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THE STRUCTURE OF IDEALS IN THE
POLYNOMIAL RING OVER A PID

TRAN NGOC HOI, LE TRIEU PHONG, AND TRAN THI PHUONG

Introduction

The polynomial ring over a PID is not necessary to be a PID, but it is a com-
mutative Noetherian UFD. In the article, we study the structure of ideals in the
polynomial ring D[x] over a PID D. Beside the properties known for an arbitrary
commutative Noetherian UFD, ideals in D[x] also have special structures due to
the properties of ideals in D. We first examine the structure of prime, maximal,
primary, and irreducible ideals. Then, using the irredundant primary decompo-
sition in commutative Noetherian rings, we completely describe the structure of
arbitrary ideals in D[x].

1. The structure of prime and maximal ideals in D[x]

In this section, we will describe the structure of prime and maximal ideals in
D[x], where D is a PID.

Note that, in an arbitrary integral domain, every nontrivial prime element is
irreducible. The converse is not necessarily true. However, it holds in an UFD.
In this section, p is a nontrivial prime element of D. For an ideal I of D[x], if
there are no additional remarks, then I is nontrivial (i.e., I 6= 0 and I 6= D[x]).

For a nontrivial prime element p of D, D/pD is a field, so that D[x]/pD[x] ∼=
(D/pD)[x] is a PID.

Lemma 1.1. If J is an ideal of D[x] and p ∈ J , then J is prime if and only if
it can be represented as follows:

1) J = pD[x], or
2) J = 〈ϕ(x), p〉, where ϕ(x) ∈ D[x] such that ϕ(x) + pD[x] is irreducible in

D[x]/pD[x].

Proof. It is a fact that J is prime in D[x] if and only if J/pD[x] is prime in
D[x]/pD[x]. This is equivalent to

J/pD[x] = {0 + pD[x]} or J/pD[x] = 〈ϕ(x) + pD[x]〉,
where ϕ(x)+ pD[x] is a nontrivial prime element of D[x]/pD[x]. Thus J = pD[x]
or J = 〈ϕ(x), p〉.
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Theorem 1.1. (Description of prime ideals) An ideal J of D[x] is prime if and
only if J can be represented as follows:

1) J = 〈ψ(x)〉, where ψ(x) is irreducible in D[x], or
2) J = 〈ϕ(x), p〉, where ϕ(x) ∈ D[x] such that ϕ(x) + pD[x] is irreducible in

D[x]/pD[x].

In the first case (resp., second case), J is called a prime ideal of type 1 (resp.,
prime ideal of type 2).

Proof. (⇐=) If J = 〈ψ(x)〉, then J is obviously prime in D[x].
If J = 〈ϕ(x), p〉, then J is prime by Lemma 1.1.
(=⇒) Let J be prime in D[x], then J ∩ D is prime in D. Since D is a PID,

either J ∩D = {0} or J ∩D = pD.
If J ∩D = pD, then p ∈ J . By Lemma 1.1, J = pD[x] or J = 〈ϕ(x), p〉, where

ϕ(x) ∈ D[x] such that ϕ(x) + pD[x] is irreducible in D[x]/pD[x], and hence the
theorem is proved.

Suppose that J ∩D = {0}. Let f(x) be the polynomial of the least degree in
J \{0}. Since J ∩D = {0}, deg f(x) ≥ 1. We have f(x) = Vol(f(x))f1(x), where
Vol(f(x)) is the volume of f(x) and f1(x) is primitive in D[x]. Since J is prime,
either Vol(f(x)) ∈ J or f1(x) ∈ J . Because J ∩D = {0}, we have Vol f(x) 6∈ J ,
whence f1(x) ∈ J . Thus, f(x) can be considered as a primitive polynomial. We
claim that J = 〈f(x)〉. Since f(x) ∈ J , 〈f(x)〉 ⊂ J . Conversely, let g(x) ∈ J ,
we will prove g(x) ∈ 〈f(x)〉. Let F be the quotient field of D. By the Euclidean
algorithm, we have q(x), r(x) ∈ F [x] such that

g(x) = f(x)q(x) + r(x),

where deg r(x) < deg f(x) if r(x) 6= 0. Since q(x), r(x) can be written as

q(x) =
a

b
q1(x),

r(x) =
c

d
r1(x),

where a, c ∈ D; b, d ∈ D \ {0}; q1(x), r1(x) are primitive in D[x],

g(x) =
a

b
f(x)q1(x) +

c

d
r1(x),

or

(bd)g(x) = (ad)f(x)q1(x) + (bc)r1(x).

Because both (bd)g(x) and (ad)f(x)q1 are in J , we have (bc)r1(x) = b(cr1(x)) ∈ J .
Furthermore, since b 6= 0, cr1(x) ∈ J . If r(x) 6= 0, then deg r(x) = deg(cr1(x)),
and hence deg(cr1(x)) < deg f(x), which contradicts the definition of f(x). Thus,
r(x) = 0, whence

g(x) =
a

b
f(x)q1(x),
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or

bg(x) = af(x)q1(x).

Because both f(x) and q1(x) are primitive, f(x)q1(x) is primitive, whence
Vol(f(x)q1(x)) ∼ 1. Therefore b Vol(g(x)) ∼ a, so b divides a, whence q(x) ∈
D[x]. Hence g(x) = f(x)q(x) ∈< f(x) >. Consequently, J = 〈f(x)〉 where f(x)
is irreducible in D[x] for J is prime.

Remarks. 1) The first and second type of prime ideals do not coincide because
〈ϕ(x), p〉 is not principal. In fact, suppose, on the contrary, that I = 〈ϕ(x), p〉
is principal, i.e., I = 〈ψ(x)〉 for some irreducible ψ(x) ∈ D[x]. Since p ∈ I,
p = ψ(x)φ(x), where φ(x) ∈ D[x]. Since p is prime (and then irreducible), p
and ψ(x) are conjugate, whence 〈ψ(x)〉 = pD[x], or 〈ϕ(x), p〉 = pD[x]. It follows
that ϕ(x) ∈ pD[x] and hence ϕ(x) + pD[x] = 0 + pD[x], a contradiction. Thus,
I = 〈ϕ(x), p〉 is not principal and we have the conclusion.

2) The polynomial ϕ(x) in the prime ideal of type 2 has degϕ(x) ≥ 1, and we
can choose ϕ(x) monic and irreducible in D[x].

Lemma 1.2. J = 〈ϕ(x), p〉 is a maximal ideal of D[x], where ϕ(x) ∈ D[x] such
that ϕ(x) + pD[x] is irreducible in D[x]/pD[x].

Proof. Since J/pD[x] = 〈ϕ(x)+pD[x]〉, J/pD[x] is maximal in D[x]/pD[x]. Thus
J is maximal in D[x].

