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COUPLING THE BANACH CONTRACTION MAPPING
PRINCIPLE AND THE PROXIMAL POINT ALGORITHM

FOR SOLVING MONOTONE VARIATIONAL INEQUALITES

PHAM NGOC ANH AND LE DUNG MUU

Abstract. In our recent papers [1, 2] we have shown how to find a regu-
larization parameter such that the unique solution of a strongly monotone
variational inequality can be approximated by the Banach contraction map-
ping principle. In this paper we combine this result with the proximal point
algorithm to obtain a new projection-type algorithm for solving (not neces-
sarily strongly) monotone variational inequalities. The proposed algorithm
does not require knowing any Lipschitz constant of the cost operator. The
main subproblem in the proposed algorithm is of computing the projection of
a point onto a closed convex set. Application of the proposed algorithm to an
equilibrium problem is discussed. Computational results are reported.

1. Introduction

Let H be a real Hilbert space with inner product 〈., .〉 and the corresponding
norm ||.||. Let C ⊆ H be a nonempty closed convex set and F : C → H be a
monotone operator. We consider the following variational inequality:{

find x∗ ∈ C such that
〈F (x∗), x− x∗〉 ≥ 0 for every x ∈ C.

(VI)

The mapping F is called the cost operator for (VI). It is well known that if F is
the gradient mapping of a convex function f , then x∗ is a solution of (VI) if and
only if it is an optimal solution of the convex minimization problem

min{f(x)|x ∈ C}.
Various iterative methods have been proposed for solving variational inequali-

ties (see e.g. [5, 8, 13, 14, 16, 17, 19, 26] and the references therein). A general
scheme for solving variational inequalities is the auxiliary problem-principle which
contains the projection method as a special case. In order to guarantee the con-
vergence, this general scheme needs some additional assumptions such as strong
monotonicity or cocoercivity (see e.g. [1, 4, 10, 22, 18, 25, 24]). Cohen [3] gave an
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example involving a monotone mapping F where the auxiliary problem-principle
algorithm does not converge.

The proximal point algorithm [20] is a fundamental iterative procedure for
solving the inclusion 0 ∈ T (x) with T being a maximal monotone operator. This
inclusion problem contains monotone variational inequality as a special case. In
the case of variational inequality (VI), the proximal point algorithm consists of
constructing iteratively a sequence {xk} by setting xk+1 := Pk(xk) where Pk is
called proximal or resolvent operator defined as Pk := (I + ckT )−1, where ck > 0,
I is the identity operator and

T (x) = F (x) + NC(x).

Unlike many other iterative methods, for the convergence, besides continuity
and monotonicity, the proximal point algorithm does not require any additional
assumption on F . However, from a view point of implementation, computing
iteration points, in general, is difficult, since it requires evaluating the proximal
operator (I + ckT )−1 at each iteration point xk. It is well known (see e.g. [8])
that computing each iteration point xk amounts to solving a certain strongly
monotone variational inequality.

In our recent papers [1, 2] we have shown how to find a regularization parameter
such that the unique solution of a strongly monotone variational inequality with
single valued cost operator can be computed by finding the fixed point of a certain
contractive mapping. The result in [1] is extended in [2] to the mixed variational
inequalities involving cocoercive cost operators and convex functions.

In this paper we continue our work in [1, 2] by coupling the Banach contraction
mapping principle with the proximal point algorithm to obtain a projection-type
algorithm. It turns out that the proposed algorithm belongs to the class of
the modified projection methods. By using the regularization technique, our
algorithm, unlike other modified projection algorithms, does not require knowing
any Lipschitz constant of the cost operator. It also gives a new analysis to
the modified projection method. Moreover, by using the Banach contraction
mapping fixed point principle, the convergence theorem is easy to obtain. As
in the projection method, the main subproblem in the proposed algorithm is of
finding the projection of a point on the feasible set C. In some special cases for
instance C is a box, a ball or a simplex, this projection can be given explicitely.

The paper will be organized as follows. The next section contains some pre-
liminaries on the proximal point algorithm applied to monotone variational in-
equalities. In the third section we describe in detail two algorithms. In the fourth
section we illustrate the coupling algorithm by an equilibrium problem. We close
the paper with some preliminary computational results on this equilibrium model.

