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GENERALIZED NULL SCROLLS IN THE n-DIMENSIONAL
LORENTZIAN SPACE

HANDAN BALGETIR AND MAHMUT ERGUT

ABSTRACT. In this paper, we define (r+1)-dimensional generalized null scrolls
in the n-dimensional Lorentzian space R} and examine their geometric invari-
ants and characteristic properties.

1. INTRODUCTION

Ruled surfaces have an important role in Differential Geometry. The (r + 1)-
dimensional generalized ruled surfaces in the n-dimensional Euclidean space E™
are studied by Juza [7], Frank and Giering [4] and Thas [10]. Some properties of
2-dimensional ruled surfaces are given by Thas [11]. In recent years, the semi-
ruled surfaces and their curvatures have been studied in the semi-Euclidean space
Et1 (see [3]). However, these work constructed the generalized ruled surfaces
as bases on spacelike curves or timelike curves in the semi-Euclidean space. Null
curves have many properties very different from spacelike or timelike curves and
they are very interesting and important in Differential Geometry (see [2]). Graves
[5] first introduced the notion of B-scroll as bases on a null curve and a null line
in the 3-dimensional Lorentzian space Ej.

In this paper, we introduce the notion of (r + 1)-dimensional generalized null
scrolls in the n-dimensional Lorentzian space and study their characteristic prop-
erties. To do this, we use a general Frenet equations of null curves and pseudo-
orthonormal basis. We also obtaine curvatures of generalized null scrolls in the
n-dimensional Lorentzian space RY.

Let M be an m-dimensional Lorentzian submanifold of R}. Let V be a Levi-
Civita connection of R} and V a Levi-Civita connection of M. If X,Y € x(M)
and h is the second fundamental form of M, then we have the Gauss equation

(1.1) VxY =VxY +h(X,Y).
Let £ be a unit normal vector field on M. Then the Weingarten equation is

(1.2) Vxé = —A¢(X) + V%€,
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where A¢ determines at each point a self-adjoint linear map on 7,,(M) and v+t
is a metric connection on normal bundle of M. In this paper, A¢ will be used
for the linear map and the corresponding matrix of the linear map. From the
equations (1.1) and (1.2), we have

(1.3) (VxY. &) = (h(X,Y),§)
and

(1.4) (VxY, ) = (4¢(X),Y).
Also by the equations (1.3) and (1.4),

(1.5) (h(X,Y), &) = (Ae(X),Y).

Let {&1,82,...,&n—m} be an orthonormal basis of x+t(M). Then there exist
smooth functions b/ (X,Y), j =1,...,n —m, such that

n—

(1.6) hX,Y) =) W(XY)

J=1

and furthermore we may define the mean curvature vector field H by

' traceAe,
J=1
If H(p) = 0 for each p € M, then M is said to be minimal [9].

Let £ be a unit normal vector, then the Lipschitz-Killing curvature in the
direction £ at the point p € M is defined by

(1.8) G(p, &) = det A¢(p).

The Gauss curvature is defined by

n—m

(1.9) Glp) =) G(p.&)

J=1

and if G(p) = 0 for all p € M, we say that M is developable. In particular, if
the Lipschitz-Killing curvature is zero for each point and each normal direction,
then M is developable [11].

Following [6], we define M (A) for any matrix A = [a;;] by
M(A) = ().
2
Let {¢1,62,...,&—m} be an orthonormal basis of x~(M). Then the scalar
normal curvature Ky of M is defined by

n—m

(1.10) Ky =Y M(AgAg, — Ag Ag,).

1,j=1
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Let M be a Lorentzian manifold. For every X,Y, Z, W € x(M), the 4. order
covariant tensor field
(1.11) R(X,Y,Z,W) = (R(Z, W)Y, X)

is called the Riemannian-Christoffel curvature tensor field and its value at a point
p € M is called the Riemannian-Christoffel curvature of M at p. The Riemann
curvature at p € M is denoted by

(1.12) K(P) = (R(X, Y)Y,X)\p.
From the equations (1.1) and (1.11) we get (see [9])
(1.13) (R(X, Y)Y, X)=(h(X,X),h(Y,Y)) — (h(X,Y),h(X,Y)).
Let M be an m-dimensional Lorentzian manifold and P a null plane of T),(M).