Lemma 1.3. Let D be a PID but not a field and I a principal ideal of D[x].
Then I is maximal in D[x] if and only if the following conditions are satisfied:

1) D has a finite number of nontrivial prime ideals, which are 〈p1〉, 〈p2〉, . . . , 〈pn〉
(n ≥ 1).

2) I = 〈axg(x)+1〉, where a =
n∏

i=1
pi, g(x) ∈ D[x], and axg(x)+1 is irreducible

in D[x].

Proof. (=⇒) Suppose I = 〈f(x)〉 is maximal in D[x]. Then f(x) is irreducible
in D[x]. First, we claim that deg f(x) ≥ 1. Suppose, on the contrary, that
deg f(x) = 0, or equivalently, f(x) = q is irreducible in D. We have I = 〈q〉 ⊂
〈x, q〉 and I 6= 〈x, q〉. By Lemma 1.2, 〈x, q〉 is maximal in D[x], so I is not
maximal, a contradiction. Thus deg f(x) ≥ 1.

Next, we are going to show that D has finite nontrivial prime ideals. Suppose,
on the contrary, that D has infinite nontrivial prime ideals, then D has infinite
nontrivial prime elements. Let b be the leading coefficient of f(x), then there
exists a nontrivial prime element p of D such that p does not divide b. Therefore
f(x) + pD[x] 6= 0 + pD[x] and deg(f(x) + pD[x]) ≥ 1, whence f(x) + pD[x] is
nontrivial in D[x]/pD[x]. We have I = 〈f(x)〉 ⊂ 〈f(x), p〉 and 〈f(x), p〉 6= D[x],
for f(x) + pD[x] is non-unit. Since deg f(x) ≥ 1, we have p 6∈ I. Thus, I is
properly contained in 〈f(x), p〉, which contradicts the definition of I . On the
other hand, since D is a PID, but not a field, D has at least a nontrivial prime
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ideal. Thus, D has finite nontrivial prime ideals, which are 〈p1〉, 〈p2〉, . . . , 〈pn〉
(n ≥ 1).

Set a =
n∏

i=1
pi. We claim that I = 〈axg(x)+1〉 for some g(x) ∈ D[x]. We write

f(x) in the form

f(x) = amxm + am−1x
m−1 + · · ·+ a1x + a0 (m ≥ 1, am 6= 0).

If a0 = 0, then

f(x) = amxm + am−1x
m−1 + · · ·+ a1x,

whence f(x) ⊂ 〈x〉, which implies I is properly contained in 〈x, p〉 for some
nontrivial prime element of D, a contradiction. Thus, a0 6= 0. If a0 is non unit,
then it has a prime factor q, whence a0 = qa′0 for some a′0 ∈ D \ {0}. We have

f(x) = amxm + am−1x
m−1 + · · ·+ a1x + qa′0,

whence I = 〈f(x)〉 is properly contained in 〈x, q〉, which contradicts the fact that
I is maximal in D[x]. Thus, a0 is a unit. Set d = g.c.d{am, . . . , a1}. We claim
that a divides d, or equivalently, that pi divides d for every i (1 ≤ i ≤ n). Suppose,
on the contrary, that there exists i0 (1 ≤ i0 ≤ n) such that pi0 does not divide
d, whence deg(f(x) + pi0D[x]) ≥ 1 and hence f(x) + pi0D[x] is neither zero nor
unit in D[x]/pi0D[x]. We have pi0 6∈ I, for deg f(x) ≥ 1 and 〈f(x), pi0〉 6= D[x],
for f(x) + pi0D[x] is non-unit. Therefore I = 〈f(x)〉 is properly contained in
〈f(x), pi0〉, which contradicts the maximum of I. Thus a divides d.

Summing up, f(x) can be written in the form

f(x) = axh(x) + a0,

or

f(x) = a0(a−1
0 axh(x) + 1).

Therefore,

I = 〈axg(x) + 1〉,
where g(x) = a−1

0 h(x). Since I is maximal, axg(x) + 1 is irreducible in D[x].
(⇐=) Let D have finite nontrivial prime ideals, namely 〈p1〉, 〈p2〉, . . . , 〈pn〉 (n ≥

1), and I = 〈axg(x) + 1〉, where a =
n∏

i=1
pi, g(x) ∈ D[x] such that axg(x) + 1 is

irreducible in D[x]. Set f(x) = axg(x) + 1, whence f(x) is primitive. We claim
that I = 〈f(x)〉 is maximal. Suppose, on the contrary, that I is not maximal.
It follows that there exists J 6= D[x] such that I is properly contained in J .
Choose h(x) ∈ J \ I and let F be the quotient field of D. First, we claim
that f(x)F [x] is properly contained in f(x)F [x] + h(x)F [x]. Clearly, f(x)F [x] ⊂
f(x)F [x] + h(x)F [x]. In addition, h(x) 6∈ f(x)F [x]. Suppose, on the contrary,
that h(x) ∈ f(x)F [x], and hence h(x) = f(x)kF (x), where kF (x) ∈ F [x]. Since
kF (x) ∈ F [x],

kF (x) =
c

d
kD(x),
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where c, d ∈ D \ {0} and kD(x) is primitive in D[x]. Thus

h(x) = f(x)(
c

d
kD(x)),

or

dh(x) = c(f(x)kD(x)).

Since f(x) and kD(x) are primitive, so is f(x)kD(x). It follows from the last
equality that

dVol(h(x)) ∼ c.

Then d divides c, and hence kF (x) ∈ D[x], whence h(x) ∈ 〈f(x)〉 = I, a con-
tradiction. Thus f(x)F [x] is properly contained in f(x)F [x] + h(x)F [x]. Next,
since f(x) is irreducible in D[x], in F [x], whence f(x)F [x] is maximal in F [x].
Combining with the previous paragraph, we have f(x)F [x] + h(x)F [x] = F [x],
whence there exists m ∈ D \ {0} and u(x), v(x) ∈ D[x] such that

1 = f(x)
u(x)
m

+ h(x)
v(x)
m

,

or

m = f(x)u(x) + h(x)v(x).

Therefore, m ∈ f(x)D[x] + h(x)D[x]. Since m 6= 0, m can be factorized as

m = ε
n∏

i=1

pαi
i ,

where ε is unit, αi ≥ 0, and pi are prime. Choose r = 1 + 2 max{α1, α2, . . . , αn},
so r is odd, and whence

(axg(x))r + 1 = (axg(x) + 1)ζ(x),

where ζ(x) ∈ D[x]. Thus

(axg(x))r + 1 ∈ I

and hence

(axg(x))r + 1 ∈ f(x)D[x] + h(x)D[x].(1)

On the other hand

ar =
n∏

i=1

pr
i .

