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GENERALIZED NULL SCROLLS IN THE n-DIMENSIONAL
LORENTZIAN SPACE

HANDAN BALGETIR AND MAHMUT ERGÜT

Abstract. In this paper, we define (r+1)-dimensional generalized null scrolls
in the n-dimensional Lorentzian space Rn

1 and examine their geometric invari-
ants and characteristic properties.

1. Introduction

Ruled surfaces have an important role in Differential Geometry. The (r + 1)-
dimensional generalized ruled surfaces in the n-dimensional Euclidean space En

are studied by Juza [7], Frank and Giering [4] and Thas [10]. Some properties of
2-dimensional ruled surfaces are given by Thas [11]. In recent years, the semi-
ruled surfaces and their curvatures have been studied in the semi-Euclidean space
En+1

ν (see [3]). However, these work constructed the generalized ruled surfaces
as bases on spacelike curves or timelike curves in the semi-Euclidean space. Null
curves have many properties very different from spacelike or timelike curves and
they are very interesting and important in Differential Geometry (see [2]). Graves
[5] first introduced the notion of B-scroll as bases on a null curve and a null line
in the 3-dimensional Lorentzian space E3

1 .
In this paper, we introduce the notion of (r + 1)-dimensional generalized null

scrolls in the n-dimensional Lorentzian space and study their characteristic prop-
erties. To do this, we use a general Frenet equations of null curves and pseudo-
orthonormal basis. We also obtaine curvatures of generalized null scrolls in the
n-dimensional Lorentzian space Rn

1 .
Let M be an m-dimensional Lorentzian submanifold of Rn

1 . Let ∇ be a Levi-
Civita connection of Rn

1 and ∇ a Levi-Civita connection of M . If X, Y ∈ χ(M)
and h is the second fundamental form of M , then we have the Gauss equation

∇XY = ∇XY + h(X, Y ).(1.1)

Let ξ be a unit normal vector field on M . Then the Weingarten equation is

∇Xξ = −Aξ(X) +∇⊥Xξ,(1.2)
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where Aξ determines at each point a self-adjoint linear map on Tp(M) and ∇⊥
is a metric connection on normal bundle of M . In this paper, Aξ will be used
for the linear map and the corresponding matrix of the linear map. From the
equations (1.1) and (1.2), we have

〈∇XY, ξ〉 = 〈h(X, Y ), ξ〉(1.3)

and

〈∇XY, ξ〉 = 〈Aξ(X), Y 〉.(1.4)

Also by the equations (1.3) and (1.4),

〈h(X,Y ), ξ〉 = 〈Aξ(X), Y 〉.(1.5)

Let {ξ1, ξ2, . . . , ξn−m} be an orthonormal basis of χ⊥(M). Then there exist
smooth functions hj(X, Y ), j = 1, . . . , n−m, such that

h(X, Y ) =
n−m∑

j=1

hj(X, Y )ξj(1.6)

and furthermore we may define the mean curvature vector field H by

H =
n−m∑

j=1

traceAξj

m
ξj .(1.7)

If H(p) = 0 for each p ∈ M , then M is said to be minimal [9].
Let ξ be a unit normal vector, then the Lipschitz-Killing curvature in the

direction ξ at the point p ∈ M is defined by

G(p, ξ) = detAξ(p).(1.8)

The Gauss curvature is defined by

G(p) =
n−m∑

j=1

G(p, ξj)(1.9)

and if G(p) = 0 for all p ∈ M, we say that M is developable. In particular, if
the Lipschitz-Killing curvature is zero for each point and each normal direction,
then M is developable [11].

Following [6], we define M(A) for any matrix A = [aij ] by

M(A) =
∑

i,j

(aij)2.