Then as a real number, Ky(P) defined by

(RW,U)U, W)
<Wv W) P’

(1.14) KU(P)\p = peEM

is called the null sectional curvature of P with respect to U, where W is an
arbitrary non-null vector in P and U is a null vector of T,(M) [2].

Let M be an n-dimensional Lorentzian manifold and R the Riemann curvature
tensor. The tensor field Ric defined by

(1.15) Ric(X,Y) Z R(e;, X)Y, e;)
=1
is called the Ricci curvature tensor field, where {e,...,e,} is a system of ortho-

normal basis of T,,(M) and the value of Ric(X,Y) at p € M is called the Ricci
curvature.

Let M be an n-dimensional Lorentzian manifold and {ey,...,e,} an orthonor-
mal basis of T,(M) at p € M. The scalar curvature of M is defined by

n

(1.16) r = &Ric(e;, ;)

or

(1.17) r= ZZ&Q ejaez 61,€]>
i=1 j=1

where ; = (e;, e;) so that

—1, if e; timelike,
€ =
! 1, if e; spacelike

(see [1]).
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A basis {X,Y, Z1, ..., Z,_2} of an n-dimensional Lorentzian space RY is called
a pseudo-orthonormal basis if the following conditions are fullfilled:

<><>0,
(X,Y) =

(1.18) (X, Zi) ( Zi)=0 for1<i<n-—2,
(Zi, Zj) = 0;5, for1<i<mn-—2

(see [8]).

2. NULL CURVES

In this section, we recall the notion of null curve in the Lorentzian manifold
[2].

Let (M, (,)) be areal (n+ 2)-dimensional Lorentzian manifold and « a smooth
null curve in M locally given by

o' =al(t), telICR, ie€{l,....,n+2}
for a coordinate neighbourhood U on a. Then the tangent vector field
do _ (dal da”“)
dt \dt 7 dt
on U satisfies the condition
<d£ da )=
dt’dt/

We denote by T'o the tangent bundle of o and T'ar" is defined as follows

= U TPOCJV TPO‘L = {vp € T,(M); (vp, &p) = 0},

pEQ

where ¢, is null vector tangent at any p € a. Clearly, T o't is a vector bundle
over o of rank (n + 1). Since &, is null, it follows that the tangent bundle T'e is
a vector subbundle of Ta™, of rank 1.

Suppose S (TaL) is the complementary vector subbundle to Ta in Tt i.e.,
Tat =Ta L S(Ta’b),

where | means the orthogonal direct sum. It follows that S(Ta") is a nondegen-
erate n-dimensional vector subbundle of TM. We call S(Ta) a screen vector
bundle of a. We have

(2.1) TM |o=S(Tat) L S(Tat)*t,

where S(Tat)* is a 2-dimensional complementary orthogonal vector subbundle
to S(Ta™t) in TM |, [2].
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Theorem 2.1. [2]. Let « be a null curve of a semi-Riemannian manifold (M, (,))
and S(Tat) a screen vector bundle of a. Then there exists a unique vector bun-
dle E over a of rank 1 such that on each coordinate neighbourhood U C « there
is a unique section N € T'(E |y) satisfying

(2.2) <%§“,N> =-1, (N,N)=(N,X)=0,

for every X € T(S(Tat) |v).

Now, suppose « is a null curve of an (n + 2)-dimensional Lorentzian manifold

d
(M, {(,)). Denote by V the Levi-Civita connection on M and d—? = X. Then the

following equations can be obtained:

VxX =2X+ k174,

VxY = =AY — ks Zy — ks Zs,

VxZ1 = ke X + kY + kaZo + k5Z3,
(2.3) VxZy=ksX — kqyZ1 + ke Zs + ki Zy,

VxZn1 = —kon-3Zn-3 — kon—2Zn—2 + konZn,
VxZn = —kopn-1Zn—2 — konZn—
provided n > 5, where A\ and {ki,...,ko,} are smooth functions on U and
{Zy,...,Z,} is a certain orthonormal basis of I'(S(Tat) |y). We call F =
{X.,Y,Z1,...,Z,} a Frenet frame. It is also called a pseudo-orthonormal frame
since the equations (1.18) holds on M along o« with respect to the screen vector
bundle S(Ta't). The functions {ki,...,ks,} are called curvature functions of

with respect to ' and the equations (2.3) are called the Frenet equations with
respect to F' [2].