Because r ≥ αi for all 1 ≤ i ≤ n, ar ∈ ( n∏
i=1

pαi
i

)
D[x] = mD[x]. Since mD[x] ⊂

f(x)D[x] + h(x)D[x], ar ∈ f(x)D[x] + h(x)D[x], whence

(axg(x))r = ar(xg(x))r ∈ f(x)D[x] + h(x)D[x].(2)

From (1) and (2), we have 1 ∈ f(x)D[x] + h(x)D[x]. It follows that 1 ∈ J (since
f(x)D[x] + h(x)D[x] ⊂ J), whence J = D[x], which contradicts the fact that J
is maximal in D[x]. Thus, I = 〈f(x)〉 is maximal.
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Theorem 1.2. (Description of maximal ideals) Let D be a PID and I an ideal
of D[x]. Then

(i) If D has no nontrivial prime ideal, or equivalently, D is a field, then I is
maximal if and only if I = 〈ψ(x)〉, where ψ(x) is irreducible in D[x].

(ii) If D has a finite number of nontrivial prime ideals, namely 〈p1〉, 〈p2〉, . . . , 〈pn〉
(n ≥ 1), then I is maximal if and only if it can be written in one of the following
forms:

1) I = 〈axg(x) + 1〉, where a =
n∏

i=1
pi, g(x) ∈ D[x] such that axg(x) + 1 is

irreducible in D[x].
2) I = 〈ϕ(x), p〉, where p is nonzero prime element of D, ϕ(x) ∈ D[x] such

that ϕ(x) + pD[x] is irreducible in D[x]/pD[x].
(iii) If D has an infinite number of prime ideals, then I is maximal if and only

if I = 〈ϕ(x), p〉, where p is a nonzero prime element of D, ϕ(x) ∈ D[x] such that
ϕ(x) + pD[x] is irreducible in D[x]/pD[x].

Proof. (i) It is easy to see that D is a field and hence D[x] is a PID, so conclusion
follows.

(ii) Let D have a finite number of nontrivial prime ideals, namely 〈p1〉, 〈p2〉, . . . ,
〈pn〉 (n ≥ 1).

(=⇒) Let I be maximal and hence prime. By Theorem 1.1, either I = 〈ψ(x)〉,
where ψ(x) is irreducible in D[x], or I = 〈ϕ(x), p〉, where ϕ(x) ∈ D[x] such
that ϕ(x) + pD[x] is irreducible in D[x]/pD[x]. If I is not of the second form,

then I = 〈ψ(x)〉, whence by Lemma 1.3, I = 〈axg(x) + 1〉, where a =
n∏

i=1
pi,

g(x) ∈ D[x] such that axg(x) + 1 is irreducible.
(⇐=) By Lemma 1.3, the ideal in 1) is maximal. By Lemma 1.2, the ideal in

2) is maximal.
(iii) Let D have an infinite number of prime ideals.
(=⇒) Let I be maximal and hence I is prime. By Theorem 1.1, either I =

〈ψ(x)〉, where ψ(x) is irreducible, or I = 〈ϕ(x), p〉, where ϕ(x) ∈ D[x] such that
ϕ(x) + pD[x] is irreducible in D[x]/pD[x]. Since D has infinite prime ideals,
〈ψ(x)〉 is not maximal (Lemma 1.3). By Remark 1) after Theorem 1.1, 〈ϕ(x), p〉
is not principal, whence I = 〈ϕ(x), p〉.

(⇐=) It follows from Lemma 1.2.

Remark. We can always establish a PID having only a finite number of non-
trivial prime ideals. In fact, consider the ring of integers Z, and distinct nonzero
prime elements p1, p2, . . . , pn of Z. Set M = Z \ (〈p1, p2, . . . , pn〉), then M is a
multiplicative set of Z. Consider the localization ZM of Z at M , then it is a PID
having exactly n nontrivial prime ideals

〈p1

1

〉
,
〈p2

1

〉
, . . . ,

〈pn

1

〉
.
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2. The structure of primary and irreducible ideals in D[x]

An arbitrary ideal of D[x] can be represented by means of primary ideals or
irreducible ideals. In order to describe the structure of an ideal of D[x], we
examine the structure of primary and irreducible ideals of D[x] first.

In this section, p is a nontrival prime elememt in D, ϕ(x) ∈ D[x] such that
ϕ(x) + pD[x] is irreducible in D[x]/pD[x], and ψ(x) is irreducible in D[x].

If Q is a primary ideal of D[x], then Rad(Q) is a prime one. Thus, by Theorem
1.1, Rad(Q) = 〈ψ(x)〉 or Rad(Q) = 〈ϕ(x), p〉. A primary ideal Q is called primary
of type 1 (resp., primary of type 2) if Rad(Q) is prime of type 1 (resp., prime of
type 2).

Theorem 2.1. (Description of primary ideals of type 1) An ideal Q of D[x] is
primary of type 1 if and only if Q = 〈ψn(x)〉, where n is a positive integer.

Proof. (=⇒) Suppose that Q is a primary ideal of type 1. According to the
definition above, Rad(Q) = 〈ψ(x)〉. Hence we have ψ(x) ∈ Rad(Q), so there
exists a positive integer n such that ψn(x) ∈ Q. We can consider n as the least
positive integer satisfying that condition. Clearly, 〈ψn(x)〉 ⊂ Q. Conversely, if
f(x) ∈ Q ⊂ Rad(Q) = 〈ψ(x)〉, then f(x) = ψ(x)f1(x), where f1(x) ∈ D[x]. By
induction, f(x) can be written in the form

f(x) = ψi(x)fi(x),

where 1 ≤ i ≤ n and fi(x) ∈ D[x].
When i = n, we have f(x) = ψn(x)fn ∈ 〈ψn(x)〉. Hence Q ⊂ 〈ψn(x)〉, whence

Q = 〈ψn(x)〉.
(⇐=) Suppose that Q = 〈ψn(x)〉, where n > 0. It is easy to prove Q is primary

and Rad(Q) = 〈ψ(x)〉.
Theorem 2.2. (Description of primary ideals of type 2) An ideal Q of D[x] is
primary of type 2 if and only if Q can be written in the form

Q = 〈ϕm(x), pn, ϕ(x)h1(x) + pk1(x), . . . , ϕ(x)ht(x) + pkt(x)〉,
where m,n are positive integers, t is a non-negative integer, hi(x), ki(x) ∈ D[x]
(1 ≤ i ≤ t). In addition, Rad(Q) = 〈ϕ(x), p〉 and we can choose hi(x), ki(x) such
that

deghi(x) ≤ degϕm−1(x),

deg ki(x) ≤ degϕm(x).