2. Preliminaries

Let ∅ 6= A ⊆ H and u ∈ H. As usual, the distance from u to A is defined
as dA(u) = inf

x∈A
||x − u||. It is well known (see e.g. [7]) that if A is closed and
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convex, then there exists the unique v ∈ A such that dA(u) = ||v − u||. We say
that v is the projection of u on A.

Let T : H → 2H be a multivalued mapping. As usual, we denote the effective
domain and the graph of T by domT and grapT , respectively. That is

domT := {x|T (x) 6= ∅},
grapT := {(x, y)|y ∈ T (x)}.

We recall (see e.g. [12, 19]) that the mapping T is said to be monotone on C if

〈z − z′, x− x′〉 ≥ 0 ∀x, x′ ∈ C, z ∈ T (x), z′ ∈ T (x′).

T is said to be maximal monotone if it is monotone on H and its graph is not
contained properly in the graph of any other monotone mapping.

T is called strongly monotone on C ⊆ H with modulus β > 0 (briefly β-strongly
monotone) if

〈z − z′, x− x′〉 ≥ β||x− x′||2 ∀x, x′ ∈ C, z ∈ T (x), z′ ∈ T (x′).

A mapping (operator) M : C → H is said to be Lipschitz continuous on C
with Lipschitz constant L ≥ 0 (shortly L-Lipschitz) if

(2.1) ||M(x)−M(x′)|| ≤ L||x− x′|| ∀x, x′ ∈ C.

If (2.1) is satisfied with L < 1, then M is said to be contractive on C; it is said
to be nonexpansive on C if L = 1.

The proximal point algorithm [20] can be used to solve an inclusion 0 ∈ T (u),
where T may be any maximal multivalued monotone mapping. This algorithm is
based on the fact that if T is maximal monotone, then, for any c > 0, the proximal
operator Pc := (I + cT )−1 is defined everywhere, single valued and nonexpansive
on the whole space [12]. It is easy to see that 0 ∈ T (x) if and only if Pc(x) = x.
So the underlying inclusion is reduced to the problem of finding a fixed point of
the nonexpansive mapping Pc. To do this, starting from an arbitrary point x0,
the algorithm constructs iteratively a sequence {xk} by setting

xk+1 = Pk(xk) k = 0, 1...,

where Pk = (I + ckT )−1 and {ck} is a sequence of positive numbers being chosen
in advance.

The key question in this algorithm is of evaluating xk+1. In general, it is a
difficult task, since it requires computing the inverse mapping (I + ckT )−1. In
practice, in stead of computing exact Pk(xk) one can compute its approximation.
In [20] (see also [13]) it has been shown, among others, that if ||xk+1−Pk(xk)|| ≤
εk for all k with

∞∑
k=1

εk < +∞, then the sequence {xk} weakly converges to a

solution of the inclusion 0 ∈ T (x). Moreover the sequence {xk} is asymptotically
regular, that is ||xk+1 − xk|| → 0 as k → +∞.
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In order to apply the proximal point algorithm to the variational inequality
(VI) we take

T (x) := F (x) + NC(x),
where NC(x) denotes the outward normal cone of C at x, i.e.,

NC(x) = {w|〈w, y − x〉 ≤ 0 ∀y ∈ C}.
It has been shown in [19, 20] that if F is continuous and monotone on C, then T
defined above is maximal monotone. In this case, starting from a point x0 ∈ C
the proximal point algorithm constructs a sequence {xk} by setting xk+1 = (I +
ckT )−1(xk). Hence xk ∈ (I + ckT )(xk+1). Replacing T (xk+1) by F (xk+1) +
NC(xk+1) we obtain the inclusion

xk − xk+1 − ckF (xk+1) ∈ NC(xk+1)

which means that

xk+1 ∈ C, 〈xk+1 + ckF (xk+1)− xk, x− xk+1〉 ≥ 0 ∀x ∈ C.

Setting Fk(x) := x+ckF (x)−xk we see that xk+1 is the solution of the variational
inequality

〈Fk(xk+1), x− xk+1〉 ≥ 0 ∀x ∈ C.

Clearly, if F is monotone, then Fk is strongly monotone with the modulus
β = 1, and if F is L-Lipschitz, then Fk is Lk-Lipschitz with Lk = 1 + ckL.

