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ON SOME CLASSES OF CODES DEFINED BY
BINARY RELATIONS

KIEU VAN HUNG, PHAN TRUNG HUY AND DO LONG VAN

Abstract. We consider some classes of codes defined by length-increasing
transitive binary relations. The embedding problem for these classes of codes
is solved for both the finite and regular case. Characterizations of these codes,
especially of the maximal ones are established.

1. Preliminaries

Defining codes by binary relations was initiated by G. Thierrin and H. Shyr in
the middle of 1970s [8]. It appeared that this is a good method in introducing
new classes of codes. The idea of this comes from the notion of independent sets
in universal algebra [2].

One of the interesting problems in the theory of codes is that of embedding a
code in a given class C of codes into a code maximal in the same class (not neces-
sarily maximal as a code) which preserves some property (usually, the finiteness
or the regularity) of the given code. This is called the embedding problem for the
class C of codes.

Until now the answer for the embedding problem is known only for several
cases using different combinatorial techniques. In [9] (see also [10]) it is proposed
a general embedding schema for the classes of codes, which can be defined by
length-increasing transitive binary relations. This allows to solve positively, in a
unified way, the embedding problem for many classes of codes well-known as well
as new (see [4, 9, 10, 11]).

In this paper, we consider several classes of codes, called p-superinfix codes,
s-superinfix codes, superinfix codes and sucypercodes, which can be defined by
length-increasing transitive binary relations. Using the approach in [9] we show
that the embedding problem for these classes of codes is solved positively for both
finite and regular case. Characterizations of these codes, especially of maximal
ones are established.
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We now recall some notions, notations and facts, which will be used in the
sequel. Let A throughout be a finite alphabet. We denote by A∗ the free monoid
generated by A whose elements are called words on A. The empty word is denoted
by 1 and A+ = A∗ − 1. The number of all occurrences of letters in a word u is
the length of u, denoted by |u|.

A language over A is a subset of A∗. A non-empty language X is a code over
A if for all n,m ≥ 1 and x1, . . . , xn, y1, . . . , ym ∈ X, the condition

x1x2 · · ·xn = y1y2 · · · ym,

implies n = m and xi = yi for i = 1, . . . , n. A code X is maximal over A if X is
not properly contained in any other code over A. Let C be a class of codes over
A and X ∈ C. The code X is maximal in C (not necessarily maximal as a code)
if X is not properly contained in any other code in C. For further details of the
theory of code we refer to [1, 6, 7].

Given a binary relation ≺ on A∗. A subset X in A∗ is an independent set with
respect to the relation ≺ if any two elements of X are not in this relation. We say
that a class C of codes is defined by ≺ if these codes are exactly the independent
sets w.r.t. ≺. Then, we denote the class C by C≺. Very often, the relation ≺
characterizes some property α of words. In this case, we write ≺α, instead of ≺
and also Cα stands for C≺α . The relation ≺ is said to be length-increasing if for
any u, v ∈ A∗, u ≺ v implies |u| < |v|. We denote by ¹ the reflexive closure of ≺,
i.e. for any u, v ∈ A∗, u ¹ v iff u = v or u ≺ v.

It is easy to verify that the following binary relations on A∗ are transitive
(except for ≺b) and length-increasing.

u ≺p v ⇔ v = ux, with x 6= 1;
u ≺s v ⇔ v = xu, with x 6= 1;
u ≺b v ⇔ (u ≺p v) ∨ (u ≺s v);
u ≺p.i v ⇔ v = xuy, with y 6= 1;
u ≺s.i v ⇔ v = xuy, with x 6= 1;
u ≺i v ⇔ v = xuy, with xy 6= 1;
u ≺p.h v ⇔ ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1 . . . unxn, with x1 . . . xn 6= 1;
u ≺s.h v ⇔ ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1 . . . unxn, with x0 . . . xn−1 6= 1;
u ≺h v ⇔ ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1x1 . . . unxn, with x0 . . . xn 6= 1;
u ≺p.si v ⇔ ∃w ∈ A∗ : w ≺p v ∧ u ¹h w;
u ≺s.si v ⇔ ∃w ∈ A∗ : w ≺s v ∧ u ¹h w;
u ≺si v ⇔ ∃w ∈ A∗ : w ≺i v ∧ u ¹h w;
u ≺p.scpi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ σ(v′)) : u ¹h v′′;
u ≺s.scpi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ σ(v′)) : u ¹h v′′;
u ≺scpi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ σ(v′)) : u ¹h v′′;
u ≺p.spi v ⇔ (∃v′ : v′ ≺p v)(∃v′′ ∈ π(v′)) : u ¹h v′′;
u ≺s.spi v ⇔ (∃v′ : v′ ≺s v)(∃v′′ ∈ π(v′)) : u ¹h v′′;
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u ≺spi v ⇔ (∃v′ : v′ ≺i v)(∃v′′ ∈ π(v′)) : u ¹h v′′;
u ≺scp v ⇔ ∃v′ ∈ σ(v) : u ≺h v′;
u ≺sp v ⇔ ∃v′ ∈ π(v) : u ≺h v′;

where π(v) and σ(v) are the sets of all permutations and cyclic permutations of
v respectively. In the sequel, for any X ⊆ A∗, we put π(X) =

⋃
u∈X

π(u) and

σ(X) =
⋃

u∈X

σ(u).