Proof. (=⇒) Since Q is a primary ideal of type 2, Rad(Q) = 〈ϕ(x), p〉, whence
there are positive integers m,n such that ϕ(x), pn ∈ Q. Because D[x] is a Noe-
therian ring, Q is finitely generated

Q = 〈f1(x), f2(x), . . . , fr(x)〉,
where r ≥ 1. Therefore,

Q = 〈ϕm(x), pn, f1(x), f2(x), . . . , fr(x)〉.
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Since Q ⊂ Rad(Q), fi(x) ∈ Rad(Q) = 〈ϕ(x), p〉. Hence fi(x) = ϕ(x)hi(x) +
pki(x), where hi(x), ki(x) ∈ D[x].

(⇐=) Since 1 6∈ Q, Q 6= D[x]. Because ϕm(x), pn ∈ Q, 〈ϕ(x), p〉 ⊂ Rad(Q),
whence Rad(Q) = 〈ϕ(x), p〉. Therefore, Q is primary of type 2. Note that we can
choose ϕ(x) such that it is a monic polynomial, so ϕm(x), ϕm−1(x) are monic.
The last statement in the theorem comes from dividing hi(x) by ϕm−1(x) and
ki(x) by ϕm(x).

In view of Theorem 2.2, we have the following corollary

Corollary 2.1. If an ideal Q of D[x] satisfies the condition Rad(Q) = 〈ϕ(x), p〉,
then Q is primary of type 2, and furthermore

(i) if p ∈ Q, then Q = 〈ϕn(x), p〉;
(ii) if ϕ(x) ∈ Q, then Q = 〈ϕ(x), pn〉,

where n is a positive integer.

Because D[x] is a commutative Noetherian ring with identity, every irreducible
ideal is primary. Therefore, in order to describe all irreducible ideals of D[x], we
only need to consider ideals in the set of primary ideals. An irreducible ideal Q
of D[x] is called irreducible of type 1 (resp., irreducible of type 2) if Q is primary
of type 1 (resp., primary of type 2).

Theorem 2.3. (Description of irreducible ideals of type 1) Let Q be an ideal of
D[x]. Then, Q is irreducible of type 1 if only if Q is primary of type 1.

Proof. It is sufficient to prove the converse. Let Q be a primary ideal of type 1.
Suppose that Q is reducible. Since Q is a primary ideal of type 1, Q = 〈[ψk(x)〉
and Rad(Q) = 〈ψ(x)〉. Because Q is reducible in the Noetherian ring D[x],
there are primary ideals Q1, Q2, Q1 6= Q 6= Q2 such that Q = Q1 ∩ Q2 and
Rad(Q1) = Rad(Q2) = 〈ψ(x)〉. By Theorem 2.1, there are positive integers
r, s such that Q1 = 〈ψr(x)〉, Q2 = 〈ψs(x)〉. Without loss of generality, we can
assume that r ≥ s, so Q1 ⊂ Q2. Thus, Q = Q1, a contradiction. Therefore Q is
irreducible. Furthermore, since Q is a primary ideal of type 1, Q is irreducible of
type 1.

Thus, by Theorem 2.3, every primary ideal of type 1 is irreducible. How-
ever, a primary ideal of type 2 is not necessarily irreducible. For instance,
Q = 〈x2, px, p2 > is a primary ideal of type 2 in Z[x]. Since it can be writ-
ten in the form

Q = 〈x, p2〉 ∩ 〈x2, p〉,
it is reducible.

In order to describe the structure of irreducible ideals of type 2, we need the
following lemmas

Lemma 2.1. If Q = 〈ϕr(x), ps〉, with r, s > 0, then r, s are respectively the least
positive integers such that ϕr(x), ps ∈ Q.
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We omit the proof, which is trivial.

Lemma 2.2. Let Q be a primary ideal of type 2 with Rad(Q) = 〈ϕ(x), p〉. Let m,
n be the least positive integers such that ϕm(x), pn ∈ Q. Then there are positive
integer k, l with k ≤ m, l ≤ n satisfying

Q : 〈ϕm−1(x)〉 = 〈ϕ(x), pk〉,
Q : 〈pn−1〉 = 〈ϕl(x), p〉.

Proof. We prove the first equality. If m = 1, then

Q : 〈[ϕ(x)]m−1〉 = Q : R

= Q.

Since ϕ1(x) ∈ Q, Q = 〈ϕ(x), pr〉, with r ≥ 0, by Corollary 2.1. Moreover, it is
easy to see that r is the least positive integer such that ϕr(x) ∈ Q, whence r = n.

If m ≥ 1, then ϕ(x) ∈ Q : 〈ϕm−1(x)〉. Since ϕm−1(x) 6∈ Q, Q : ϕm−1(x) is
〈ϕ(x), p〉-primary. By Corollary 2.1, we have

Q : ϕm−1(x) = 〈ϕ(x), pk〉,
where k is a positive integer. Obviously, k is the least positive integer such that
pk ∈ 〈ϕ(x), pk〉. Besides, pn ∈ Q ⊂ Q : ϕm−1(x) = 〈ϕ(x), pk〉, so k ≤ n. The first
equality is completely proved.

The second equality is proved similarly.

Lemma 2.3. Let Q be an ideal of D[x] satisfying ϕr(x), ps ∈ Q, where r, s are
positive integers; moreover, Q : 〈ϕr−1(x)〉 = 〈ϕ(x), ps〉 or Q : 〈ps−1〉 = 〈ϕr(x), p〉.
Then Q = 〈ϕr(x), ps〉.

Proof. It suffices to prove that Q ⊂ 〈ϕr(x), ps〉.
We consider the case of Q : 〈ϕr−1(x)〉 = 〈ϕ(x), ps〉. If f(x) ∈ Q, then f(x)Q :

〈ϕr−1(x)〉 = 〈ϕ(x), ps〉, whence f(x) = ϕ(x)u1(x)+ psv1(x), where u1(x), v1(x) ∈
D[x]. By induction on i (1 ≤ i ≤ r), we have the equality

f(x) = ϕi(x)ui(x) + psvi(x),

where ui(x), vi(x) ∈ D[x].
With i = r, we have

f(x) = ϕr(x)ur(x) + psvr(x) ∈ 〈ϕr(x), ps〉.
Therefore Q ⊂ 〈ϕr(x), ps〉.

The case Q : 〈ps−1〉 = 〈ϕr(x), p〉 is proved similarly.
Summing up, Q = 〈ϕr(x), ps〉 and the proof is completed.

Lemma 2.4. The ideal Q = 〈ϕ(x), pn〉 is irreducible in D[x] for every positive
integer n.
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Proof. Suppose that Q is reducible, or equivalently, there are two ideals Q1, Q2

such that

Q = Q1 ∩Q2,

where Q1 6= Q 6= Q2.
Since ϕ(x), pn ∈ Q, ϕ(x), pn ∈ Q1, Q2, whence Q1, Q2 are primary and

Rad(Q1) = 〈ϕ(x), p〉 = Rad(Q2). By Corollary 2.1, there are positive integer n1,
n2 such that

Q1 = 〈ϕ(x), pn1〉,
Q2 = 〈ϕ(x), pn2〉.

