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MINIMAX THEOREMS REVISITED

HOANG TUY

Abstract. Very general conditions are established that ensure the existence
of a saddle-value for a function F (x, y) : C × D → R, where C, D are sub-
sets of two topological spaces X, Y , respectively. These conditions are much
weaker than those generally required in the literature. As consequences, sev-
eral minimax theorems are obtained that include as special cases refinements
of various minimax theorems developed recently in nonlinear analysis and op-
timization for quasiconvex quasiconcave functions. Despite the generality of
the results, the proof is very simple and is independent of separation or fixed
point arguments on which most best known minimax theorems are based.

1. Introduction

Let X, Y be two topological spaces. Given two sets C ⊂ X, D ⊂ Y and a
function F (x, y) : C ×D → R, we define

η := sup
y∈D

inf
x∈C

F (x, y), γ := inf
x∈C

sup
y∈D

F (x, y).(1)

We say that the function F (x, y) possesses a saddle-value on C ×D if η = γ, i.e.

sup
y∈D

inf
x∈C

F (x, y) = inf
x∈C

sup
y∈D

F (x, y).(2)

Investigations on the existence of a saddle-value for a given function F (x, y) date
back to von Neumann, in the context of game theory. A classical result of von
Neumann, later improved by Kneser [7], states that a saddle-value exists if C, D
are compact convex subsets of X = Rn, and Y = Rm, respectively, while the func-
tion F (x, y) is continuous convex in x and continuous concave in y. Since minimax
theorems have found important applications in different fields of mathematics,
there has been afterwards a great deal of work on generalizing von Neumann’s
theorem. Especially, much effort has been spent on relaxing the assumptions on
convexity-concavity of F (x, y) and also compactness of both C, D. The best
known result in this direction is due to Sion [14], who replaced the convexity-
concavity of F (x, y) by quasiconvexity-concavity and relaxed its continuity while
dropping the compactness condition for one of the sets C, D. Subsequently, Wu
[20] established a minimax theorem in topological spaces, using for the proof of
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his results a one-dimensional form of Helly’s theorem rather than separation or
fixed point arguments as usual. However, Wu’s theorem did not contain some
important results such as Sion’s or Nikaido’s [9] theorems. In 1974, following a
different approach, a general minimax theorem in the same vein as Wu’s theo-
rem was established by the author of the present paper [15], [16] (see also [18],
[11], [17]), without using any separation or fixed point argument. Although this
theorem did contain Wu’s as well as Sion’s and Nikaido’s results as special cases,
the compactness condition required for at least one of the sets C, D turned out
to be too restrictive for recent developments of mathematical programming and
nonlinear analysis (see e.g. Rockafellar [12], [13], Golshtein [4], Ekeland-Temam
[2], Aubin-Ekeland [1]). To cover the cases considered in the just mentioned
works, weaker conditions than compactness of one of the sets C, D are required,
while convexity-concavity of F (x, y) is still imposed to ensure the existence of a
saddle-value. Meanwhile, further topological minimax theorems have also been
developed [8], [10], [5],..., in which convexity-concavity is relaxed to some kind of
connectedness, but again compactness is required for at least one of the sets C,
D as in Sion’s theorem. To our knowledge, this compactness assumption is essen-
tial in almost all existing general topological minimax theorems. Furthermore,
from a conceptual point of view, all the mentioned minimax theorems look some-
what disparate, and so far little work has been done on clarifying the relationship
between different existence conditions formulated in these theorems.

The purpose of the present paper is to show that the earlier approach in [15] can
be improved to produce stronger versions of minimax theorems which unify and
include as special cases refinements of various recent minimax results by simulta-
neously weakening compactness assumption, convexity-concavity and continuity
assumptions. Despite the generality of the new results, the proof is simple, mak-
ing use only of elementary facts from analysis independent of separation or fixed
point theories. As an application, we shall briefly indicate how general duality
results and optimality conditions for modern mathematical programming can be
derived in a simple way from the general minimax theorem.