The above mentioned relations define corresponding classes of codes which are
denoted by and called respectively the classes Cp of prefix codes, Cs of suffix codes,
Cb of bifix codes, Cp.i of p-infix codes, Cs.i of s-infix codes, Ci of infix codes, Cp.h of
p-hypercodes, Cs.h of s-hypercodes, Ch of hypercodes, Cp.si of p-subinfix codes, Cs.si

of s-subinfix codes, Csi of subinfix codes, Cp.scpi of p-sucyperinfix codes, Cs.spci of
s-sucyperinfix codes, Cspci of sucyperinfix codes, Cp.spi of p-superinfix codes, Cs.spi

of s-superinfix codes, Cspi of superinfix codes, Cscp of sucypercodes and Csp of
supercodes.

To facilitate understanding we give now intuitive meaning of some kinds of
codes introduced above which are the main research subject in this paper.

A subset X ⊆ A+ is a superinfix (p-superinfix, s-superinfix) code, X ∈ Cspi

(X ∈ Cp.spi, X ∈ Cs.spi, resp.), if no word in X is a subword of a permutation
of a proper infix (i.e. factor) (prefix, suffix, resp.) of another word in X. This
definition itself explains the terminologies superinfix, p-superinfix, s-superinfix.
And a subset X ⊆ A+ is a sucypercode, X ∈ Cscp, if no word in X is a proper
subword of a cyclic permutation of another word in X. Thus, every sucypercode
is a hypercode and therefore any sucypercode over a finite alphabet is finite.

The following fact has been shown in [11].

Lemma 1.1. For any u, v ∈ A∗, ∃v′ ∈ σ(v) : u ¹h v′ iff ∃u′ ∈ σ(u) : u′ ¹h v.

Let ≺ be a binary relation on A∗ and u, v ∈ A∗. We say that u depends on v
if u ≺ v or v ≺ u holds. Otherwise, u is independent of v. These notions can be
extended to subsets of words in a standard way. Namely, a word u is dependent
on a subset X if it depends on some word in X. Otherwise, u is independent of
X. For brevity, we shall adopt the following notations

u ≺ X  ∃v ∈ X : u ≺ v; X ≺ u  ∃v ∈ X : v ≺ u.

An element u in X is minimal in X if there is no word v in X such that v ≺ u.
When X is finite, by maxX we denote the maximal wordlength of X.

For every subset X in A∗ we denote by DX , IX , LX and RX the sets of words
dependent on X, independent of X, non-minimal in IX and minimal in IX ,
respectively. More precisely,

DX = {u ∈ A∗ | u ≺ X ∨X ≺ u};
IX = A∗ −DX ;
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LX = {u ∈ IX | IX ≺ u};
RX = IX − LX .

The following result has been proved in [9].

Theorem 1.1. Let ≺ be a length-increasing transitive binary relation on A∗
which defines the class C≺ of codes. Then, for any code X in C≺, we have

(i) RX is a maximal code in C≺ which contains X;
(ii) If moreover the relation ≺ satisfies the condition

∃k ≥ 1∀u, v ∈ A+ : (|v| ≥ |u|+ k) ∧ (u 6≺ v) ⇒ ∃w : (|w| ≥ |u|) ∧ (w ≺ v),(*)

then the finiteness of X implies the finiteness of RX , and maxRX ≤ maxX +
k − 1.

2. Embedding problem

For any set X we denote by P(X) the family of all subsets of X. Recall that
a substitution is a mapping f from B into P(C∗), where B and C are alphabets.
If f(b) is regular for all b ∈ B the substitution f is called a regular substitution.
When f(b) is a singleton for all b ∈ B it induces a homomorphism from B∗ into
C∗. Let # be a new letter not being in A. Put A# = A ∪ {#}. Let’s consider
the substitutions S1, S2 and the homomorphism h defined as follows

S1 : A → P(A∗#), where S1(a) = {a,#} for all a ∈ A;
S2 : A# → P(A∗), with S2(#) = A+ and S2(a) = {a} for all a ∈ A;
h : A∗# → A∗, with h(#) = 1 and h(a) = a for all a ∈ A.

Factually, the substitution S1 is used to mark the occurrences of letters to be
deleted from a word. The homomorphism h realizes the deletion by replacing
# by the empty word. The inverse homomorphism h−1 “chooses” in a word
the positions where the words of A+ inserted, while S2 realizes the insertions by
replacing # by A+. Notice that regular languages are closed under substitution,
homomorphism and inverse homomorphism (see [3]). This class is also closed
under the permutation π and the cyclic permutation σ [11].

Theorem 2.1. The embedding problem has positive answer in the regular case
for each class Cα of codes, α ∈ {spi, p.spi, s.spi}. More precisely, every regular
code X in Cα is included in a code Y , which is maximal in Cα and remains
regular.