Thus,

〈ϕ(x), pn〉 = 〈ϕ(x), pn1〉 ∩ 〈ϕ(x), pn2〉.
Without loss of generality, we may assume n1 ≥ n2, whence Q1 ⊂ Q2. Therefore
Q = Q1, a contradiction. The proof is completed.

Lemma 2.5. The ideal Q = 〈ϕm(x), pn〉 is irreducible in D[x] for every positive
integers m,n.

Proof. The case m = 1 results from Lemma 2.4.
Now let m > 1. By Lemma 2.1 and Lemma 2.2, we have

Q : 〈ϕm−1(x)〉 = 〈ϕ(x), pk〉,
where k ≤ n. We are going to prove k = n. Suppose that k < n. Since pk ∈
〈ϕ(x), pk〉 = Q : 〈ϕm−1(x)]〉, pkϕm−1(x)] ∈ Q, whence there are f(x), g(x) ∈ D[x]
such that

pkϕm−1(x) = ϕm(x)f(x) + png(x),

or

pk(ϕm−1(x)− pn−kg(x)) = ϕm(x)f(x).

Hence pk divides ϕm(x)f(x). Since pk and ϕm(x) are relatively prime, pk divides
f(x), whence there exists h(x) ∈ D[x] such that

f(x) = pkh(x).

Therefore

pk(ϕm−1(x)− pn−kg(x)) = pk(ϕm(x)h(x)),

or equivalently,

ϕm−1(x)− pn−kg(x) = ϕm(x)h(x),

so

ϕm−1(x) + pD[x] = ϕm(x)h(x) + pD[x],

or

(ϕ(x) + pD[x])m−1 = (ϕ(x) + pD[x])m(h(x) + pD[x]),
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whence

1 + pD[x](ϕ(x) + pD[x])(h(x) + pD[x]).

The last equality means ϕ(x) + pD[x] is unit, a contradiction. Thus k = n.
We will now prove Q is irreducible. Suppose, on the contrary, that Q is re-

ducible. Then there exist Q1, Q2, ideals of D[x], such that

Q = Q1 ∩Q2,

where Q1 6= Q 6= Q2. Thus

Q : 〈(ϕ(x))m−1〉 = (Q1 : 〈(ϕ(x))m−1〉) ∩ (Q2 : 〈(ϕ(x))m−1〉),
or

〈ϕ(x), pn〉 = (Q1 : 〈(ϕ(x))m−1〉) ∩ (Q2 : 〈(ϕ(x))m−1〉).
Since 〈ϕ(x), pn〉 is irreducible (Lemma 2.4), either Q1 : 〈(ϕ(x))m−1〉 = 〈ϕ(x), pn〉
or Q2 : 〈(ϕ(x))m−1〉 = 〈ϕ(x), pn〉. Furthermore, since ϕm(x), pn ∈ Q1, Q2,
Q1 = 〈ϕm(x), pn〉 or Q2 = 〈ϕm(x), pn〉 (Lemma 2.3). Therefore Q1 = Q or
Q2 = Q, a contradiction. Thus, Q is irreducible in D[x].

Does every irreducible ideal Q of type 2 with Rad(Q) = 〈ϕ(x), p〉 have the
form of 〈ϕm(x), pn〉, in sense of Lemma 2.5 ? The answer is affirmative and we
need some more lemmas.

Lemma 2.6. Consider the local ring RP , where R = D[x] and P = 〈ϕ(x), p〉.Then

〈ϕk(x), pl〉P = 〈ϕk′(x), pl′〉P if and only if k = k′ and l = l′.

Lemma 2.7. If Q = 〈ϕr(x), ps〉, where r, s are two positive integers, then

Q : 〈p〉 = 〈ϕr(x), ps−1〉,
Q : 〈ϕ(x)〉 = 〈ϕr−1(x), ps〉.

Moreover, if M is a multiplicative set of D[x], then

QM : 〈p〉M = 〈ϕr(x), ps−1〉M ,

QM : 〈ϕ(x)〉M = 〈ϕr−1(x), ps〉M .

We omit the proofs of the above lemmas, which are easy.
The two following lemmas are in [1]

Lemma 2.8. If R is a commutative local Noetherian ring with identity and Q is
an irreducible ideal of R such that Rad(Q) is maximal, then

Q : (Q : A) = A

for every ideal A containing Q.

Lemma 2.9. Let R be a commutative local Noetherian ring with identity, Q be
an irreducible ideal of R, and A be an ideal of R containing Q. Then A is
irreducible if and only if Q : A is principal mod Q.
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Lemma 2.10. If Q is an irreducible ideal of D[x] with P = Rad(Q) = 〈ϕ(x), p〉,
then there are positive integers m,n such that

Q = 〈ϕm(x), pn〉.

Proof. We put

S =
{

Q : Q is irreducible in D[x], Rad(Q) = 〈ϕ(x), p〉, Q 6= 〈ϕa(x), pb〉
for any positive integers a, b

}
.

We are going to show S = ∅. Suppose, on the contrary, that S 6= ∅. Since D[x]
is Noetherian ring, S has a maximal element, namely Q0. Because Rad(Q0) =
〈ϕ(x), p〉, there are positive integers m,n such that ϕm(x), pn ∈ Q0, and we
consider m,n as the least positive integers satisfying these properties.

If m = 1, then Q0 = 〈ϕ(x), pn〉 by Corollary 2.1, a contradiction.
If n = 1, then Q0 = 〈ϕm(x), p〉 by Corollary 2.1, a contradiction.
If m > 1 and n > 1 then

Q0 : 〈ϕm−1(x)〉 = 〈ϕ(x), pk〉,(3)

Q0 : 〈pn−1〉 = 〈ϕl(x), p〉,(4)

where 1 ≤ k ≤ n and 1 ≤ l ≤ m (Lemma 2.2).
If k = n or l = m, Q0 = 〈ϕm(x), pn〉 by Lemma 2.3, a contradiction.
We consider the case k < n and l < m.
We put

S ′ =
{
QP :QP is irreducible in (D[x])P , Rad(QP ) = (〈ϕ(x), p〉)P , and

QP 6= (〈ϕa(x), pb〉)P for any positive integer a, b
}
.

We have (Q0)P is a maximal element of S ′ . On the contrary, suppose there exists
(Q1)P belonging to S ′ such that (Q0)P ⊂ (Q1)P and (Q0)P 6= (Q1)P . Firstly, we
prove Q1 ∈ S. Because (Q1)P is irreducible, Q1 is irreducible and Q1 ⊂ P , whence
Rad(Q1) ⊂ P . Furthermore, since Rad((Q1)P ) = (Rad(Q1))P = (〈ϕ(x), p〉)P and
Rad(Q1) is prime, we have Rad(Q1) = 〈ϕ(x)〉, p). Moreover, Q1 6= 〈ϕa(x), pb〉 for
any positive integers a, b. Otherwise, (Q1)P = (〈ϕa0(x), pb0〉)P , a contradiction.
Thus Q1 ∈ S.