The proximal point algorithm for (VI) then can be described as follows.
Take x0 ∈ C and fix a sequence of positive number {ck} such that ck > c > 0

for every k.
For each k = 0, 1, ..., let xk+1 be the unique solution of the following strongly

monotone variational inequality

(V Ik)

{
find xk+1 ∈ C such that
〈ckF (xk+1) + (xk+1 − xk), x− xk+1〉 ≥ 0 ∀x ∈ C.

Clearly, if xk+1 = xk, then xk solves (VI). Otherwise, if the algorithm does not
terminate, then it has been proved (see e.g. [20]) that ||xk+1 − xk|| → 0 as k →
+∞. Moreover the sequence {xk} generated by this algorithm is bounded and
weakly convergent to a solution of Problem (VI) whenever it admits a solution.

3. Description of the algorithms

Following Fukushima in [4], for each x ∈ C, we denote by h(x) the unique
solution of the strongly convex quadratic problem

(P (x)) min
{1

2
α||y − x||2 + 〈F (x), y − x〉 |y ∈ C

}
,

where α > 0. As usual, we shall refer to α as a regularization parameter. Since,
for each x ∈ C, Problem (P (x)) uniquely solvable, h is a single valued mapping
on C. It has been shown (see e.g. [4, 22]) that x∗ ∈ C is a solution of (VI) if and
only if h(x∗) = x∗.
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The next proposition says that if F is strongly monotone and Lipschitz on C,
then one can choose regularization parameters such that h is contractive on C.

Proposition 3.1. Suppose that the cost operator F is strongly monotone on C
with the modulus β and Lipschitz on C with the constant L. Then h is contractive
on C with the modulus

(3.1) δ =

√
1− 2β

α
+

L2

α2

whenever α >
L2

2β
.

The proof of this proposition can be found in [1]. Since the reference [1] is
unpublished, we give here a direct proof which is simpler than the original one
in [1].

Proof. From the definition of h, it follows that

h(u) = PrC(u− 1
α

F (u))

where PrC(v) denotes the projection of v onto C.
Since the projection is nonexpansive, we have

||h(u)− h(u′)||2 ≤ ||u− 1
α

F (x)− (u′ − 1
α

F (u′))||2

= ||u− u′||2 − 2
α
〈u− u′, F (u)− F (u′)〉+

1
α2
||F (u)− F (u′)||2.

Since F is β-strongly monotone and L-Lipschitz continuous on C, we have

〈u− u′, F (u)− F (u′)〉 ≥ β||u− u′||2
and

||F (u)− F (u′)||2 ≤ L||u− u′||2.
Then it follows that

||h(u)− h(u′)||2 ≤ ||u− u′||2 +
L2

α2
||u− u′||2 − 2β

α
||u− u′||2

=
(
1 +

L2

α2
− 2β

α

)
||u− u′||2.

Hence h is contractive on C whenever α >
L2

2β
·

Using Proposition 3.1 we can describe an algorithm for solving strongly monotone
variational inequalities based upon the Banach contraction mapping principle.

ALGORITHM 1

Initial step. Choose α >
L2

2β
and a tolerance ε ≥ 0.
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Step 0. Take u0 ∈ C. Set k = 0.
Step 1. Solve the strongly convex quadratic program

(P (uk)) min
{1

2
α||z − uk||2 + 〈F (uk), z − uk〉|z ∈ C

}

to obtain its unique solution uk+1.

If
δk+1

1− δ
||u1 − u0|| ≤ ε, terminate the algorithm: uk+1 is an ε-solution to (VI).

Otherwise, let k ← k + 1 and return to Step 1.

Let u∗ denote the unique fixed point of h. Since uk+1 = h(uk), we have

||uk+1 − u∗|| ≤ δk+1

1− δ
||u0 − u1||,

where δ is the contraction coefficient of h.
Thus, if the algorithm terminates at some iteration k, then ||uk+1 − u∗|| ≤

ε. Hence uk+1 is an ε-solution to (VI). In the case ε = 0, the algorithm may
never terminate. However the sequence {uk} generated by the algorithm strongly
converges to the unique fixed point u∗ of h, and, by the Banach contraction
mapping principle, we have the following estimation

||uk+1 − u∗|| ≤ δk+1

1− δ
||u0 − u1||.