Proof. Notice that all the relations ≺α, α ∈ {spi, p.spi, s.spi}, are transitive and
length-increasing. Given a regular code X in Cα. By Theorem 1.1(i), Y = RX is
a maximal code in Cα which contains X. The code RX is still regular because it
can be obtained from X by applications of some operations preserving regularity.
Indeed, for the
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• Case of superinfix codes. Without difficulty we can check the following com-
putations
{u ∈ A∗ | u ≺spi X} = π(h(S1(X) ∩ ({#}A∗# ∪A∗#{#})));
{u ∈ A∗ | X ≺spi u} = S2(h−1(π(X)) ∩ ({#}A∗# ∪A∗#{#}));
DX = {u ∈ A∗ | u ≺spi X ∨X ≺spi u}
= π(h(S1(X) ∩ ({#}A∗# ∪A∗#{#}))) ∪ S2(h−1(π(X)) ∩ ({#}A∗# ∪A∗#{#}));
IX = A∗ −DX = A∗ − π(h(S1(X) ∩ ({#}A∗# ∪A∗#{#})))

− S2(h−1(π(X)) ∩ ({#}A∗# ∪A∗#{#}));
LX = {u ∈ IX | IX ≺spi u} = IX ∩ S2(h−1(π(IX)) ∩ ({#}A∗# ∪A∗#{#}));
RX = IX − LX = IX − S2(h−1(π(IX)) ∩ ({#}A∗# ∪A∗#{#})).
• Case of p-superinfix codes. Similarly, we get

RX = IX − S2(h−1(π(IX)) ∩A∗#{#}),
where IX = A∗ − π(h(S1(X) ∩A∗#{#}))− S2(h−1(π(X)) ∩A∗#{#}).
• Case of s-superinfix codes. Dually, one obtains

RX = IX − S2(h−1(π(IX)) ∩ {#}A∗#),

where IX = A∗ − π(h(S1(X) ∩ {#}A∗#))− S2(h−1(π(X)) ∩ {#}A∗#).

Denote by A[n] the set of all the words in A∗ whose length is less than or equal
to n.

Theorem 2.2. The embedding problem has positive answer in the finite case for
every class Cα of codes, α ∈ {spi, p.spi, s.spi, scp}. More precisely, every finite
code X in Cα, with maxX = n, is included in a code Y which is maximal in
Cα and remains finite with maxY = maxX. Namely, Y can be computed by the
following formulas according to the case.

(i) For superinfix codes
Y = Z − S2(h−1(π(Z)) ∩ ({#}A[n−1]

# ∪A
[n−1]
# {#})) ∩A[n],

where Z = A[n]−π(h(S1(X)∩({#}A∗#∪A∗#{#})))−S2(h−1(π(X))∩({#}A[n−1]
# ∪

A
[n−1]
# {#})) ∩A[n].

(ii) For p-superinfix codes
Y = Z − S2(h−1(π(Z)) ∩A

[n−1]
# {#}) ∩A[n],

where Z = A[n] − π(h(S1(X) ∩A∗#{#}))− S2(h−1(π(X)) ∩A
[n−1]
# {#}) ∩A[n].

(iii) For s-superinfix codes
Y = Z − S2(h−1(π(Z)) ∩ {#}A[n−1]

# ) ∩A[n],

where Z = A[n] − π(h(S1(X) ∩ {#}A∗#))− S2(h−1(π(X)) ∩ {#}A[n−1]
# ) ∩A[n].

(iv) For sucypercodes
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Y = Z − σ(S2(h−1(Z) ∩ (A∗#{#}A∗#) ∩A
[n]
# ) ∩A[n]),

where Z = A[n] − h(S1(σ(X)) ∩ (A∗#{#}A∗#)) − σ(S2(h−1(X) ∩ (A∗#{#}A∗#) ∩
A

[n]
# ) ∩A[n]).

Proof. All the relations ≺α, α ∈ {spi, p.spi, s.spi, scp}, are transitive, length-
increasing and satisfy the condition (*) of Theorem 1.1 with k = 1 [11]. Given a
code X in Cα with maxX = n. Then, by Theorem 1.1, Y = RX is a maximal
code in Cα which contains X and maxY = max X = n. Here, we prove only the
formulas for sucypercodes. For the remaining cases the argument is similar. For
the sucypercode X, we can compute RX as follows

{u ∈ A∗ | u ≺scp X}
= {u ∈ A∗ | u ≺h σ(X)} = h(S1(σ(X)) ∩ (A∗#{#}A∗#));

{u ∈ A∗ | X ≺scp u}
= σ({u ∈ A∗ | X ≺h u}) = σ(S2(h−1(X) ∩ (A∗#{#}A∗#)));

DX = {u ∈ A∗ | u ≺scp X ∨X ≺scp u}
= h(S1(σ(X)) ∩ (A∗#{#}A∗#)) ∪ σ(S2(h−1(X) ∩ (A∗#{#}A∗#)));

IX = A∗ −DX

= A∗ − h(S1(σ(X)) ∩ (A∗#{#}A∗#))− σ(S2(h−1(X) ∩ (A∗#{#}A∗#)));

LX = {u ∈ IX | IX ≺scp u} = IX ∩ σ(S2(h−1(IX) ∩ (A∗#{#}A∗#)));

RX = IX − LX = IX − σ(S2(h−1(IX) ∩ (A∗#{#}A∗#))).

Since maxRX = n, the expressions of RX and IX established above may be
restricted to A[n] and A

[n]
# instead of A∗ and A∗# respectively. Setting Z = IX

and Y = RX we obtain the formulas required to prove.