We prove Q0 ⊂ Q1. Suppose that Q0 6⊂ Q1. Then there exists u ∈ Q0 \ Q1,
whence

u

1
∈ (Q0)P , so

u

1
∈ (Q1)P . Hence there are g ∈ Q1, h 6∈ P such that

u

1
=

g

h
. Thus uh = g ∈ Q1. Since Q1 is primary and h 6∈ P = Rad(Q1), u ∈ Q1,

a contradiction. Thus Q0 ⊂ Q1.
Since Q0 is a maximal element of S, Q0 = Q1, whence (Q0)P = (Q1)P . Thus

(Q0)P is a maximal element of S ′.
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Next, we prove that there are positive integers r, s, u, v such that

(Q0 : 〈p〉)P = 〈ϕr(x), ps〉P ,(5)

(Q0 : 〈ϕ(x)〉)P = 〈ϕu(x), pv〉P .(6)

Since m,n are the least positive integers such that ϕm(x), pn ∈ Q and m,n > 1,

(Q0)P ⊆ (Q0 : 〈p〉)P , (Q0)P 6= (Q0 : 〈p〉)P ,

(Q0)P ⊆ (Q0 : 〈ϕ(x)〉)P , (Q0)P 6= (Q0 : 〈ϕ(x)〉)P .

Since (Q0)P is irreducible, by Lemma 2.8,

(Q0)P : [(Q0)P : (Q0 + 〈p〉)P ] = (Q0 + 〈p〉)P ,

or

(Q0)P : [(Q0)P : (Q0 + 〈p〉)P ] = (Q0)P + 〈p〉P .

By the last equality and Lemma 2.9, (Q0)P : (Q0 + 〈p〉)P is irreducible. Besides

(Q0)P : (Q0 + 〈p〉)P = (Q0)P : [(Q0)P + 〈p〉P ]
= [(Q0)P : (Q0)P ] ∩ [(Q0)P : 〈p〉P ]
= (Q0)P : 〈p〉P ,

so (Q0)P : 〈p〉P is irreducible. Because Rad(Q0)P = 〈ϕ(x), p〉P , Rad((Q0)P :<
p >P ) = 〈ϕ(x), p〉P . Thus, (Q0 : 〈p〉)P is irreducible in (D[x])P and Rad(Q0 :
〈p〉)P = 〈ϕ(x), p〉. Furthermore, since (Q0)P , a maximal element of S ′ , is properly
contained in (Q0 : 〈p〉)P , there are positive integers r, s such that

(Q0 : 〈p〉)P = 〈ϕr(x), ps〉P .

The last equality is (5). Similarly, we have (6).
Next, we will prove

(Q0 : 〈pi〉)P = 〈ϕr(x), ps−i+1〉P
by induction on i (1 ≤ i ≤ n− 1).

With i = 1, by (5), we have the equality. Suppose that the equality is true
with i = j (1 ≤ j ≤ n− 2), or equivalently

(Q0 : 〈pj〉)P = 〈ϕr(x), ps−j+1〉P .

Hence
ps−j+1

1
pj

1
=

ps+1

1
∈ (Q0)P . Therefore,

ps+1

1
=

f(x)
w(x)

, where f(x) ∈ Q0,

w(x) ∈ D[x] \ P , or we have ps+1w(x) = f(x) ∈ Q0. Since Q0 is primary and
w(x) 6∈ Rad(Q0) = P , ps+1 ∈ Q0. Since n is the least positive integer such that
pn ∈ Q0, we have s + 1 ≥ n. For 1 ≤ j ≤ n− 2 , (s + 1)− j = s− j + 1 ≥ 2,
and
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(Q0 : 〈pj+1〉)P = [(Q0 : 〈pj〉) : 〈p〉]P
= (Q0 : 〈pj〉)P : 〈p〉P
= 〈ϕr(x), ps−j+1〉P : 〈p〉P
= 〈ϕr(x), ps−j〉P .

Thus, the equality occurs in the case of i = j + 1, whence it is proved. With
i = n− 1, we have

(Q0 : 〈pn−1〉)P = 〈ϕr(x), ps−n+2〉P .(7)

Similarly, by (6) and induction,

(Q0 : 〈ϕm−1(x)〉)P = 〈ϕu−m+2(x), pv〉P .(8)

By (3), (4), (7), and (8), we have

〈ϕ`(x), p〉P = 〈ϕr(x), ps−n+2〉P
〈ϕ(x), pk〉P = 〈ϕu−m+2(x), pv〉P

By Lemma 2.6, we have

r = l, s− n + 2 = 1, v = k, u−m + 2 = 1.

Or

r = l, s = n− 1, v = k, u = m− 1.(9)

By (5), (6), and (9), we have

(Q0 : 〈p〉)P = 〈ϕl(x), pn−1〉P ,

(Q0 : 〈ϕ(x)〉)P = 〈ϕm−1(x), pk〉P .

By the equalities above and Lemma 2.7,

(Q0 : 〈p〉)P : 〈ϕ(x)〉P = 〈ϕl−1(x), pn−1〉P ,

(Q0 : 〈ϕ(x)〉)P : 〈p〉P = 〈ϕm−1(x), pk−1〉P .

Since D[x] is commutative,

(Q0 : 〈p〉)P : 〈ϕ(x)〉P = (Q0 : 〈ϕ(x)〉)P : 〈p〉P ,

whence

〈ϕl−1(x), pn−1〉P = 〈ϕm−1(x), pk−1〉P .

By the last equality and Lemma 2.6, we have

l − 1 = m− 1, n− 1 = k − 1.

Or l = m, k = n, a contradiction with our case.
Summing up, S = ∅ and the proof is completed.

By Lemma 2.1, Lemma 2.5, and Lemma 2.10, we have
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Theorem 2.4. (Description of irreducible ideals of type 2) An ideal Q of D[x]
is irreducible of type 2 if and only if

Q = 〈ϕm(x), pn〉,
where m,n are positive integers. Furthermore, Rad(Q) = 〈ϕ(x), p〉, and m,n are
the least positive integers such that ϕm(x), pn ∈ Q

Thus, the structure of irreducible ideals in D[x] is described clearly. By this
description, each primary ideal of type 1 is irreducible of type 1. A primary
ideal of type 2, however, does not have to be an irreducible ideal of type 2. The
following consequence of Theorem 2.4 shows another description of primary ideals
of type 2, beside the description of Theorem 2.2.