3. GENERALIZED NULL SCROLLS IN R}

Let o : I C R — R} be a smooth null curve in the n-dimensional Lorentzian
space R} and {X,Y, Z1,...,Z,_2} be a pseudo-orthonormal frame along the null
curve a. Let {Y(t),Z1(t),...,Z,—1(t)} be a null basis defined at each point a(t)
of the null curve a. This system spans a subspace of the tangent space Ty, ) (RY)
at o(t) € R}. This space is denoted by W,.(t). It is a r-dimensional subspace of
the form

Wr(t) = Sp{Y (1), Z1(t), ..., Zr—1(t)} C RY.

W,.(t) will be called a degenerate subspace and the following equalities are satis-
fied:

Y(t),Y(t)) =0,
(Zi(t), Z;(t)) = bij,
(Y(t),Zi(t)) =0
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for1 <4, j<r-—1.

Definition 3.1. Let o be a null curve in the n-dimensional Lorentzian space RY.
While the r-dimensional degenerate subspace W,.(¢) moves along a null curve « in
RY, it forms an (r + 1)-dimensional surface. This is called the (r+ 1)-dimensional
generalized null scroll in the n-dimensional Lorentzian space R} and denoted by
M. Then M can be expressed by the parametric equation

v:IXR — RY,
r—1
(3.1) (tu) = W(t,u) = at) + uY () + Y w; Zi(t)
=1

where v = (ug, uq,...,ur—1). Note that

rank(Wy, Uyoyoon, Uy, ) = rank(o/(t) +upY'(t)

r—1
+ D wZi, Y (1), Z1(0), - Zea (1))
=1

=r—+1.
It is easy to check that M is a Lorentzian submanifold.
Definition 3.2. W, (¢) is called the generating space (or generating degenerate

space) at the point «(t) of the (r + 1)-dimensional generalized null scroll M and
the null curve « is called the base curve of M.

Definition 3.3. Let M be an (r 4+ 1)-dimensional generalized null scroll in RY.
The subspace

R(t) = Sp{Y (1), Z1(t),- .., Zr1 (1), Y'(8), Z1(D), - .., Zr 1 (D)}
is said to be the asymptotic bundle of the generalized null scroll M.
Definition 3.4. Let M be an (r 4+ 1)-dimensional generalized null scroll in RY.
If there exists a timelike or spacelike curve such that it meets perpendicularly

to each one of the generating spaces, then this curve is called an orthogonal
trajectory of the generalized null scroll M.

Definition 3.5. Let M be an (r + 1)-dimensional generalized null scroll in R}
and W,.(t) be generating space of M. If there exists a null curve 8 on M such
that for each t € I,

('), Y(t) = -1,
(3.2) (B'(t), Zi(t)) =0, 1<i<r-—1,

then the null curve 3 is called a pseudo-orthogonal trajectory of the generalized
null scroll M.

Thus we have following theorem:
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Theorem 3.1. Let M be an (r + 1)-dimensional generalized null scroll in R}
and W,.(t) be generating space of M and a(t) be base curve of M. Then there
exists a pseudo-orthogonal trajectory if and only if

r—1
(3.3) ZW<ZZ(,Y> =0 and wu; = —,u/uo(t)dt +C,
i=1

where p = Y', Z;), i =1,...,r —1; up,uy....,u,—1 € R.
Proof. Tt can be easily derived from the equation (3.2). O
4. ON THE CURVATURES OF GENERALIZED NULL SCROLL

Let M be an (r+1)-dimensional generalized null scroll and a(t), t € I the base
curve of M. Let {Y (t), Z1(t), ..., Zy,—1(t)} be a null basis of the generating space
W, (t). Let us choose the base curve « to be a pseudo-orthogonal trajectory of
the generating spaces W,.(t). Then M is given by

r—1
(4.1) U(t,ug,ui, .. uro1) = at) +ugY (t) + Y wiZi(t),
=1

0
where (ug, u1,...,u,—1) € R. Let us choose X = U, (a) such that {X,Y, Z1,...,

Z,—1} is a pseudo-orthonormal basis of the space of vector fields x(M). By (4.1)
and (1.1), we have

(4.2) V22Z;=0, VyZ; =0, VzY =0 VyY =0,

(4.3) WMZ;,Z;) =0, h(Z;,Y)=0, 1<i,j<r—1

This means that the generating space W,.(t) is totally geodesic. Also, we get
(4.4) VzX=h(Z,X), 1<i<r—1

(4.5) VyX = h(Y, X).