Example 2.1. Consider the superinfix code X = {a2b, ab2a, b3a} over the al-
phabet A = {a, b}. Since maxX = 4, we may compute Y by the formulas in
Theorem 2.2(i) with n = 4. We shall do it now step by step

S1(X) ∩ ({#}A∗# ∪A∗#{#}) = {#ab, a2#,##b, #a#, a##,###,

#b2a, ab2#, ##ba,#b#a,#b2#, a#b#, ab##,###a,##b#,

#b##, a###, ####, b3#, b#b#, b2##, b###};
π(h(S1(X) ∩ ({#}A∗# ∪A∗#{#}))) = {1, a, b, a2, ab, ba, b2, ab2, b2a, bab, b3};
h−1(π(X)) ∩ ({#}A[3]

# ∪A
[3]
# {#}) = {#a2b, a2b#, #aba, aba#, #ba2, ba2#};

S2(h−1(π(X)) ∩ ({#}A[3]
# ∪A

[3]
# {#}))

= {a3b, ba2b, a2ba, a2b2, baba, aba2, abab, b2a2, ba3};
Z = {a3, a2b, aba, ba2, a4, ab2a, ab3, bab2, b2ab, b3a, b4};
h−1(π(Z)) ∩ ({#}A[3]

# ∪A
[3]
# {#})

= {#a3, a3#, #a2b, a2b#, #aba, aba#, #ba2, ba2#};
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S2(h−1(π(Z)) ∩ ({#}A[3]
# ∪A

[3]
# {#})) ∩A[4]

= {a4, ba3, a3b, ba2b, a2ba, a2b2, baba, aba2, abab, b2a2};
Y = {a3, a2b, aba, ba2, ab2a, ab3, bab2, b2ab, b3a, b4}.

Example 2.2. Consider the sucypercode X = {abab, a2b3} over A = {a, b}.
Since maxX = 5, by Theorem 2.2(iv), in a similar way, Y can be computed as
follows

h(S1(σ(X)) ∩ (A∗#{#}A∗#)) = {1, a, b, a2, ab, ba, b2, a2b, aba, ab2, ba2,

bab, b2a, b3, a2b2, ab2a, ab3, ba2b, bab2, b2a2, b2ab, b3a};
σ(S2(h−1(X) ∩ (A∗#{#}A∗#) ∩A

[5]
# ) ∩A[5])

= {a2bab, ba2ba, aba2b, baba2, ababa, babab, b2aba, ab2ab, bab2a, abab2};
Z = {a3, a4, a3b, a2ba, aba2, abab, ba2, baba, b4, a5, a4b, a3ba, a3b2,

a2ba2, a2b2a, a2b3, aba3, ab2a2, ab3a, ab4, ba4, ba3b, ba2b2,

bab3, b2a3, b2a2b, b2ab2, b3a2, b3ab, b4a, b5};
σ(S2(h−1(Z) ∩ (A∗#{#}A∗#) ∩A

[5]
# ) ∩A[5]) = {a4, ba3, aba2, a2ba,

a3b, a5, aba3, a2ba2, a3ba, a4b, ba4, b2a3, ab2a2, a2b2a, a3b2, ba3b,

ba2ba, aba2b, baba2, ababa, a2bab, babab, b2aba, ab2ab,

bab2a, abab2, ab4, bab3, b2ab2, b3ab, b4a, b5};
Y = {a3, abab, baba, b4, a2b3, ab3a, ba2b2, b2a2b, b3a2}.

3. Characterizations

Let A = {a1, a2, . . . , ak} and K = {1, 2, . . . , k}. For every u ∈ A∗, we denote
by p(u) the Parikh vector of u, namely

p(u) = (|u|a1 , |u|a2 , . . . , |u|ak
)

where |u|ai denotes the number of occurrences of ai in u. Thus p is a mapping
from A∗ into the set V k of all the k -vectors of non-negative integers. Now, to
every u ∈ A+ we associate two elements of the cartesian product V k×K, denoted
by pL(u) and pF (u), and one element of V k ×K2, denoted by pLF (u), which are
defined as follows

pL(u) = (p(u), i), where i is the index of the last letter in the word u;
pF (u) = (p(u), j), where j is the index of the first letter in the word u;
pLF (u) = (p(u), i, j), where i and j are the indices of the last and the first

letter in u, respectively.
Thus pL and pF are mappings from A+ into V k × K, while pLF is a mapping
from A+ into V k × K2. These mappings are then extended to languages in
a standard way: pL(X) = {pL(u) | u ∈ X}, pF (X) = {pF (u) | u ∈ X} and
pLF (X) = {pLF (u) | u ∈ X}.

Put U = {(ξ, i) ∈ V k × K | pi(ξ) 6= 0} and W = {(ξ, i, j) ∈ V k × K2 |
pi(ξ), pj(ξ) 6= 0}. To each of the sets U and W we associate a binary relation,
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denoted both by ≺, which are defined by

(ξ, i) ≺ (η, j) ⇔ (ξ ≤ η) ∧ (pj(ξ) < pj(η)),

(ξ,m, n) ≺ (η, i, j) ⇔ (ξ ≤ η) ∧ (pi(ξ) < pi(η) ∨ pj(ξ) < pj(η)),

where pi(ξ), 1 ≤ i ≤ k, denotes the i-th component of ξ. These relations on U
and on W , as easily verified, are transitive. Notice that for all language X, ∅ 6=
X ⊆ A+, pL(X) and pF (X) are subsets of U while pLF (X) is a subset of W .