Let {ξ1, ξ2, . . . , ξn−m} be an orthonormal basis of χ⊥(M). Then the scalar
normal curvature KN of M is defined by

KN =
n−m∑

i,j=1

M(AξiAξj −AξjAξi).(1.10)
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Let M be a Lorentzian manifold. For every X,Y, Z,W ∈ χ(M), the 4th. order
covariant tensor field

R(X,Y, Z,W ) = 〈R(Z,W )Y,X〉(1.11)

is called the Riemannian-Christoffel curvature tensor field and its value at a point
p ∈ M is called the Riemannian-Christoffel curvature of M at p. The Riemann
curvature at p ∈ M is denoted by

K(P ) = 〈R(X, Y )Y, X〉∣∣
p
.(1.12)

From the equations (1.1) and (1.11) we get (see [9])

〈R(X, Y )Y, X〉 = 〈h(X,X), h(Y, Y )〉 − 〈h(X, Y ), h(X, Y )〉.(1.13)

Let M be an m-dimensional Lorentzian manifold and P a null plane of Tp(M).
Then as a real number, KU (P ) defined by

KU (P )
∣∣
p

=
〈R(W,U)U,W 〉

〈W,W 〉
∣∣∣
p
, p ∈ M(1.14)

is called the null sectional curvature of P with respect to U , where W is an
arbitrary non-null vector in P and U is a null vector of Tp(M) [2].

Let M be an n-dimensional Lorentzian manifold and R the Riemann curvature
tensor. The tensor field Ric defined by

Ric(X, Y ) =
n∑

i=1

εi〈R(ei, X)Y, ei〉(1.15)

is called the Ricci curvature tensor field, where {e1, . . . , en} is a system of ortho-
normal basis of Tp(M) and the value of Ric(X,Y ) at p ∈ M is called the Ricci
curvature.

Let M be an n-dimensional Lorentzian manifold and {e1, . . . , en} an orthonor-
mal basis of Tp(M) at p ∈ M. The scalar curvature of M is defined by

r =
n∑

i=1

εiRic(ei, ei)(1.16)

or

r =
n∑

i=1

n∑

j=1

εiεj〈R(ej , ei)ei, ej〉,(1.17)

where εi = 〈ei, ei〉 so that

εi =

{
−1, if ei timelike,
1, if ei spacelike

(see [1]).
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A basis {X, Y, Z1, . . . , Zn−2} of an n-dimensional Lorentzian space Rn
1 is called

a pseudo-orthonormal basis if the following conditions are fullfilled:

〈X,X〉 = 〈Y, Y 〉 = 0,

〈X, Y 〉 = −1,

〈X, Zi〉 = 〈Y, Zi〉 = 0 for 1 ≤ i ≤ n− 2,(1.18)

〈Zi, Zj〉 = δij, for 1 ≤ i ≤ n− 2

(see [8]).

2. Null curves

In this section, we recall the notion of null curve in the Lorentzian manifold
[2].

Let (M, 〈, 〉) be a real (n+2)-dimensional Lorentzian manifold and α a smooth
null curve in M locally given by

αi = αi(t), t ∈ I ⊂ R, i ∈ {1, . . . , n + 2}
for a coordinate neighbourhood U on α. Then the tangent vector field

dα

dt
=

(dα1

dt
, . . . ,

dαn+2

dt

)

on U satisfies the condition
〈dα

dt
,
dα

dt

〉
= 0.

We denote by Tα the tangent bundle of α and Tα⊥ is defined as follows

Tα⊥ =
⋃
p∈α

Tpα
⊥; Tpα

⊥ = {vp ∈ Tp(M); 〈vp, ξp〉 = 0},

where ξp is null vector tangent at any p ∈ α. Clearly, Tα⊥ is a vector bundle
over α of rank (n + 1). Since ξp is null, it follows that the tangent bundle Tα is
a vector subbundle of Tα⊥, of rank 1.

Suppose S(Tα⊥) is the complementary vector subbundle to Tα in Tα⊥, i.e.,

Tα⊥ = Tα ⊥ S(Tα⊥),

where ⊥ means the orthogonal direct sum. It follows that S(Tα⊥) is a nondegen-
erate n-dimensional vector subbundle of TM . We call S(Tα⊥) a screen vector
bundle of α. We have

TM |α= S(Tα⊥) ⊥ S(Tα⊥)⊥,(2.1)

where S(Tα⊥)⊥ is a 2-dimensional complementary orthogonal vector subbundle
to S(Tα⊥) in TM |α [2].
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Theorem 2.1. [2]. Let α be a null curve of a semi-Riemannian manifold (M, 〈, 〉)
and S(Tα⊥) a screen vector bundle of α. Then there exists a unique vector bun-
dle E over α of rank 1 such that on each coordinate neighbourhood U ⊂ α there
is a unique section N ∈ Γ(E |U ) satisfying

〈dα

dt
,N

〉
= −1, 〈N,N〉 = 〈N, X〉 = 0,(2.2)

for every X ∈ Γ(S(Tα⊥) |U ).