Remark 3.1. From (3.1) we see that the contraction coefficient δ is a function
of the regularization parameter α. An elementary computation from (3.1) shows

that δ takes its minimum when α =
L2

β
. Therefore for the convergence, in Algo-

rithm 1 the best way is to choose α =
L2

β
.

Remark 3.2. In the case when the modulus β and the Lipschitz constant L of
F are not known in advance, we can justify the regularization parameters α as
follows.

At the start, we run the algorithm with α =
L2

0

β0
, where L0 > β0 > 0, to

obtain u1 = h(u0) (L0, β0 can be considered as approximate values of L and β
respectively).

If ||u1 − u0|| ≤ ε, then the algorithm has been terminated yielding an ε- fixed
point of h. Otherwise, if ||u1 − u0|| > ε > 0, since ||uj+1 − uj || ≤ δj ||u1 − u0|| for
all j, it follows that after j-iteration with

j ≥
log(

ε

||u1 − u0||)
log δ

,
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we must have ||uj+1−uj || ≤ ε. Then we can terminate the algorithm. Otherwise,
we increase α by a positive number, for example by one or two, and repeat the
procedure. By this way we can avoid computing L and β. However this step
may make the algorithm slow. As it will be seen in the next section, by coupling
Algorithm 1 with the proximal point algorithm one can avoid completely knowing
any Lipschitz constant of the cost operator.

Now we turn to the case where F in (VI) may be any continuous and monotone
(not necessarily strongly) on C.

For each variational inequality (VIk) we consider the following strongly convex
quadratic program:

(3.2) min
{
〈Fk(u), y − u〉+

αk

2
||y − u||2 |y ∈ C

}
,

where αk > 0. Since C is closed convex and the objective function is strongly
convex, this problem uniquely solvable for any u in the domain of F . Let hk(u)
denote the unique solution of Problem (3.2). Then hk is a mapping from domF
to C.

Note that (see [4]) uk is the solution to the variational inequality (VIk) if and
only if uk ∈ C and hk(uk) = uk.

The unique solution of (VIk) can be computed by finding the unique fixed
point of the contractive mapping hk by using Proposition 3.1. More precisely we
have the following result.

Proposition 3.2. If F is monotone and L-Lipschitz continuous on C, then hk is

contractive on C with the coefficient δk :=

√
1− 2

αk
+

L2
k

αk
2

whenever

αk >
L2

k

2
, where Lk = 1 + ckL is the Lipschitz constant of Fk.

Proof. Apply Proposition 3.1 to the mapping Fk noting that Fk is strongly
monotone on C with the modulus β = 1 and Lipschitz continuous on C with
the Lipschitz constant Lk = 1 + ckL.

In virtue of Proposition 3.2, the Banach contraction mapping principle can be
applied to Subproblem (VIk) by using Algorithm 1. Namely, we construct the
sequence {uk,j} by setting

uk,j+1 := hk(uk,j) (j = 0, 1, ...)

where uk,0 ∈ C has been chosen in advance.
Note that, at each iteration j, evaluating hk(uk,j) leads to solving the following

strongly convex quadratic programming problem

min
{1

2
αk||u− uk,j ||2 + 〈Fk(uk,j), u− uk,j〉 |u ∈ C

}
.
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Since uk is the fixed point of the contractive mapping hk, by the Banach contrac-
tion mapping fixed point principle, we have

(3.3) ||uk,j+1 − uk|| ≤ δj+1
k

1− δk
||uk,0 − uk,1||,

where 0 < δk < 1 is the contraction coefficient of hk. According to Proposition
3.2 one has

δk :=

√
1− 2

αk
+

L2
k

αk
2

where Lk = 1 + ckL with L being the Lipschitz constant of F . Moreover, if
the original variational inequality problem (VI) admits a solution, then by the
proximal point algorithm (see e.g. [20]) the sequence {uk} weakly converges to
a solution of (VI) whenever the sequence {ck} is bounded away from zero which
means that ck > c > 0 for all k, where c may be any positive number.

In practice we solve Subproblem (VIk) approximately only. Namely, we first

choose a decreasing sequence {εk} of positive numbers such that
∞∑

k=0

εk < +∞.

Then instead of computing the exact solution uk of Subproblem (VIk), we com-
pute an approximate solution uk,j+1 such that ||uk,j+1 − uk|| ≤ εk.