The following result, which will be useful in the sequel, is easily verified.

Lemma 3.1. For any u, v ∈ A+ we have

(i) u ≺p.spi v iff pL(u) ≺ pL(v);
(ii) u ≺s.spi v iff pF (u) ≺ pF (v);
(iii) u ≺spi v iff pLF (u) ≺ pLF (v).

To every non-empty subset X of A+, we associate the sets
EX = {x ∈ X | ∃y ∈ X : p(y) < p(x)} and SX = X −EX .

Clearly, if EX = ∅ then X is a supercode.
Let u be a word in A+, we define the following operations

πL(u) = π(u′)b, with u = u′b, b ∈ A;
πF (u) = aπ(u′), with u = au′, a ∈ A;

πLF (u) =

{
aπ(u′)b, if |u| ≥ 2 and u = au′b, with a, b ∈ A;
u, if u ∈ A,

which are extended to languages in a normal way:
πL(X) =

⋃
u∈X

πL(u), πF (X) =
⋃

u∈X

πF (u) and πLF (X) =
⋃

u∈X

πLF (u).

Lemma 3.2. Let X be a non-empty subset of A+. If pL(X) (pF (X)) is an
independent set w.r.t. ≺ on U then so is pL(π(SX) ∪ πL(EX)) (pF (π(SX) ∪
πF (EX)), resp.). If pLF (X) is an independent set w.r.t. ≺ on W then so is
pLF (π(SX) ∪ πLF (EX)).

Proof. We treat only the case of pL(X). The reasonements for the other cases
are similar. Let pL(X) be an independent set w.r.t. ≺ on U . If pL(π(SX) ∪
πL(EX)) were not an independent set w.r.t. ≺ on U then there would exist s, t ∈
pL(π(SX) ∪ πL(EX)) such that s ≺ t. Since s, t ∈ pL(π(SX) ∪ πL(EX)), we have
s = pL(u), t = pL(v) for some u, v ∈ π(SX) ∪ πL(EX). Because pL(u) ≺ pL(v),
we must have v ∈ πL(EX). If u ∈ πL(EX) then pL(u), pL(v) ∈ pL(πL(EX)) =
pL(EX) ⊆ pL(X), a contradiction. If u ∈ π(SX) then on one hand there exists
u′ ∈ SX such that p(u′) = p(u) with pL(u′) ∈ pL(SX) ⊆ pL(X), and on the other
hand pL(v) ∈ pL(EX) ⊆ pL(X). From pL(u) ≺ pL(v) it follows pL(u′) ≺ pL(v),
which contradicts the hypothesis that pL(X) is an independent set w.r.t. ≺.

We give now characterizations of p-superinfix codes, s-superinfix codes and
superinfix codes.
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Theorem 3.1. For any non-empty subset X of A+, the following assertions are
equivalent

(i) X is a p-superinfix code (resp., a s-superinfix code, a superinfix code);
(ii) π(SX) ∪ πL(EX) is a p-superinfix code (resp., π(SX) ∪ πF (EX) is a s-

superinfix code, π(SX) ∪ πLF (EX) is a superinfix code);
(iii) pL(X) is an independent set w.r.t. ≺ on U (resp., pF (X) is an independent

set w.r.t. ≺ on U , pLF (X) is an independent set w.r.t. ≺ on W ).

Proof. We treat only the case of p-superinfix codes. For the other cases the
argument is similar.

(i) ⇔ (iii) By definition, X is a p-superinfix code iff it is an independent set
w.r.t. ≺p.spi. By Lemma 3.1(i), the later is equivalent to the fact that pL(u) 6≺
pL(v) for all u, v ∈ X, or equivalently pL(X) is an independent set w.r.t. ≺ on
U .

(iii) ⇒ (ii) Let pL(X) be an independent set w.r.t. ≺ on U . According to
Lemma 3.2, pL(π(SX) ∪ πL(EX)) is also an independent set w.r.t. ≺ on U .
Hence, by the above, π(SX) ∪ πL(EX) is a p-superinfix code.

(ii) ⇒ (i) It is evident because any subset of a p-superinfix code is also a
p-superinfix code.

Example 3.1. Consider the language X = {a2ba, aba2, ab3, ba3, bab2, b2ab,
a2b2a, a2b3, ababa, abab2, ab2a2, ab2ab, ba2ba, ba2b2, baba2, babab, b2a3, b2a2b}
over A = {a, b}. It is easy to check that pL(X) = {((3, 1), 1), ((3, 2), 1), ((2, 3), 2),
((1, 3), 2)} and that it is an independent set w.r.t. ≺ on U = {(ξ, j) ∈ V 2 ×
{1, 2} | pj(ξ) 6= 0}. By Theorem 3.1, X is a p-superinfix code.

To end this section, we formulate a simple characterization of sucypercodes.

Proposition 3.1. For any non-empty subset X of A+, X is a sucypercode iff so
is σ(X).