Now, suppose α is a null curve of an (n + 2)-dimensional Lorentzian manifold

(M, 〈, 〉). Denote by ∇ the Levi-Civita connection on M and
dα

dt
≡ X. Then the

following equations can be obtained:

∇XX = λX + k1Z1,

∇XY = −λY − k2Z1 − k3Z2,

∇XZ1 = k2X + k1Y + k4Z2 + k5Z3,

∇XZ2 = k3X − k4Z1 + k6Z3 + k7Z4,(2.3)
. . . . . . . . . . . . . . . . . .

∇XZn−1 = −k2n−3Zn−3 − k2n−2Zn−2 + k2nZn,

∇XZn = −k2n−1Zn−2 − k2nZn−1

provided n ≥ 5, where λ and {k1, . . . , k2n} are smooth functions on U and
{Z1, . . . , Zn} is a certain orthonormal basis of Γ(S(Tα⊥) |U ). We call F =
{X,Y, Z1, . . . , Zn} a Frenet frame. It is also called a pseudo-orthonormal frame
since the equations (1.18) holds on M along α with respect to the screen vector
bundle S(Tα⊥). The functions {k1, . . . , k2n} are called curvature functions of α
with respect to F and the equations (2.3) are called the Frenet equations with
respect to F [2].

3. Generalized null scrolls in Rn
1

Let α : I ⊂ R → Rn
1 be a smooth null curve in the n-dimensional Lorentzian

space Rn
1 and {X, Y, Z1, . . . , Zn−2} be a pseudo-orthonormal frame along the null

curve α. Let {Y (t), Z1(t), . . . , Zr−1(t)} be a null basis defined at each point α(t)
of the null curve α. This system spans a subspace of the tangent space Tα(t)(Rn

1 )
at α(t) ∈ Rn

1 . This space is denoted by Wr(t). It is a r-dimensional subspace of
the form

Wr(t) = Sp{Y (t), Z1(t), . . . , Zr−1(t)} ⊂ Rn
1 .

Wr(t) will be called a degenerate subspace and the following equalities are satis-
fied:

〈Y (t), Y (t)〉 = 0,

〈Zi(t), Zj(t)〉 = δij ,

〈Y (t), Zi(t)〉 = 0
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for 1 ≤ i, j ≤ r − 1.

Definition 3.1. Let α be a null curve in the n-dimensional Lorentzian space Rn
1 .

While the r-dimensional degenerate subspace Wr(t) moves along a null curve α in
Rn

1 , it forms an (r+1)-dimensional surface. This is called the (r+1)-dimensional
generalized null scroll in the n-dimensional Lorentzian space Rn

1 and denoted by
M . Then M can be expressed by the parametric equation

Ψ : I X Rr → Rn
1 ,

(t, u) → Ψ(t, u) = α(t) + u0Y (t) +
r−1∑

i=1

uiZi(t)(3.1)

where u = (u0, u1, . . . , ur−1). Note that

rank(Ψt, Ψu0 , . . . , Ψur−1) = rank
(
α′(t) + u0Y

′(t)

+
r−1∑

i=1

uiZ
′
i(t), Y (t), Z1(t), . . . , Zr−1(t)

)

= r + 1.

It is easy to check that M is a Lorentzian submanifold.

Definition 3.2. Wr(t) is called the generating space (or generating degenerate
space) at the point α(t) of the (r + 1)-dimensional generalized null scroll M and
the null curve α is called the base curve of M .

Definition 3.3. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1 .

The subspace

<(t) = Sp{Y (t), Z1(t), . . . , Zr−1(t), Y ′(t), Z ′1(t), . . . , Z
′
r−1(t)}

is said to be the asymptotic bundle of the generalized null scroll M .

Definition 3.4. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1 .