2. The basic lemma

For every real number α and every point x ∈ C we set

Dα(x) = {y ∈ D| F (x, y) ≥ α}.
We say that a function F (x, y) is α-connected on C ×D if

1) For any nonempty finite set M ⊂ C the set DM
α =

⋂
x∈M

Dα(x) is connected

and closed.
2) For any pair a, b ∈ C there exists a continuous mapping uab : [0, 1] → C such

that uab(0) = a, uab(1) = b, while the function λ 7→ F (xλ, y), with xλ = uab(λ),
satisfies

F (xλ, y) ≤ max{F (xµ, y), F (xν , y)} whenever 0 ≤ µ ≤ λ ≤ ν ≤ 1.(3)
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For example, it can easily be proved that if C, D are closed convex subsets
of two topological vector spaces X, Y respectively, then any function F (x, y) :
C×D → R which is quasiconvex in x and quasiconcave and upper semi-continuous
in y is α-connected for every α ∈ R. Note that the above defined concept of α-
connectedness is not quite symmetric with respect to x, y, as we would wish from
a purely aesthetic viewpoint. This absence of symmetry is to reflect the “skew”
symmetry underlying the minimax concept itself (see the equality (8) below).

The following lemma is fundamental for deriving all minimax theorems to be
discussed in subsequent sections.

Lemma 1. Assume that F (x, y) is α-connected for every α ∈ (α0, γ), with −∞ <
α0 < γ := inf

x∈C
sup
y∈D

F (x, y), and that either of the following conditions holds:

(A) For every fixed y ∈ D and a, b ∈ C, the function λ 7→ F (uab(λ), y) is lower
semi-continuous (l.s.c.) in λ in the interval 0 ≤ λ ≤ 1;

(B) D is a closed compact set while for every fixed y ∈ D and a, b ∈ C, the
function λ 7→ F (uab(λ), y) is upper semi-continuous (u.s.c.) in λ in the interval
0 ≤ λ ≤ 1.

Then for every nonempty finite set M ⊂ C and every α ∈ (α0, γ) we have

∩x∈M{y ∈ D| F (x, y) ≥ α} 6= ∅.
Proof. This proposition was established some thirty years ago in [15] (Lemma
3-3’) and [16] (Lemma 2.1), under somewhat stronger assumptions (lower and
upper semi-continuity of x 7→ F (x, y) were assumed in condition (A), and (B),
respectively). It turns out, however, that the proof given in [15] and [16] remains
valid without any modification for the present Lemma 1. Below we present this
proof.

We first prove the proposition for |M | = 2. Consider any α ∈ (α0, γ) and for
every x ∈ C let

D(x) := {y ∈ D| F (x, y) ≥ α}.
(For simplicity we omit the subscript α and write D(x) instead of Dα(x)). Since
γ > α, clearly sup

y∈D
F (x, y) > α ∀x ∈ C and it follows from the assumptions on

F (x, y), that every set D(x), x ∈ C, is nonempty, and closed.
Arguing by contradiction, assume there are a, b ∈ C such that

D(a) ∩D(b) = ∅.(4)

Let uab(λ) : [0, 1] → C be the continuous mapping mentioned in the definition of
α-connectedness, and let xλ = uab(λ). For every λ ∈ [0, 1], since by (3) D(xλ) ⊂
D(a) ∪ D(b), if the set D(xλ) meets simultaneously D(a) and D(b) we would
have D(xλ) = Ea ∪Eb where Ea = D(a)∩D(xλ) and Eb = D(b)∩D(xλ) are two
closed, nonempty and disjoint sets, contradicting the connectedness of D(xλ)).
Consequently, for every λ ∈ [0, 1] one and only one of the following alternatives
holds:

(a) D(xλ) ⊂ D(a); (b) D(xλ) ⊂ D(b).
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Denote by Ma(Mb, respectively) the set of all λ ∈ [0, 1] satisfying (a) (satisfying
(b), respectively). Clearly 0 ∈ Ma, 1 ∈ Mb,Ma ∪Mb = [0, 1] and, analogously to
(3):

D(xλ) ⊂ D(xλ1) ∪D(xλ2) ∀λ ∈ [λ1, λ2](5)

Therefore, λ ∈ Ma implies [0, λ] ⊂ Ma, and λ ∈ Mb implies [λ, 1] ⊂ Mb. Let
s = supMa = inf Mb and assume for instance that s ∈ Ma (the argument is
similar if s ∈ Mb). We show that (4) leads to a contradiction.