Proof. The sufficiency is trivial. Conversely, let X be a sucypercode. If σ(X)
were not a sucypercode, there would exist u, v ∈ σ(X) and v′ ∈ σ(v) such that
u ≺h v′. Then we have u ∈ σ(x), v ∈ σ(y) for some x, y ∈ X. Thus u ≺h v′
with v′ ∈ σ(y). By Lemma 1.1, there exists u′ ∈ σ(u) such that u′ ≺h y. Since
u′ ∈ σ(x), again by Lemma 1.1, there exists y′ ∈ σ(y) such that x ≺h y′. This
means that x ≺scp y, a contradiction.

4. Maximality

First we give characterizations of maximal p-superinfix, s-superinfix and su-
perinfix codes by means of independent sets w.r.t. ≺ on U and on W .

Theorem 4.1. For any non-empty subset X of A+,

(i) X is a maximal p-superinfix (s-superinfix) code iff pL(X) (resp., pF (X)) is
a maximal independent set w.r.t. ≺ on U and π(SX)∪πL(EX) = X (resp.,
π(SX) ∪ πF (EX) = X);
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(ii) X is a maximal superinfix code iff pLF (X) is a maximal independent set
w.r.t. ≺ on W and π(SX) ∪ πLF (EX) = X.

Proof. (i) Let X be a maximal p-superinfix code. If π(SX) ∪ πL(EX) 6= X then,
by Theorem 3.1, π(SX)∪πL(EX) would be a p-superinfix code strictly containing
X, a contradiction with the maximality of X. Hence, π(SX)∪ πL(EX) = X. We
next show that pL(X) is a maximal independent set w.r.t. ≺ on U . Indeed, by
Theorem 3.1, pL(X) is an independent set w.r.t. ≺ on U . If pL(X) were not
maximal then ∃t ∈ U − pL(X) such that pL(X) ∪ {t} is still an independent set
w.r.t. ≺. Let t = (ξ, j). Since pj(ξ) 6= 0, we can choose a word u such that
p(u) = ξ and the last letter of u has index j. Thus pL(u) = t. Evidently u /∈ X.
We have pL(X ∪ {u}) = pL(X) ∪ {t}. Again by Theorem 3.1, X ∪ {u} is still a
p-superinfix code, a contradiction with the maximality of X.

Conversely, let pL(X) be a maximal independent set w.r.t. ≺ on U and π(SX)∪
πL(EX) = X. By Theorem 3.1, X is a p-superinfix code. Suppose X is not
maximal as a p-superinfix code. Then, there exists u /∈ X such that X ∪ {u} is
still a p-superinfix code. If pL(u) ∈ pL(X) then pL(u) = pL(x) for some x ∈ X.
This implies p(u) = p(x) and the last letters of u and x are the same. Therefore
u ∈ πL(x) ⊆ π(SX) ∪ πL(EX) = X, a contradiction. Thus t = pL(u) /∈ pL(X).
Again by Theorem 3.1, pL(X∪{u}) = pL(X)∪{t} is still an independent set w.r.t.
≺, a contradiction with the maximality of pL(X). Thus X must be maximal as
a p-superinfix code. For the case of s-superinfix codes the argument is similar.

(ii) Let X be a maximal superinfix code. If π(SX) ∪ πLF (EX) 6= X then, by
Theorem 3.1, π(SX) ∪ πLF (EX) would be a superinfix code strictly containing
X, a contradiction. So, π(SX) ∪ πLF (EX) = X. Now we show that pLF (X)
is a maximal independent set w.r.t. ≺ on W . By Theorem 3.1, pLF (X) is
an independent set w.r.t. ≺ on W . If pLF (X) were not maximal then ∃t ∈
W − pLF (X) such that pLF (X)∪ {t} is still an independent set. Let t = (ξ, i, j).
Since pi(ξ) 6= 0 and pj(ξ) 6= 0, we can choose a word u, whose the last and the
first letter are ai and aj respectively, and such that p(u) = ξ. Thus pLF (u) = t.
Evidently u /∈ X. We have pLF (X∪{u}) = pLF (X)∪{t}. Again by Theorem 3.1,
X ∪ {u} is still a superinfix code, a contradiction with the maximality of X.

Conversely, let pLF (X) be a maximal independent set w.r.t. ≺ on W and
π(SX) ∪ πLF (EX) = X. By Theorem 3.1, X is a superinfix code. Suppose X is
not maximal as a superinfix code. Then, there exists u /∈ X such that X ∪ {u}
is still a superinfix code. If pLF (u) ∈ pLF (X) then pLF (u) = pLF (x) for some
x ∈ X. This implies p(u) = p(x), and that u and x have the same last and first
letters. Therefore u ∈ πLF (x) ⊆ π(SX) ∪ πLF (EX) = X, a contradiction. Thus
t = pLF (u) /∈ pLF (X). Again by Theorem 3.1, pLF (X ∪ {u}) = pLF (X) ∪ {t} is
still an independent set w.r.t. ≺ on W , a contradiction with the maximality of
pLF (X). Thus X must be maximal as a superinfix code.