If there exists a timelike or spacelike curve such that it meets perpendicularly
to each one of the generating spaces, then this curve is called an orthogonal
trajectory of the generalized null scroll M .

Definition 3.5. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1

and Wr(t) be generating space of M . If there exists a null curve β on M such
that for each t ∈ I,

〈β′(t), Y (t)〉 = −1,

〈β′(t), Zi(t)〉 = 0, 1 ≤ i ≤ r − 1,(3.2)

then the null curve β is called a pseudo-orthogonal trajectory of the generalized
null scroll M .

Thus we have following theorem:
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Theorem 3.1. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1

and Wr(t) be generating space of M and α(t) be base curve of M . Then there
exists a pseudo-orthogonal trajectory if and only if

r−1∑

i=1

ui〈Z ′i, Y 〉 = 0 and ui = −µ

∫
u0(t)dt + C,(3.3)

where µ = 〈Y ′, Zi〉, i = 1, . . . , r − 1; u0, u1. . . . , ur−1 ∈ R.

Proof. It can be easily derived from the equation (3.2).

4. On the curvatures of generalized null scroll

Let M be an (r+1)-dimensional generalized null scroll and α(t), t ∈ I the base
curve of M . Let {Y (t), Z1(t), . . . , Zr−1(t)} be a null basis of the generating space
Wr(t). Let us choose the base curve α to be a pseudo-orthogonal trajectory of
the generating spaces Wr(t). Then M is given by

Ψ(t, u0, u1, . . . , ur−1) = α(t) + u0Y (t) +
r−1∑

i=1

uiZi(t),(4.1)

where (u0, u1, . . . , ur−1) ∈ R. Let us choose X = Ψ∗
( ∂

∂t

)
such that {X, Y, Z1, . . . ,

Zr−1} is a pseudo-orthonormal basis of the space of vector fields χ(M). By (4.1)
and (1.1), we have

∇ZiZj = 0, ∇Y Zi = 0, ∇ZiY = 0, ∇Y Y = 0,(4.2)

h(Zi, Zj) = 0, h(Zi, Y ) = 0, 1 ≤ i, j ≤ r − 1.(4.3)

This means that the generating space Wr(t) is totally geodesic. Also, we get

∇ZiX = h(Zi, X), 1 ≤ i ≤ r − 1(4.4)

∇Y X = h(Y,X).(4.5)

Theorem 4.1. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1 .

Consider the pseudo-orthonormal basis {X,Y, Z1, . . . , Zr−1} in a neighbourhood of
a point p of M . Then the null sectional curvature KX(P ) in the two-dimensional
direction null plane P of M spanned by the vectors Xp and (Zi)p is given by

KX(P ) = −〈∇ZiX,∇ZiX〉 |p, 1 ≤ i ≤ r − 1.(4.6)

Proof. From the equation (1.14), we can write

KX(P ) =
〈R(Zi, X)X,Zi〉

〈Zi, Zi〉 ·

Since {X, Y, Z1, . . . , Zr−1} is a pseudo-orthonormal basis, we have

KX(P ) = 〈R(Zi, X)X, Zi〉.(4.7)

Also, using the equations (1.13), (4.3) and (4.4) for p ∈ M , we get

KX(P ) = K(Zi, X) = −〈∇ZiX,∇ZiX〉 |p, 1 ≤ i ≤ r − 1,(4.8)
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and this completes the proof.

Theorem 4.2. Let M be an (r+1)-dimensional generalized null scroll in Rn
1 and

{X,Y, Z1, . . . , Zr−1} is a pseudo-orthonormal basis in a neighbourhood of a point
p of M . Then the sectional curvature in the two-dimensional direction Lorentzian
plane σ of M spanned by {Xp, Yp} p ∈ M , given by

K(σ) = K(X, Y ) = 〈∇Y X,∇Y X〉 |p .(4.9)

Proof. It can be similarly proved as Theorem 4.1.

Corollary 4.1. An (r+1)-dimensional generalized null scroll M in Rn
1 is devel-

opable if and only if each sectional curvatures of M is identically zero, i.e.,

K(X,Zi) ≡ K(X, Y ) ≡ 0, 1 ≤ i ≤ r − 1.

Proof. It is obvious from the equations (1.12), (1.13) and (4.3).