We cannot have s = 1, for this would imply D(b) ⊂ D(a). Therefore, 0 ≤ s < 1.
Since α < γ ≤ sup

y∈D
F (xs, y), it follows that F (xs, ȳ) > α for some ȳ ∈ D.

If assumption (A) holds, so that F (xλ, y) is l.s.c. in λ, then there is ε > 0
such that F (xs+ε, ȳ) > α and so ȳ ∈ D(xs+ε). But ȳ ∈ D(xs) ⊂ D(a), hence
D(xs+ε) ⊂ D(a), i.e. s + ε ∈ Ma, contradicting the definition of s. Thus (4)
cannot occur if assumption (A) holds. On the other hand, if assumption (B)
holds, so that F (xλ, y) is u.s.c. in λ while D is compact, then for every y ∈
D(b), since s ∈ Ma, i.e. D(xs) ⊂ D(a), we have y /∈ D(xs), hence F (xs, y) < α,
and by the u.s.c. of F (xλ, y) in λ there exists an open interval Iy = (s1, s2)
containing s (s1 = s1(y), s2 = s2(y)) such that F (xλ, y) < α for all λ ∈ Iy. Then
F (xsi , y) < α, i.e. y /∈ D(xsi), i = 1, 2 and using the closedness of the sets
D(xsi), i = 1, 2 we can find for each i = 1, 2 a neighbourhood Wi(y) of y such
that F (xsi , z) < α ∀z ∈ Wi(y). Clearly Wy = W1(y) ∩W2(y) is a neighbourhood
of y such that F (xsi , z) < α for all z ∈ Wy, i.e. z /∈ D(xsi), i = 1, 2, and hence,
z /∈ D(xλ) for all λ ∈ Iy. Thus for every y ∈ D(b) we have found a neighbourhood
Wy and an interval Iy satisfying

F (xλ, z) < α ∀λ ∈ Iy, ∀z ∈ Wy.

Since D(b) is a closed subset of the compact set D it is itself compact and from the
family {Wy, y ∈ D(b)} one can extract a finite collection {Wy, y ∈ N}, |N | < +∞,
still covering D(b). If λ ∈ I :=

⋂
y∈N

Iy and y ∈ D(b) then y ∈ Wy′ for some y′ ∈ N ,

hence F (xλ, y) < α. Therefore, D(xλ) ⊂ D(a) for all λ ∈ I, i.e. I ⊂ Ma, again
contradicting the definition of s. Thus in any case the situation (4) cannot occur.

We have thus proved that D(a) ∩ D(b) 6= ∅ for any a, b ∈ C, i.e. that the
proposition holds when |M | = 2. Let us now assume that the proposition holds
for |M | = k and prove it for |M | = k + 1.

Let M = {x1, . . . , xk, xk+1} ⊂ C and D′ = D(xk+1). From part I of the proof,
for any α′ ∈ (α, γ) and any x ∈ C we have {y ∈ D| F (xk+1, y) ≥ α′, F (x, y) ≥
α′} 6= ∅, hence {y ∈ D′| F (x, y) ≥ α′} 6= ∅, i.e.

∀x ∈ C ∃y ∈ D′ F (x, y) ≥ α′,
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which implies that inf
x∈C

sup
y∈D′

F (x, y) ≥ α′ > α. By the induction hypothesis, the

proposition holds for k points, so by applying it, with D replaced by D′, we have
k⋂

i=1

D
′
(xi) 6= ∅,

hence
k+1⋂
i=1

D(xi) 6= ∅.

Remark 1. The earliest proofs for minimax theorems used separation or fixed
point arguments in one form or another. In [20] Helly’s theorem was used instead.
The above proof, given originally in [15], [16], was the first one using only purely
set-theoretical arguments for establishing minimax theorems. The results in the
mentioned papers with their proofs have been presented, partially or in full, in
several books (see e.g. [11], [18]). Exactly the same results were rediscovered in
[3], with only a difference of notation.