Corollary 2.2. An ideal Q of D[x] is primary of type 2 if and only if

Q =
⋂

i

〈ϕmi(x), pni〉,

where i runs on a finite set of positive integer numbers. Moreover, Rad(Q) =
〈ϕ(x), p〉.

3. The structure of ideals in D[x]

In this section, we will describe the structure of an arbitrary ideal of D[x].
Since D[x] is commutative and Noetherian, each ideal of D[x] is an intersection
of a finite number of irreducible ideals. Therefore, combining with the theorem
describing the structure of irreducible ideals in D[x], we have following theorem
about the structure of an arbitrary ideal of D[x].

Theorem 3.1. An ideal I of D[x] can be represented by the form

I =
( r⋂

i=1

〈[ψi(x)]ki〉
) ⋂( s⋂

j=1

〈[ϕj(x)]mj , p
nj

j 〉
)
,

where r, s, ki (1 ≤ i ≤ r), mj, nj (1 ≤ j ≤ s) are positive integers, ψi(x) is
irreducible in D[x], pj is nonzero prime in D, ϕj(x) ∈ D[x] such that ϕj(x) +
pjD[x] is irreducible in D[x]/pjD[x].

Remark. The representation of ideal I in Theorem 3.1 is not unique. For
example, with D = Z, in Z[x], ideal I can be written in two distinct forms

I = 〈p〉 ∩ 〈x− p, p2〉
and

I = 〈p〉 ∩ 〈x− 2p, p2〉.

We are going to consider a unique representation of an arbitrary ideal of D[x]
via primary ideals. First, we have some lemmas.



200 TRAN NGOC HOI, LE TRIEU PHONG, AND TRAN THI PHUONG

Lemma 3.1. Let I1, I2, . . . , In be primary ideals of the same type (either type 1
or type 2) such that Rad(Ii) (1 ≤ i ≤ n) are distinct. Then

I1I2 · · · In = I1 ∩ I2 ∩ · · · ∩ In.

Proof. Clearly, we have

I1I2 · · · In ⊂ I1 ∩ I2 ∩ · · · ∩ In.

If Ii (1 ≤ i ≤ n) are primary ideals of type 1, then Ii = 〈[ψi(x)]ki〉, where ψi(x)
are irreducible and ki are positive. Since Rad(Ii) (1 ≤ i ≤ n) are distinct, ψi(x)
(1 ≤ i ≤ n) are pairwise prime. If f(x) ∈ I1∩I2∩· · ·∩In, then f(x) ∈ Ii, whence

[ψi(x)]ki divides f(x) for every 1 ≤ i ≤ n. Thus,
n∏

i=1
[ψi(x)]ki divides f(x) and

hence

f(x) ∈ 〈
n∏

i=1

[ψi(x)]ki〉 =
n∏

i=1

〈ψi(x)〉 =
n∏

i=1

Ii.

Therefore

I1 ∩ I2 ∩ · · · ∩ In ⊂ I1I2 . . . In

and hence

I1 ∩ I2 ∩ · · · ∩ In = I1I2 . . . In.

If Ii (1 ≤ i ≤ n) are primary ideals of type 2, then Rad(Ii) (1 ≤ i ≤ n) are
maximal in D[x]. Furthermore, since Rad(Ii) (1 ≤ i ≤ n) are distinct, they are
pairwise prime, whence

I1 ∩ I2 ∩ · · · ∩ In = I1I2 . . . In.

Lemma 3.2. If I, J are P -primary ideals of D[x], then IJ is a P -primary one.

Lemma 3.3. If I is a principal ideal of D[x], then I can be uniquely written as

I = I1I2 . . . In,

where n is a positive integer, and Ii (1 ≤ i ≤ n) are primary ideals of type 1 such
that Rad(Ii) (1 ≤ i ≤ n) are distinct.

We omit the proofs, which are easy.

Lemma 3.4. Let J be an ideal of D[x]. If J is not contained in any nontrivial
principal ideal, then J can be uniquely written in the form

J = J1J2 . . . Jk,

where k is positive and Ji (1 ≤ i ≤ k) are primary ideals of type 2 such that
Rad(Ji) (1 ≤ i ≤ k) are distinct.
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Proof. Consider the irredundant primary representation of J

J = J1 ∩ J2 ∩ · · · ∩ Jk.

Since J is not contained in any nontrivial principal ideal, also Ji (1 ≤ i ≤ k).
Therefore Ji (1 ≤ i ≤ k) are primary ideals of type 2. By Lemma 3.1,

J = J1J2 . . . Jk.

We claim that this representation of J is unique. In fact, suppose that there are
J ′1, J

′
2, . . . , J

′
l such that

J = J ′1J
′
2 · · ·J ′l ,

where J ′j (1 ≤ j ≤ l) are primary ideals of type 2 and Rad(J ′j) (1 ≤ j ≤ l) are
distinct. By Lemma 3.1,

J ′1J
′
2 · · ·J ′l = J ′1 ∩ J ′2 ∩ · · · ∩ J ′l ,

whence

J1 ∩ J2 ∩ · · · ∩ Jk = J = J ′1 ∩ J ′2 ∩ · · · ∩ J ′l .

Since Rad(J ′j) (1 ≤ j ≤ l) are distinct, J = J ′1 ∩ J ′2 ∩ · · · ∩ J ′l is an irredundant
primary representation of J . Indeed, it is necessary to check that

⋂
1≤j≤l,j 6=i

J ′j 6⊂
J ′i . Suppose, on the contrary, that

⋂
1≤j≤l,j 6=i

J ′j ⊂ J ′i , then
⋂

1≤j≤l,j 6=i

Rad(J ′j) ⊂
Rad(J ′i). Since Rad(J ′i) is maximal (and then, prime), there exists j0 such that
Rad(Jj′0) = Rad(J ′i), a contradiction. Thus, J has two irredundant primary
representations. Because Rad(Jj) (1 ≤ j ≤ k) are maximal, they are isolated
prime ideals, whence k = l and Ji = J ′i (after reordering if necessary) for every
1 ≤ i ≤ k.

Lemma 3.5. Let I be an ideal of D[x]. Then, there exist uniquely ideals I ′, I ′′
such that

I = I ′I ′′,

where I ′ is principal and I ′′ is not contained in any nontrivial principle ideal.