Remark 3.3. By Proposition 3.2 the regularization parameter must satisfy

αk >
(1 + ckL)2

2
. To guarantee convergence for the proximal point algorithm the

sequence {ck} must be bounded away from zero which means that ck > c > 0 for
every k. Since c can be any positive number, we can choose ck > 0 small enough

such that ckL < 1. Then it follows from αk =
(1 + ckL)2

2
that one can choose

αk = 1 for every k. In this case, since δk =

√
1− 2

αk
+

L2
k

αk
2
, we have

δk =
√

1− 2 + L2
k =

√
1− 2 + (1 + ckL)2 =

√
ck(2L + ckL2).

Thus, if we choose αk = 1 for all k, we can make δk small by taking ck small, but
it much be bounded away from zero. A single calculation shows that the same
situation occurs when αk = L2

k = (1 + ckL)2.

Motivated by the fact that x ∈ C is a solution of (VI) if and only if it is a fixed
point of Pk, we agree to say that x ∈ C is an ε-solution to (VI) if ||x−Pk(x)|| ≤ ε.
The algorithm for solving (VI) with F monotone and Lipschitz continuous on C
then can be described as follows.

ALGORITHM 2 (BFP Algorithm)
Choose a tolerance ε ≥ 0 and a decreasing sequence {εk} of positive numbers
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such that
∞∑

k=1

εk < +∞. Pick x0 ∈ C as the starting point.

Iteration k (outer iteration k = 0, 1, ...).
Step 0. Take αk ≥ 1.
Pick uk,0 := xk. Let j := 0.
Step 1 (inner iteration). Solve the strongly convex quadratic program

(3.4) min
{1

2
αk||u− uk,j ||2 + 〈Fk(uk,j), u− uk,j〉 |u ∈ C

}

to obtain uk,j+1.
1a) if

uk,1 = uk,0 or j ≥
log

εk(1− δk)
||uk,0 − uk,1||

log δk
− 1,

then set xk+1 := uk,j+1.
If ||xk+1 − xk||+ εk ≤ ε, then terminate the algorithm: xk is an ε-solution to

(VI).
If ||xk+1 − xk||+ εk > ε, then increase k by 1 and go to iteration k.
1b) If

uk,1 6= uk,0 and j <

log
εk(1− δk)
||uk,0 − uk,1||

log δk
− 1,

then let j := j + 1 and go to Step 1.

Remark 3.4. By the proximal point algorithm, ||xk+1 − xk|| → 0 as k → +∞
whenever (VI) admits a solution. Hence, if (VI) is solvable, then the algorithm
terminates after a finite iteration whenever ε > 0, because εk → 0 as k → +∞.

Remark 3.5. The main subproblem in the above algorithm is Problem (3.4).
This is a strongly convex quadratic program that can be solved efficiently by the
existing codes. Note that the problem (3.4) can be rewritten equivalently as

min
{
||u− (uk,j − 1

αk
Fk(uk,j))||2 | u ∈ C

}
,

which in turn is the problem of finding the projection of uk,j − 1
αk

Fk(uk,j) on C.

In some special cases of C such as when C being a box, a simplex or a ball (often
occur in applications), the projection of a point on C can be given explicitly.

Convergence. Suppose that (VI) is solvable. First we show that if the algorithm
terminates at iteration k, then xk is in fact an ε-solution to (VI). Indeed, by
construction of xk+1, we have

||xk+1 − Pk(xk)|| ≤ εk ∀k ≥ 1.
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Since

||Pk(xk)− xk|| ≤ ||xk+1 − xk||+ ||Pk(xk)− xk+1|| ≤ ε− εk + εk = ε,

xk is an ε-solution of (VI). When ε = 0 the algorithm may never terminate.
However, the convergence of the algorithm is guaranteed by the convergence of the
proximal point algorithm and the Banach contraction mapping principle. Indeed,
suppose that uk is the exact solution of Subproblem (VIk), by the proximal point
algorithm the sequence {uk} converges weakly to a solution u∗ of variational
inequality (VI). For any w ∈ H we have

〈w, xk〉 − 〈w, x∗〉 = 〈w, xk − uk〉+ 〈w, uk − x∗〉
≤ ||w|| ||uk − xk||+ 〈w, uk − x∗〉
≤ εk||w||+ 〈w, uk − x∗〉.