3. Minimax theorems

Recall that η and γ are defined from (1). Since it is obvious that η ≤ γ, we
have η = γ if η = +∞, or γ = −∞. Therefore, throughout the sequel we will
assume

η < +∞, γ > −∞.

Theorem 1. Assume that D is a closed compact set, while the function F (x, y)
is α-connected for every α ∈ (α0, γ) with −∞ < α0 < γ and satisfies either
condition (A) or condition (B) in Lemma 1. Then F (x, y) possesses a saddle-
value on C ×D.

Proof. It suffices to show that

sup
y∈D

inf
x∈C

F (x, y) ≥ γ.(6)

The assumptions of the Theorem imply that the conditions in Lemma 1 are
fulfilled. According to this Lemma, for any α ∈ (α0, γ) the sets D(x) := {y ∈
D| F (x, y) ≥ α}, x ∈ C, have the finite intersection property and since these
are closed subsets of the compact set D, their intersection must be nonempty:⋂
x∈C

D(x) 6= ∅, i.e. sup
y∈D

inf
x∈C

F (x, y) ≥ α. Since this is true for every α ∈ (α0, γ),

the inequality (6) follows.

Theorem 2. Assume F (x, y) is α-connected for every α ∈ R and satisfies (A)
and the condition:

(K) There exists a nonempty finite set M ⊂ C such that the set DM = {y ∈
D|min

x∈M
F (x, y) ≥ η} is compact, while for every fixed y ∈ D and a, b ∈ C the

function λ 7→ F (uab(λ), y) is u.s.c. in λ in the interval 0 ≤ λ ≤ 1.

Then the function F (x, y) possesses a saddle-value on C ×D.
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Proof. Suppose η < γ. For any fixed α ∈ (η, γ) the set Dα = {y ∈ D| min
x∈M

F (x, y)

≥ α} is closed (α-connectedness), and contained in the compact set DM , hence
Dα is also compact. By Lemma 1, Dα 6= ∅ and the sets D(x), x ∈ C, defined by

D(x) := {y ∈ Dα| F (x, y) ≥ α} = {y ∈ D| F (x, y) ≥ 0 ∀x′ ∈ M ∪ {x}},
have the finite intersection property. Since they are closed subsets of the compact
set Dα, they must have a nonempty intersection:

⋂
x∈C

D(x) 6= ∅. Therefore,

sup
y∈D

inf
x∈C

F (x, y) ≥ sup
y∈Dα

inf
x∈C

F (x, y) ≥ α,

i.e. η ≥ α. This contradiction shows that η = γ.

We say that a function F (x, y) : C ×D → R is l.s.c. (u.s.c., respectively) in x
in every line segment if for every fixed y ∈ D and every line segment [a, b] ⊂ C
the function λ 7→ F ((1− λ)a + λb, y) is l.s.c. (u.s.c., respectively) in the interval
0 ≤ λ ≤ 1.

Theorem 3. Let C,D be closed convex subsets of two topological vector spaces
X, Y respectively, and let F (x, y) : C ×D → R be quasiconcave and u.s.c. in y,
quasiconvex in x, and: either l.s.c. in x in every line segment, or u.s.c. in x
in every line segment. Assume, furthermore, that one of the following conditions
holds:

(S) D is a closed compact set;
(T) Y is a reflexive Banach space and there exists a nonempty finite set M ⊂ C

such that min
x∈M

F (x, y) → −∞ as y ∈ D, ‖y‖ → +∞.

Then the function F (x, y) possesses a saddle-value on C ×D.

Proof. Clearly F (x, y) is α-connected for every α ∈ R, with uab(λ) = (1−λ)a+λb.
If (S) holds, then either condition (A) or (B) in Lemma 1 is fulfilled and by this
Lemma, for every α ≥ η, the sets D(x) = {y ∈ D| F (x, y) ≥ α}, x ∈ C, have the
finite intersection property. Since D(x) are closed subsets of the compact set D,
they have a nonempty intersection, which implies, as we saw above, η = γ.