Example 4.1. (i) Let X = {a3, ab2, bab, b2a, b3, a2ba, a2b2, aba2, abab, ba3, ba2b}.
It is easy to see that X = π(SX) ∪ πL(EX) and pL(X) = {((3, 0), 1), ((3, 1), 1),
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((2, 2), 2), ((1, 2), 1), ((1, 2), 2), ((0, 3), 2)}, which is easily verified to be a max-
imal independent set w.r.t. ≺ on U = {(ξ, i) ∈ V 2 × {1, 2} | pi(ξ) 6= 0}. By
Theorem 4.1(i), X is a maximal p-superinfix code over A = {a, b}.

(ii) Consider the set X = {a3, a2ba, aba2, b4, a2b2a, ababa, ab2a2, bab3, b2ab2,
b3ab, a2b3a, abab2a, ab2aba, ab3a2, ba2b3, babab2, bab2ab, b2a2b2, b2abab, b3a2b}
over A = {a, b}. A simple verification leads to X = π(SX) ∪ πLF (EX) and
also pLF (X) = {((3, 0), 1, 1), ((3, 1), 1, 1), ((3, 2), 1, 1), ((3, 3), 1, 1), ((2, 4), 2, 2),
((1, 4), 2, 2) ((0, 4), 2, 2)}. It is easy to see that the latter is a maximal independent
set w.r.t. ≺ on W = {(ξ, i, j) ∈ V 2 × {1, 2}2 | pi(ξ), pj(ξ) 6= 0}. By virtue of
Theorem 4.1(ii), we may conclude that X is a maximal superinfix code over A.

Recall that a subset X of A+ is an infix (p-infix, s-infix ) code if no word in X is
an infix of a proper infix (prefix, suffix, resp.) of another word in X. The following
result establishes relationship between maximal p-superinfix (s-superinfix) codes
with p-infix (s-infix, resp.) codes.

Theorem 4.2. Every maximal p-superinfix (s-superinfix) code is a maximal p-
infix (s-infix, resp.) code.

Proof. We treat only the case of p-superinfix codes. Let X be a maximal p-
superinfix code not being a maximal p-infix code. Then, there exists a word
y, 1 6= y /∈ X, such that Y = X∪{y} is still a p-infix code. By Theorem 4.1(i), we
have π(SX)∪πL(EX) = X and pL(X) is a maximal independent set w.r.t. ≺ on U .
If pL(y) ∈ pL(X) then there is an x ∈ X such that p(y) = p(x) and the last letters
of y and x are the same. Then, y ∈ πL(x) ⊆ π(SX)∪πL(EX) = X, a contradiction
with y /∈ X. Thus we must have pL(y) /∈ pL(X) and therefore pL(X)∪{pL(y)} is
not an independent set w.r.t. ≺ on U , i.e. either pL(y) ≺ pL(x) or pL(x) ≺ pL(y),
for some x ∈ X. Suppose pL(y) ≺ pL(x), and let aj be the last letter of x. Since
p(y) ≤ p(x) and pj(y) < pj(x), there exists x′ ∈ πL(x) ⊆ π(SX) ∪ πL(EX) = X
such that x′ is of the form x′ = zyaj with z ∈ A∗. This is impossible because
Y is a p-infix code. Suppose now pL(x) ≺ pL(y). Without loss of generality we
may assume x ∈ SX . Let aj be the last letter of y. We have p(x) ≤ p(y) and
pj(x) < pj(y). Therefore there exists x′′ ∈ π(x) ⊆ π(SX) ⊆ X such that y has
the form y = zx′′aj , a contradiction. Thus X must be maximal as a p-infix code
that required to prove.

A subset X in A+ is a subinfix (p-subinfix, s-subinfix ) code if no word in X
is a subword of a proper infix (prefix, suffix, resp.) of another word in X.
The subset X is called a sucyperinfix (p-sucyperinfix, s-sucyperinfix) code if no
word in X is a subword of a cyclic permutation of a proper infix (prefix, suffix,
resp.) of another word in X. We have Cspi ⊂ Cscpi ⊂ Csi ⊂ Ci, and the similar
hierarchies for corresponding classes of codes.

As a direct consequence of Theorem 4.2 we have

Corollary 4.1. We have the following assertions

(i) Every maximal p-superinfix (s-superinfix) code is a maximal p-subinfix (s-
subinfix, resp.) code;
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(ii) Every maximal p-superinfix (s-superinfix) code is a maximal p-sucyperinfix
(s-sucyperinfix, resp.) code.

Remark 4.1. It is easy to see that the inverses of Theorem 4.2, of assertions (i)
and (ii) in Corollary 4.1 are false. For example, the maximal p-infix (p-subinfix)
code X = {ab, b2, a3, a2b, ba2, bab} over A = {a, b} is not a p-superinfix code
since ab is a subword of a permutation of ba, a proper prefix of ba2. The max-
imal p-sucyperinfix code Y = {a3, b3, a2ba, aba2, abab, ab3, ba3, baba, bab2, b2ab,
a2b2a, a2b3, ab2a2, ab2ab, ba2ba, ba2b2, b2a3, b2a2b} over A = {a, b} is not also a
p-superinfix code because abab is a subword of a permutation of the proper prefix
a2b2 of a2b3.

We have moreover

Corollary 4.2. Every maximal p-superinfix (s-superinfix) code is a maximal code.