Theorem 4.1. Let M be an (r + 1)-dimensional generalized null scroll in RY.
Consider the pseudo-orthonormal basis {X,Y, Z1, ..., Zr_1} in a neighbourhood of
a point p of M. Then the null sectional curvature K x (P) in the two-dimensional
direction null plane P of M spanned by the vectors X, and (Z;), is given by

Proof. From the equation (1.14), we can write
(R(Zi, X)X, Z;)

Kx(P)= .
x(P) (Zi, Zi)
Since {X,Y,Z1,...,Z,_1} is a pseudo-orthonormal basis, we have
(4.7) Kx(P)=(R(Z;, X)X, Z;).

Also, using the equations (1.13), (4.3) and (4.4) for p € M, we get
(4.8) Kx(P)=K(Zi,X)=—(VzX,VzX) |p, 1<i<r-—1,
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and this completes the proof. O

Theorem 4.2. Let M be an (r+1)-dimensional generalized null scroll in R} and
{X,Y, Zy,...,Z,_1} is a pseudo-orthonormal basis in a neighbourhood of a point
p of M. Then the sectional curvature in the two-dimensional direction Lorentzian
plane o of M spanned by {X,,Y,} p € M, given by

(4.9) K(o)=K(X,Y)=(VyX,VyX) |, .
Proof. It can be similarly proved as Theorem 4.1. O

Corollary 4.1. An (r+1)-dimensional generalized null scroll M in R} is devel-
opable if and only if each sectional curvatures of M 1is identically zero, i.e.,

KX, Z)=K(X,Y)=0, 1<i<r-—1.
Proof. 1t is obvious from the equations (1.12), (1.13) and (4.3). O

Suppose that the vector field system {{1,&2,...,&—r—1} is an orthonormal
basis of Tp]\JL at p € M. Then

{X7Y7 Z17 .. '7Z’r‘—17€17§27' . 75’/1—7’—1}

is a pseudo-orthonormal basis of T},(R}) at p € M. Thus, the equations of the
derivative can be written as follows:

n—r—1

r—1
Vx& =alo X + b)Y +> chZi+ > e
t=1 q=1

n—r—1

r—1
(4.10) Vyé=aloX +boY + > cZi+ > el o
t=1 q=1

n—r—1

r—1
Vi — X AU Sz S i
t=1 q=1

where 1 <i<r—1,1<j<n-—r—1. If we consider the Weingarten equation
(1.2) and the equations (4.10), then the matrix A¢, that corresponds to the linear
mapping is

@ b o oo Cor—1)|

0 b, 0 0 0

) 0 b, 0 0 0

(4.11) S="lo b, 0 0 0
L 0 b{(r—l) 0 0 - 0 |

and this means that detA¢; = 0if r > 1, from which we obtain following corollary.

Corollary 4.2. If r > 1, then the Lipschitz-Killing curvature of the (r 4+ 1)-
dimensional generalized null scroll M is zero at each point in each normal direc-
tion.
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Theorem 4.3. Let M be an (r + 1)-dimensional generalized null scroll in R}
and {X,Y,Z1,...,Z,—1} a pseudo-orthonormal basis of x(M). Then the Ricci
curvature of M is in the direction of the vector fields Y and Z;, 1 <i <r —1,
satisfies, respectively,

n—r—1
(4.12) Ric(Y,Y) == > (M),

j=1

n—r—1 )
(4.13) Rie(Zi, Zi) = = ), (17,)%

1

<.
Il

where b{o and b{i are the components of the matriz Ag;.

Proof. Using the equations (1.3), (1.4), (1.13) and (1.15), we get the equations
(4.12) and (4.13). 0

Corollary 4.3. The Ricci curvature of the (r + 1)-dimensional generalized null
scroll M in R} in the direction of the vector field X is given by

r—1
(4.14) Ric(X, X) =Y Ric(Zi, Zi) + Ric(Y,Y).

i=1
Theorem 4.4. Let M be an (r + 1)-dimensional generalized null scroll in RY
and {X,Y,Z1,...,Z,_1} a pseudo-orthonormal basis of x(M). Then the scalar

curvature of M is equal to twice Ricci curvature in the direction of the vector
field X.