If (T) holds, for every α ≥ η the convex closed set Dα := {y ∈ D| min
x∈M

F (x, y)

≥ α} is closed in the weak topology of Y. Since min
x∈M

F (x, y) → −∞ as y ∈
D, ‖y‖ → +∞, there exists r > 0 such that minx∈M F (x, y) < α whenever
y ∈ D, ‖y‖ > r. Then Dα ⊂ {y ∈ Y | ‖y‖ ≤ r} and since this bounded set is
closed it is compact (in the weak topology of Y ), in view of the reflexivity of Y.
The proof can then be completed in the same way as with Theorem 2.

Theorem 4. Let C be a closed convex set in a topological vector space X, D a
closed convex set in a reflexive Banach space Y, and let F (x, y) : C ×D → R be
a function quasiconvex and l.s.c. in x in every line segment, quasiconcave and
u.s.c. in y. Assume, furthermore, that one of the following conditions holds:

(H) The set D∗ = {y ∈ D| inf
x∈C

F (x, y) = η} is nonempty and bounded;
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(Q) inf
x∈C

F (x, y) → −∞ as y ∈ D, ‖y‖ → +∞.

Then the function F (x, y) possesses a saddle-value on C ×D.

Proof. It is plain to verify that under the assumptions specified in the first part
of the Theorem the function F (x, y) is α-connected for every α ∈ R and satisfies
condition (A) in Lemma 1. We now show that

(H) ⇒ (K), (Q) ⇒ (H).

(H) ⇒ (K) : From the definition of η we have D∗ = {y ∈ D| inf
x∈C

F (x, y) ≥
η} =

⋂
x∈C

D(x), with D(x) := {y ∈ D| F (x, y) ≥ η}. Since F (x, y) is quasiconcave

and u.s.c. in y, each set D(x) is convex and closed in the weak topology of Y. Let
A(x) denote the intersection of the recession cone of D(x) with the unit sphere
S in Y. Since D∗ =

⋂
x∈C

D(x) is bounded by assumption (H), one must have
⋂

x∈C

A(x) = ∅, and hence, since S is compact in the weak topology of Y, there

exists a nonempty finite set M ⊂ C such that
⋂

x∈M

A(x) = ∅. The latter implies

that the set DM :=
⋂

x∈M

D(x) = {y ∈ D| min
x∈M

F (x, y) ≥ η} is bounded, and since

it is a closed subset of the compact set D∗, it is compact (in the weak topology
of Y ), i.e. (K) holds.

(Q)⇒ (H) : In the weak topology of Y the set D is closed and the quasiconcave
function F (x, y) is u.s.c. in y, hence the function y 7→ inf

x∈C
F (x, y) is u.s.c. on

the closed set D. Condition (Q) then implies that inf
x∈C

F (x, y) has a maximum

on D, i.e. η = max
y∈D

inf
x∈C

F (x, y) ∈ R. Furthermore, there exists a number r > 0

such that inf
x∈C

F (x, y) < η whenever y ∈ D, ‖y‖ ≥ r. Consequently, D∗ := {y ∈
D| inf

x∈C
F (x, y) ≥ η} ⊂ {y ∈ Y | ‖y‖ ≤ r}, i.e. the set D∗ is bounded. Since D∗

is closed and bounded, it is compact by reflexivity of the space Y.

Remark 2. In each of the above Theorems 1-4, the saddle-value is equal to

max
y∈D

inf
x∈C

F (x, y) = inf
x∈C

sup
y∈D

F (x, y)(7)

where D is some compact subset of D. Specifically,

D =





D if D is compact
DM if (K) or (T) holds
D∗ if (H) or (Q) holds.