Proof. Recall that a code X is thin if there is a word w, which cannot be a
factor of any word in X. Any p-infix (s-infix) code X is thin because any word
of the form axa with x ∈ X, a ∈ A cannot be a factor of any word in X. Every
maximal p-infix (s-infix) code is a maximal prefix (suffix) code [5]. Thus, by
Theorem 4.2, every maximal p-superinfix (s-superinfix) code is a maximal prefix
(suffix) code which is thin. As well-known, for a thin code X, it is a maximal
prefix (suffix) code if and only if it is a maximal code (see [1]). Hence, every
maximal p-superinfix (s-superinfix) code is a maximal code.

This corollary in combination with Theorems 2.1 and 2.2 give us immediately:

Corollary 4.3. Every finite (regular) p-superinfix (s-superinfix) code is included
in a finite (regular, resp.) p-superinfix (s-superinfix) code which is maximal as a
code.

The following assertion characterizes maximal p-superinfix (s-superinfix) codes
among maximal p-infix (s-infix) codes.

Theorem 4.3. A maximal p-infix (s-infix) code X is a maximal p-superinfix (s-
superinfix, resp.) code iff π(SX) ∪ πL(EX) = X (π(SX) ∪ πF (EX) = X, resp.).

Proof. The necessity is obvious by Theorem 4.1(i). Conversely, let X be a max-
imal p-infix code with π(SX) ∪ πL(EX) = X. We first show that pL(X) is an
independent set w.r.t. ≺ on U . Suppose the contrary that there exist u, v ∈ X
such that pL(u) ≺ pL(v), and let aj be the last letter of v. Then, we have
p(u) ≤ p(v) and pj(u) < pj(v). Therefore, there is v′ ∈ πL(v) ⊆ X such that
v′ = zuaj , which contradicts the hypothesis that X is a p-infix code. Thus pL(X)
must be an independent set w.r.t. ≺ on U and hence X is a p-superinfix code.
The maximality of X as a p-superinfix code is then evident. For the remainning
case the argument is similar.

Remark 4.2. While, as seen above, a maximal p-superinfix (s-superinfix) code is
always a maximal prefix (suffix) code, a maximal superinfix code is not necessarily
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a maximal subinfix code. Indeed, consider the code X = ab∗a over A = {a, b}
which is easily verified to be a maximal superinfix code. But it is not a maximal
subinfix code because X ∪ {bab} is still a subinfix code.

Now we consider some properties of maximal sucypercodes and their relation-
ship with other kinds of codes, namely with supercodes and hypercodes. Recall
that a subset X of A+ is a hypercode, X ∈ Ch, if no word in X is a proper
subword of another word in X. The subset X is a supercode, X ∈ Csp, if no word
in X is a proper subword of a permutation of another word in X. Note that
Csp ⊂ Cscp ⊂ Ch. Supercodes have been introduced and considered in [10].

Theorem 4.4. For any subset X of A+, we have

(i) If X is a maximal sucypercode then σ(X) = X;
(ii) Every maximal sucypercode is a maximal hypercode;
(iii) Every maximal supercode is a maximal sucypercode.

Proof. (i) Let X be a maximal sucypercode. If σ(X) 6= X then, by Proposi-
tion 3.1, σ(X) is a sucypercode strictly containing X, a contradiction with the
maximality of X.

(ii) Let X be a maximal sucypercode not being a maximal hypercode. Then,
there exists 1 6= y /∈ X such that X ∪{y} is still a hypercode. By (i), σ(X) = X.
Thus Y = σ(X)∪{y} is a hypercode. We now prove that Y is still a sucypercode.
Suppose the contrary that it is not the case. Then either y ≺scp x or x ≺scp y, for
some x ∈ σ(X). If y ≺scp x then there is x′ ∈ σ(x) ⊆ Y such that y ≺h x′, which
contradicts the fact that Y is a hypercode. If x ≺scp y then there exists y′ ∈ σ(y)
such that x ≺h y′. By Lemma 1.1, there exists x′′ ∈ σ(x) such that x′′ ≺h y,
again a contradiction. Thus Y = X ∪{y} is a sucypercode, which contradicts the
maximality of X as a sucypercode. This contradiction shows that X must be a
maximal hypercode.

(iii) Let X be a maximal supercode. By Proposition 3.1(i) in [10], X is a
maximal hypercode. Because Csp ⊂ Cscp ⊂ Ch, this implies that X is a maximal
sucypercode.

Theorem 4.5. For any subset X of A+, we have

(i) A maximal hypercode X is a maximal sucypercode iff σ(X) = X;
(ii) A maximal sucypercode X is a maximal supercode iff π(X) = σ(X).

Proof. (i) The necessity is evident by Theorem 4.4(i). Conversely, let X be a
maximal hypercode with σ(X) = X. As X is a hypercode, we have u 6≺h v for
all u, v ∈ X. Since σ(X) = X this implies u 6≺scp v for all u, v ∈ X. Thus X is a
sucypercode and hence a maximal sucypercode.

(ii) Let X be a maximal sucypercode. By Theorem 4.4(i), σ(X) = X. By
Theorem 4.4(ii), X is a maximal hypercode. According to Proposition 3.4 in
[10], X is a maximal supercode iff π(X) = X, or equivalently π(X) = σ(X).
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