Suppose that the vector field system {ξ1, ξ2, . . . , ξn−r−1} is an orthonormal
basis of TpM

⊥ at p ∈ M . Then

{X,Y, Z1, . . . , Zr−1, ξ1, ξ2, . . . , ξn−r−1}
is a pseudo-orthonormal basis of Tp(Rn

1 ) at p ∈ M . Thus, the equations of the
derivative can be written as follows:

∇Xξj = aj
00X + bj

00Y +
r−1∑

t=1

cj
0tZt +

n−r−1∑

q=1

ej
0qξq,

∇Y ξj = aj
10X + bj

10Y +
r−1∑

t=1

cj
1tZt +

n−r−1∑

q=1

ej
1qξq,(4.10)

∇Ziξj = aj
1iX + bj

1iY +
r−1∑

t=1

dj
itZt +

n−r−1∑

q=1

f j
iqξq,

where 1 ≤ i ≤ r − 1, 1 ≤ j ≤ n− r − 1. If we consider the Weingarten equation
(1.2) and the equations (4.10), then the matrix Aξj that corresponds to the linear
mapping is

Aξj = −




aj
00 bj

00 cj
01 cj

02 · · · cj
0(r−1)

0 bj
10 0 0 · · · 0

0 bj
11 0 0 · · · 0

0 bj
12 0 0 · · · 0

...
...

...
...

. . .
...

0 bj
1(r−1) 0 0 · · · 0




(4.11)

and this means that detAξj = 0 if r > 1, from which we obtain following corollary.

Corollary 4.2. If r > 1, then the Lipschitz-Killing curvature of the (r + 1)-
dimensional generalized null scroll M is zero at each point in each normal direc-
tion.
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Theorem 4.3. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1

and {X, Y, Z1, . . . , Zr−1} a pseudo-orthonormal basis of χ(M). Then the Ricci
curvature of M is in the direction of the vector fields Y and Zj, 1 ≤ i ≤ r − 1,
satisfies, respectively,

Ric(Y, Y ) = −
n−r−1∑

j=1

(bj
10)

2,(4.12)

Ric(Zi, Zi) = −
n−r−1∑

j=1

(bj
1i)

2,(4.13)

where bj
10 and bj

1i are the components of the matrix Aξj .

Proof. Using the equations (1.3), (1.4), (1.13) and (1.15), we get the equations
(4.12) and (4.13).

Corollary 4.3. The Ricci curvature of the (r + 1)-dimensional generalized null
scroll M in Rn

1 in the direction of the vector field X is given by

Ric(X, X) =
r−1∑

i=1

Ric(Zi, Zi) + Ric(Y, Y ).(4.14)

Theorem 4.4. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1

and {X, Y, Z1, . . . , Zr−1} a pseudo-orthonormal basis of χ(M). Then the scalar
curvature of M is equal to twice Ricci curvature in the direction of the vector
field X.

Proof. By the equation (1.16) the scalar curvature of M can be expressed by

r = Ric(X, X) + Ric(Y, Y ) +
r−1∑

i=1

Ric(Zi, Zi).

Using Corollary 4.3 we obtain

r = 2Ric(X, X).(4.15)

This completes the proof.

By (4.12), (4.13), (4.14), (4.15), we obtain the following corollary.

Corollary 4.4. The scalar curvature of M is given by

r = −



r−1∑

i=1

n−r−1∑

j=1

(bj
1i)

2 +
n−r−1∑

j=1

(bj
10)

2


 .(4.16)

Theorem 4.5. Let M be an (r + 1)-dimensional generalized null scroll in Rn
1

and {X, Y, Z1, . . . , Zr−1} be a pseudo-orthonormal basis of χ(M) and X be the
tangent vector of the base curve of M . Then the mean curvature of M is

H = − 2
r + 1

h(X,Y ).(4.17)
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Proof. By the equations (4.4), (4.5), (4.10) and (4.11) we see that

h(X,Y ) =
n−r−1∑

j=1

bj
10ξj ,(4.18)

trace(Aξj ) = −2bj
10.(4.19)

Therefore, we can write

h(X,Y ) = −1
2

n−r−1∑

j=1

(traceAξj )ξj .(4.20)

Thus, from the equation (1.7) we obtain

H = − 2
r + 1

h(X,Y ).