Using the “skew” symmetry in the equality

sup
y∈D

inf
x∈C

F (x, y) = − inf
y∈D

sup
x∈C

[−F (x, y)],(8)

we can also state alternative propositions to the above minimax theorems by
interchanging the roles of x and y. In particular the following theorem is true.
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Theorem 4*. Let C, D be two closed convex sets in two topological vector spaces
X, Y, respectively, and let F (x, y) : C × D → R be a function quasiconvex and
l.s.c. in x, quasiconcave and u.s.c. in y in every line segment. Assume, in
addition, that one of the following conditions holds:

˜(K) There exists a nonempty finite set N ⊂ D such that the set CN = {x ∈ C|
max
y∈N

F (x, y) ≤ γ} is compact;

˜(T) X is a reflexive Banach space and there exists a nonempty finite set N ⊂ D
such that max

y∈N
F (x, y) → +∞ as x ∈ C, ‖x‖ → +∞;

˜(H) X is a reflexive Banach space and the set C∗ = {x ∈ C| sup
y∈D

F (x, y) = γ}
is nonempty and bounded;

˜(Q) X is a reflexive Banach space, and sup
y∈D

F (x, y) → +∞ as x ∈ C, ‖x‖ →
+∞,

Then the function F (x, y) has a saddle-value on C ×D.

Also note that the saddle-value is equal to

min
x∈C

sup
y∈D

F (x, y) = sup
y∈D

inf
x∈C

F (x, y)(9)

where C is some compact subset of C.

4. Special cases

Many important minimax theorems among the best so far known are special
cases of the above theorems.

Corollary 1. (Sion, refined) Let C, D be be two closed convex sets in two topo-
logical vector spaces X, Y , respectively, and let F (x, y) : C×D → R be a function
quasiconvex in x and quasiconcave in y.

(i)If F (x, y) is l.s.c (or u.s.c.) in x in every line segment and u.s.c. in y, while
D is compact, then (7) holds with D = D;

(ii) If F (x, y) is u.s.c. (or l.s.c.) in y in every line segment and l.s.c. in x, ,
while C is compact then (9) holds, with C = C;

Proof. Part (i) follows from Theorem 3. Part (ii) can be deduced from Part (i)
and observation (8).

Note that when D (C, resp.) is compact, the function F (x, y) is not required
to be l.s.c. in x (u.s.c. in y, resp.) as in Sion’s theorem, but only to be l.s.c. or
u.s.c. in x (u.s.c. or l.s.c. in y, resp.) in every line segment, which is a weaker
condition. Noting that a function F (x, y) convex in x is always u.s.c. in x in
every line segment, while a function F (x, y) concave in x is always l.s.c. in x
in every line segment, we see that a special case of Corollary 1 is the following
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sharpening of the Lop Sided Minimax Theorem in Aubin-Ekeland [1] (Chapter 6,
page 295):

Let C, D be two closed convex sets in two topological vector spaces X,Y
respectively. Then a function F (x, y) : C ×D → R has a saddle value on C ×D
if either of the following conditions holds:

(i) D is compact, while F (x, y) is convex in x and quasiconcave u.s.c. in y.

(ii) C is compact, while F (x, y) is quasiconvex l.s.c. in x and concave in y.

An even stronger proposition is true:

Corollary 2. (Aubin-Ekeland, refined) Let C, D be two closed convex sets in two
topological vector spaces X, Y respectively. Then a function F (x, y) : C×D → R
has a saddle value on C ×D if either of the following conditions holds:

(i) F (x, y) is convex in x, quasiconcave u.s.c. in y, while for some nonempty
finite set M ⊂ C the set DM = {y ∈ D| min

x∈M
F (x, y) ≥ η} is compact;

(ii) F (x, y) is concave in y, quasiconvex l.s.c. in x, while for some nonempty
finite set N ⊂ D the set CN = {x ∈ C| max

y∈N
F (x, y) ≤ γ} is compact.

Proof. This follows from Theorem 2 and observation (8).

When quasiconvexity and quasiconcavity are replaced by convexity and concav-
ity, while M,N are singletons, case (ii) reduces to Theorem 7 in Aubin-Ekeland
[1], Chapter 6, page 319, while case (i) is the symmetric counterpart of the lat-
ter. Also a theorem of Hartung [6] is a special case of Corollary 2 when M is a
singleton.

Corollary 3. (Ekeland-Temam, refined) Let C,D, F (x, y) be as in Corollary 1.
(i) If Y is a reflexive Banach space, F (x, y) is l.s.c. in x in every line segment,

u.s.c. in y, and there exists x̄ ∈ C such that F (x̄, y) → −∞ as y ∈ D, ‖y‖ → +∞,
then (7) holds with D = {y ∈ D| F (x̄, y) ≥ η > −∞}.