Proof. Since D[x] is a Noetherian ring, I is finitely generated

I = 〈f1(x), f2(x), . . . , fn(x)〉.
Put f(x) = g.c.d(f1(x), f2(x), . . . , fn(x)). We claim that

I = 〈f(x)〉(I : 〈f(x)〉).
Clearly, I ⊂ 〈f(x)〉, so if g(x) ∈ I, then g(x) ∈ 〈f(x)〉, whence g(x) = f(x)h(x),
where h(x) ∈ D[x], and hence h(x) ∈ I : 〈f(x)〉. Thus g(x) ∈ 〈f(x)〉(I : 〈f(x)〉)
and then I ⊂ 〈f(x)〉(I : 〈f(x)〉). Conversely, if g(x) ∈ 〈f(x)〉(I : 〈f(x)〉) then
g(x) = g1(x)g2(x), where g1(x) ∈ 〈f(x)〉, g2(x) ∈ I : 〈f(x)〉. Therefore g1(x) =
h(x)f(x) and then g(x) = h(x)(f(x)g2(x)) ∈ I. Thus, f(x)(I : 〈f(x)〉) ⊂ I and
hence I = f(x)(I : 〈f(x)〉).
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We claim that I : 〈f(x)〉 is not contained in any nontrivial principal ideal.
Suppose, on the contrary, that I : 〈f(x)〉 ⊂ 〈g(x)〉, where g(x) is nonzero and

nonunit in D[x]. Since f(x)
fi(x)
f(x)

= fi(x) ∈ I,
fi(x)
f(x)

∈ I : 〈f(x)〉 for every

1 ≤ i ≤ n. Therefore
fi(x)
f(x)

∈ 〈g(x)〉, or equivalently, g(x) divides
fi(x)
f(x)

for

every 1 ≤ i ≤ n, whence g(x) divides g.c.d
{f1(x)

f(x)
,
f1(x)
f(x)

, · · · ,
fn(x)
f(x)

}
= 1, a

contradiction. Put I ′ = 〈f(x)〉, I ′′ = I : 〈f(x)〉, then I = I ′I ′′.
Next, we claim that the representation I = I ′I ′′ is unique. Suppose that I =

J ′J ′′, where J ′ is principal, J ′′ is not contained in any nontrivial principal ideal.
Set J ′ = 〈g(x)〉. Let ψ(x) is an irreducible factor of g(x) and α is the greatest
positive integer such that ψα(x) divides g(x). Since I ′′ 6⊂ 〈ψ(x)〉, there exists
u(x) ∈ I ′′ and u(x) 6∈ 〈ψ(x)〉. Since f(x)u(x) ∈ f(x)I ′′ = g(x)J ′′ and g(x)J ′′ ⊂
〈ψα(x)〉, f(x)u(x) ∈ 〈ψα(x)〉, or equivalently, ψα(x) divides f(x)u(x). Because
u(x) and ψα(x) are pairwise prime, ψα(x) divides f(x). Thus, ψα(x) divides
f(x) if ψα(x) divides g(x) for every irreducible factor ψ(x) of g(x) and hence
g(x) divides f(x). Similarly, f(x) divides g(x), so f(x) and g(x) are conjugate.
Therefore I ′ = J ′. Hence, I ′′ = J ′′, and whence the representation I = I ′I ′′ is
unique.

Remark. I ′′ in the above lemma can equal to D[x], which happens when I is
principal.

Theorem 3.2. Any ideal I of D[x] can be uniquely written in the form

I = I1I2 . . . In,

where n is a positive integer and Ii (1 ≤ i ≤ n) are primary ideals such that
Rad(Ii) (1 ≤ i ≤ n) are distinct.

Proof. By Lemma 3.5, I can be uniquely written as

I = I ′I ′′,

where I ′ is principal and I ′′ is not contained in any nontrivial principal ideal. By
Lemma 3.3, I ′ can be uniquely written as

I ′ = I1I2 · · · Ik,

where Ii (1 ≤ i ≤ k) are primary ideals of type 1 such that Rad(Ii) (1 ≤ i ≤ k)
are distinct. By Lemma 3.4, I ′′ can be uniquely written as

I ′′ = Ik+1Ik+2 · · · In,

where Ij (k + 1 ≤ j ≤ n) are primary ideals of type 2 such that Rad(Ij) (k + 1 ≤
j ≤ n) are distinct. Therefore I can be written by

I = I1I2 · · · IkIk+1 · · · In,

where Ii (1 ≤ i ≤ n) are primary ideals with distinct radicals.
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Next, we prove that the representation of x is unique. In fact, suppose that
there are J1, J2, . . . , Jm such that

I = J1J2 · · · Jm,

where Jj (1 ≤ j ≤ m) are primary ideals with distinct radials. By reorder-
ing if necessary, we may assume that J1, J2, . . . , Jk are primary of type 1, and
Jk+1, Jk+2, . . . , Jm primary of type 2. Put

J ′ = J1J2 · · ·Jk,

J ′′ = Jk+1Jk+2 · · ·Jm.

Since Jj (1 ≤ j ≤ k) are all principal, so is J ′. On the other hand, J ′′ is not
contained in any nontrivial principal ideal. In fact, on the contrary, by Lemma
3.3, J ′′ is contained in some prime ideal of type 1 K. Then

Rad(J ′′) =
m⋂

j=k+1

Rad(Jj) ⊂ Rad(K).

Since Rad(K) is prime, we have Rad(Jj) ⊂ Rad(K) for some k +1 ≤ j ≤ m, and
hence, by the maximality of Rad(J ′′), Rad(Ij) = Rad(K), contrary to the fact
that Rad(Ij) and Rad(K), are prime of different types. Thus, I = J ′J ′′, where
J ′ is principal and J ′′ is not contained in any nontrivial principal ideal. By the
uniqueness of the representation in Lemma 3.5, we have I ′ = J ′ and I ′′ = J ′′.
From this, by the uniqueness of the representations in Lemma 3.3 and Lemma 3.4,
we conclude that n = m and Ij = Jj for all 1 ≤ j ≤ n, hence the representation
of I is unique. This completes the proof.

Corollary 3.1. Let I be an ideal of D[x] and n be the least positive integer such
that

I = I1I2 · · · In,

where Ii (1 ≤ i ≤ n) are primary. Then this representation is unique.

Proof. By Theorem 3.2, we need only to prove Rad(Ii) (1 ≤ i ≤ n) are distinct.
Suppose, on the contrary, that Rad(Ii) (1 ≤ i ≤ n) are not distinct. That means
there are integers i0, j0 with 1 ≤ i0 6= j0 ≤ n such that Rad(Ii0) = Rad(Ij0). By
Lemma 3.2, Ii0Ij0 is primary. Therefore

I = (Ii0Ij0)
∏

1≤i≤n,i6=i0,j0

Ii,

which is product of n− 1 primary ideals, a contradiction.

Remark. The authors have been informed by the referee that Theorem 3.2
can be deduced from the main results of [2], [3], [4]. In fact, Anderson char-
acterized Noetherian rings in which every ideal is a produced of primary ideals
as rings in which every non-maximal ideal is locally pricipal [2] (see [3] for the
non-Noetherian case). Later, Anderson and Mahaney gave sufficient conditions
for such a product to be unique [3]. For the polynomial ring over a PID, our
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description of primary and irreducible ideals provide more precise information on
the decomposition of ideals.
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