Hence we get following corollary.

Corollary 4.5. (r + 1)-dimensional generalized null scroll M is minimal if and
only if h(X, Y ) = 0.

Theorem 4.6. Let {Y, Z1, . . . , Zr−1} be a null basis for the generating space of
an (r+1)-dimensional generalized null scroll M and X be a tangent vector field to
the base curve. Suppose that the pseudo-orthogonal trajectory of the generating
space is the base curve of M . Then the minimal generalized null scroll M is
totally geodesic if and only if X is an asymptotic vector field and the conjugate
to each vector field Zi, 1 ≤ i ≤ r − 1.

Proof. Let {X, Y, Z1, . . . , Zr−1} be a pseudo-orthonormal basis of χ(M) and for
each U, V ∈ χ(M) we can write

U = a0X + b0Y +
r−1∑

i=1

biZi,

V = a1X + c0Y +
r−1∑

j=1

cjZj

and from now

h(X, Y ) = a0a1h(X,X) + (a0c0 + b0a1)h(X, Y ) + b0c0h(Y, Y )

+
r−1∑

i=1

(a0ci + a1bi)h(X, Zi) +
r−1∑

i=1

(b0ci + c0bi)h(Y,Zi)

+
r−1∑

i,j=1

bicih(Zi, Zj).(4.21)
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If M is totally geodesic, then h is identically zero [2]. So we have

h(X,X) = 0,

h(X, Zi) = 0, 1 ≤ i ≤ r − 1.

This means that X is an asymptotic vector field and conjugate to each vector
field Zi [2].

If h(X, X) = 0 and h(X, Zi) = 0, 1 ≤ i ≤ r− 1, then from the equation (4.21)
we find h(X,Y ) = 0 and this completes the proof.

From (4.18), (4.19) and (4.20), we obtain

(r + 1)2

4
‖H‖2 =

n−r−1∑

j=1

(bj
10)

2.(4.22)

Theorem 4.7. The scalar normal curvature of an (r+1)-dimensional null scroll
M is given by

KN =
(r + 1)2

2
H2

n−r−1∑

i=1

r−1∑

t=1

(ci
0t)

2 −
(
r +

1
2
(r + 1)2H2

)((r + 1)2

4
H2

)

+ 2
n−r−1∑

i,j=1

r−1∑

t=1

(
(ci

0tb
j
1t)

2 − ci
0tb

j
1tc

j
0tb

i
1t − cj

0tb
i
10c

i
0tb

j
10 − bi

1tb
j
10b

j
1tb

i
10)

+ 2
n−r−1∑

i,j=1

r−1∑

t 6=k=1

(ci
0tb

j
1tc

i
0kb

j
1k + ci

0tb
j
1tc

j
0kb

i
1k),(4.23)

where H and r are the mean curvature vector field and scalar curvature of M ,
respectively and cj

0t, bj
10, bj

1t, 1 ≤ t ≤ r− 1, 1 ≤ j ≤ n− r− 1 are the elements of
the matrix Aξj .

Proof. It can be easily proved from the equation (1.10) and by the some calcula-
tions.

Corollary 4.6. The scalar normal curvature of a minimal (r + 1)-dimensional
generalized null scroll is given by

KN = 2
{ n−r−1∑

i,j=1

r−1∑

t=1

[(ci
0tb

j
1t)

2 − ci
0tb

j
1tc

j
0tb

i
1t − cj

0tb
i
10c

i
0tb

j
10 − bi

1tb
j
10b

j
1tb

i
10]

+
n−r−1∑

i,j=1

r−1∑

t6=k=1

(ci
0tb

j
1tc

i
0kb

j
1k + ci

0tb
j
1tc

j
0kb

i
1k)

}
(4.24)

Proof. If M is minimal, H = 0 and so the corollary is clear.

Corollary 4.7. If the generalized null scroll M is minimal and totally geodesic,
then the scalar normal curvature of M is identically zero.
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Proof. Since M is minimal and totally geodesic, Aξj
is the zero map for each

j = 1, . . . , n−r−1. So the scalar normal curvature of M is identically zero. This
completes the proof.
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