(ii) If X is a reflexive Banach space, F (x, y) is u.s.c. in y in every line segment,
l.s.c. in x, and there exists ȳ ∈ D such that F (x, ȳ) → +∞ as x ∈ C, ‖x‖ → +∞,
then (9) holds with C = {x ∈ C| F (x, ȳ) ≤ γ < +∞}.

Proof. This follows from Theorems 3 and 4* because (i) implies (T), while (ii)
implies ˜(T).

In the special case when F (x, y) is convex in x, concave in y, this proposition
was established in [2] (Proposition 2.3, page 175).

Corollary 4. (Golshtein, refined) Let C, D, F (x, y) be as in Corollary 1 and let
Y be a reflexive Banach space.

(i) If the set D∗ = {y ∈ D| inf
x∈C

F (x, y) = η} is nonempty and bounded then

(7) holds with D = D∗.
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(ii) If the set C∗ = {x ∈ C| sup
y∈D

F (x, y) = γ} is nonempty and bounded then

(9) holds with C = C∗.

Proof. This is a consequence of Theorems 4 and 4*.

In the finite-dimensional case, when F (x, y) is convex in x, concave in y and
continuous in (x, y), this proposition was established in [4]. Also, if F (x, y) is
concave in y then (i) is equivalent to saying that the set {y ∈ D| inf

x∈riC
F (x, y) ≥

η} has a recession cone consisting of the vector 0 alone, i.e., that the concave
functions F (x, .) for x ∈ riC have no common direction of recession; similarly, if
F (x, y) is convex in x then (ii) is equivalent to saying that the convex functions
F (., y) for y ∈ riD have no common direction of recession. Therefore, in the
finite dimensional case, Corollary 4 includes the minimax theorem proved in [12]
(Theorem 37.3).

5. Duality by minimax

Many central results of nonlinear optimization theory can be established on
the basis of the above minimax theorems rather than separation theorems as in
the traditional approach. To give an example, we show how the basic duality
theorem for modern convex optimization can be derived in a simple way from
Theorem 4 or 4*.

A closed convex cone K ⊂ Rm defines in Rp a partial ordering ¹K such that
a ¹ b whenever a−b ∈ K. When intK 6= ∅ we also write a ≺ 0 to mean a ∈ intK.
We say that a mapping g : Rn → Rp is K-convex if for any x, x′ ∈ Rn and
0 ≤ α ≤ 1 :

g(αx + (1− α)x′) ¹K αg(x) + (1− α)g(x′).

Consider the convex programming problem

inf{f(x)| g0(x) = 0, gi(x) ¹Ki 0 (i = 1, . . . ,m), x ∈ C},(10)

where f : Rn → R is a convex function, g0 : Rn → Rq is an affine mapping and
gi : Rn → Rpi (i = 1, . . . , m) are Ki-convex mappings, while C is a closed convex
subset of Rn. Letting K∗

i = {λi ∈ Rpi | 〈λi, y〉 ≥ 0 ∀y ∈ Ki}, the conjugate cone
of Ki, it is easily verified that

sup{f(x) +
∑

i=0

〈λi, gi(x)〉| λ0 ∈ Rq, λi ºK∗
i

0, i = 1, . . . ,m}

=
{

f(x) if g0(x) = 0, gi(x) ¹Ki 0 (i = 1, . . . , m)
+∞ otherwise

Therefore, the problem (10) can be written as

inf
x∈C

{sup{f(x) +
m∑

i=0

〈λi, gi(x)〉| λ0 ∈ Rq, λi ºK∗
i

0, i = 1, . . . , m}}
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and its Lagrange dual is

sup
{

inf
x∈C

[f(x) +
m∑

i=0

〈λi, gi(x)〉] | λ0 ∈ Rq, λi ºK∗
i

0, i = 1, . . . , m}.

