelian groups, Proc. Amer. Math. Soc.
104 (1988) (2), 403 - 409.

[22] Ch. Megibben, On mized groups of torsion-free rank one, Ill. J. Math. 11 (1967), 134-144.

[23] R. J. Nunke, Purity and subfunctors of the identity, Topics in Abelian Groups, Chicago,
(1963), 121-171

, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182-

(13]

w7 _projective p-components,

21]

(24]
212.
[25] J. Rotman, Torsion-free and mized abelian groups, Ill. J. Math. 5 (1961), 131-143.

13, GENERAL KUTUZOV STREET, BLOCK 7, FLOOR 2, FLAT 4,
4003 ProvDpIv, BULGARIA

E-mail address: pvdanchev@yahoo.com