Proof. By the equation (1.16) the scalar curvature of M can be expressed by

r—1
r = Ric(X, X) + Ric(Y,Y) + Y _ Ric(Zi, Zi).
i=1
Using Corollary 4.3 we obtain
(4.15) r = 2Ric(X, X).
This completes the proof. ]

By (4.12), (4.13), (4.14), (4.15), we obtain the following corollary.
Corollary 4.4. The scalar curvature of M is given by

r—1n—r—1

(4.16) r=—1{> > )+

i=1 j=1 j=1

—r—

1 .
(b10)?

Theorem 4.5. Let M be an (r + 1)-dimensional generalized null scroll in R}
and {X,Y,Z1,...,Z,—1} be a pseudo-orthonormal basis of x(M) and X be the
tangent vector of the base curve of M. Then the mean curvature of M is

2
r+1

(4.17) H=-—""nX)Y).
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Proof. By the equations (4.4), (4.5), (4.10) and (4.11) we see that

n—r—1
(4.18) WX, Y)= Y &,
j=1
(4.19) trace(Ag;) = —2(7{0.
Therefore, we can write
Lot
(4.20) WX, Y)=—5 > (trace Ag,)¢;.
j=1

Thus, from the equation (1.7) we obtain

2
H=— h(X,Y).
r+1

Hence we get following corollary.

Corollary 4.5. (r + 1)-dimensional generalized null scroll M is minimal if and

only if h(X,Y) = 0.

Theorem 4.6. Let {Y,Z1,...,Z,_1} be a null basis for the generating space of
an (r+1)-dimensional generalized null scroll M and X be a tangent vector field to
the base curve. Suppose that the pseudo-orthogonal trajectory of the gemerating
space is the base curve of M. Then the minimal generalized null scroll M 1is
totally geodesic if and only if X is an asymptotic vector field and the conjugate
to each vector field Z;, 1 <i <r —1.

Proof. Let {X,Y,Z,...,Z,_1} be a pseudo-orthonormal basis of x(M) and for
each U,V € x(M) we can write

r—1
U=ayX + byY + Z b Z;,
=1
r—1
V= alX + C()Y + chZj
7j=1
and from now

h(X, Y) = agalh(X, X) + (CL()C() + boal)h(X, Y) + boCDh(K Y)

r—1 r—1

+ Z(aoci + albi)h(X, Zi) + Z(boci + Cobi)h(Y, Zi)
i=1 i=1
r—1

i,j=1
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If M is totally geodesic, then h is identically zero [2]. So we have
h(X,X)=0,
MX,Z)=0, 1<i<r—1.
This means that X is an asymptotic vector field and conjugate to each vector
field Z; [2].

If h(X,X)=0and h(X,Z;) =0, 1 <i<r—1, then from the equation (4.21)
we find h(X,Y) = 0 and this completes the proof. O

From (4.18), (4.19) and (4.20), we obtain

n—r—1

T 2 j
(1.22) U g =Y g

J=1

Theorem 4.7. The scalar normal curvature of an (r+1)-dimensional null scroll
M s given by
1r—1
7”"’1 ) 22\ (1) o
Ky = H ~( 1202 (£ )
; ; co)? = (r+ (r +1) 1

n—r—1r—1

+2 Z Z((Cétb{t COtbltc(])tblt C(j)tbliocétb{o— Zitb{Ob]lt lio)
ij=1 t=1

n—r—1 r—1

(4.23) +2 Z Z (chublicorbly, + chebliybie),
1,j=1 t#k=1

where H and v are the mean curvature vector field and scalar curvature of M,
respectively and cl,, bjy, bl,, 1 <t <r—1,1<j<n—r—1 are the elements of
the matriz Ag, .

Proof. 1t can be easily proved from the equation (1.10) and by the some calcula-
tions. 0

Corollary 4.6. The scalar normal curvature of a minimal (r 4+ 1)-dimensional
generalized null scroll is given by

n—r—1r—1

N_2{ Z Z cUtblt C()tbltc(])tblt 67 Aocétb{O tb ob ]

Q=1 t=1
n—r—1 r—1 S L
(424) 4 DD (chbluchibly + bl |
ij=1 t#k=1
Proof. If M is minimal, H = 0 and so the corollary is clear. O

Corollary 4.7. If the generalized null scroll M is minimal and totally geodesic,
then the scalar normal curvature of M is identically zero.
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Proof. Since M is minimal and totally geodesic, A¢; is the zero map for each
j=1,...,n—r—1. So the scalar normal curvature of M is identically zero. This
completes the proof. O
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