By setting F (x, λ) := f(x) +
m∑

i=0
〈λi, gi(x)〉, D := {λ = (λ0, λ1, . . . , λm)| λ0 ∈

Rq, λi ºK∗
i

0, i = 1, . . . ,m}, the duality gap is

inf
x∈C

sup
λ∈D

F (x, λ)− sup
λ∈D

inf
x∈C

F (x, λ)

Corollary 5. Assume that

(∃x̄ ∈ C) g0(x̄) = 0 ∈ rig0(C), gi(x̄) ≺Ki 0, i = 1, . . . , m(11)

Then there is no duality gap, i.e.

inf
x∈C

sup
λ∈D

F (x, λ) = sup
λ∈D

inf
x∈C

F (x, λ).(12)

Proof. The sets C, D are closed convex in X = Rn, Y = Rq+p1+...+pm , respec-
tively, and the function F (x, λ) is convex in x ∈ Rn, affine in λ = (λ0, λ1, . . . , λm) ∈
Rq+p1+...+pm . By Theorem 4, to prove (12) it suffices to show that condition (Q)
in Theorem 4 holds, i.e.

inf
x∈C

F (x, λ) → −∞ as λ ∈ D, ‖λ‖ → +∞.(13)

Without loss of generality it can be assumed that g0(C) = Rq. In view of condition
(11), for every j = 1, . . . , q there exist aj ∈ C such that g0j(aj) > 0 and g0i(aj) =
0 for i 6= j. Then for sufficiently small ε > 0 the vectors xj = x̄ + ε(aj − x̄) and
x̂j = x̄− ε(aj − x̄) satisfy xj , x̂j ∈ C while

g0j(xj) > 0, g0i(xj) = 0 (i 6= j), gi(xj) ≺Ki 0 (i = 1, . . . , m).

g0j(x̂j) < 0, g0i(x̂j) = 0 (i 6= j), gi(xj) ≺Ki 0 (i = 1, . . . , m).

Let M = {xj , x̂j , j = 1, . . . , q}. For every λ ∈ D \ {0} we must have either
λ0 = 0, or λ0j 6= 0 for some j. Therefore

ρ(λ) := min
x∈M

m∑

i=0

〈λi, gi(x)〉 < 0, θ := max{ρ(λ)| λ ∈ D, ‖λ‖ = 1} < 0,

and hence, as ‖λ‖ → +∞,

inf
x∈C

F (x, λ) ≤ max
x∈M

f(x) + ‖λ‖min
x∈M

{ m∑

i=0

〈 λi

‖λ‖ , gi(x)〉
}

≤ max
x∈M

f(x) + ‖λ‖θ → −∞,

concluding the proof.
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Note that condition (11) is fulfilled when

(∃x̄ ∈ intC) g0(x̄) = 0, gi(x̄) ≺Ki 0, i = 1, . . . , m

because x̄ ∈ intC, g0(x̄) = 0 implies that g0(x̄) = 0 ∈ intg0(C).
For example, let Sp be the space of symmetric p × p real matrices, equipped

with the inner product

A •B = Tr(AB) =
∑

i,j

aijbij

In this space the set of positive semidefinite matrices forms a closed convex cone
S

p
+ inducing a partial ordering ¹Sp

+
. We denote this partial ordering simply by

¹, so that B ¹ A ⇔ A−B ∈ S
p
+. Consider the semidefinite program

min
{
〈c, x〉| A0 +

n∑

j=1

xjAj ¹ 0
}

(SDP)

where c, x ∈ Rn, and Aj ∈ Sp, j = 0, 1, . . . , n. By noting that the cone S
p
+ is

self-conjugate, i.e. S
p
+ = {Y ∈ Sp| X •Y ≥ 0 ∀X ∈ S

p
+}, the Lagrangian of (SDP)

is

L(x, Y ) = cT x + Y • (A0 +
n∑

j=1

xjAj),

and the Lagrange function is

ϕ(Y ) =
{

(A0 • Y ) if Aj • Y + cj = 0, j = 1, . . . , n
−∞ otherwise

Hence the dual problem to (SDP) is

max{A0 • Y | Aj • Y + cj = 0, j = 1, . . . , n, Y º 0}.(SDD)

From the above Corollary, strong duality holds if there exists x̄ ∈ C satisfying

A0 +
n∑

j=1
x̄jAj ≺ 0.
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