Since εk → 0 and uk converges weakly to u∗, it follows that the sequence {xk}
weakly converges to x∗.

Remark 3.6. Of course instead of Algorithm 1, we can use Algorithm 2 for solv-
ing variational inequalities with strongly monotone cost operators. It is helpful
when a Lipschitz constant of the cost operator is difficult to estimate.

Comparison with the Modified Projection Method
As we have mentioned in the introduction part, in order to guarantee the con-

vergence of the projection method, one needs strict monotonicity or cocoercivity
of the cost operator F . To avoid this additional condition, the projection method
needs some modifications. A well known modified projection method, called ex-
tragradient method (see e.g. [9, 15]) for solving variational inequalities involving
monotone and L-Lipschitz cost operators can be briefly described as follows.

Start with x0 ∈ C and select 0 < ρ <
1
L

. At each iteration k = 1, 2... find xk−1

and xk such that
xk−1 = PC(xk−1 − ρF (xk−1)),

and
xk = PC(xk−1 − ρF (xk−1)).

It has been proven [15] that if the cost operator F is monotone and L-Lipschitz
on C, then the sequence {xk} generated by this algorithm weakly converges to a
solution of Problem (VI).

Note that the step size ρ in this algorithm plays as the reciprocal of the regu-
larization parameter in Algorithm 1. The difference is that ρ is independent of k
while parameter αk may vary at each iteration k.

The main advantage of Algorithm 2, as comparing to the above described
modified projection algorithm, is that Algorithm 2 does not require knowing any
Lipschitz constant of the cost operator.
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4. An illustrative example and computational results

We illustrate Algorithm BFP by the oligopolistic market equilibrium model
considered in [8] (see also [15]). Assume that there are n firms supplying a
homogeneous product and that the price p depends on its quantity σ, i.e. p =
p(σ). Let hi(xi) denote the total cost of the firm i of supplying xi units of the
product. Then the profit of firm i is xip(σ)−hi(xi). Naturally, each firm seeks to
maximize its own profit by choosing the corresponding production level. Suppose
that the strategy set C is a box in Rn given by

(4.1) C := {x = (x1, ..., xn)T |0 ≤ Li ≤ xi ≤ Ui (i = 1, ..., n)}.
Thus, the oligopolistic market equilibrium problem can be formulated as a Nash
equilibrium noncooperative game, where the ith player has the strategy set C
and the utility function

(4.2) fi(x1, ..., xn) = xip
( n∑

j=1

xj

)
− hi(xi) (i = 1, ..., n).

As usual, a point x∗ = (x∗1, ..., x
∗
n) ∈ C is said to be equilibrium for this problem

if

(4.3) fi(x∗1, ..., x
∗
i−1, yi, x

∗
i+1, ..., x

∗
n) ≤ fi(x∗1, ..., x

∗
n) ∀yi ∈ [Li, Ui] ∀i = 1, ..., n.

Proposition 4.1. (see e.g. [8]) A point x∗ is equilibrium for the oligopolistic
market problem if and only if it is a solution to (VI), where C is the box given
by (4.1) and

F (x) = H(x)− p(σx)e− p′(σx)x,

with H(x) = (h′1(x1), ..., h′n(xn))T , e = (1, ..., 1)T ∈ Rn, σx = 〈x, e〉.
Proposition 4.2. (see e.g. [8]) Let p : C → R+ be convex, twice continously
differentiable and nonincreasing and let the function µτ : R+ → R+, defined
by µτ (σ) = σp(σ + τ), be concave for every τ ≥ 0. Also, let the functions
hi : R+ → R (i = 1, ..., n) be convex and twice continuously differentiable. Then
the cost mapping

F (x) = H(x)− p(σx)e− p′(σx)x,

is monotone on C.

Note that, since in this problem the feasible domain C is a box, the solution of
Subproblem (VIk) in each iteration k of Algorithm 2 is given explicitly as follows.

Suppose that the box C is given by (4.1). Let x ∈ Rn and y = PC(x). Then it
is easy to see that i-th component of y is

yi =





Li if xi ≤ Li,

Ui if xi ≥ Ui,

xi if Li ≤ xi ≤ Ui.

We have tested Algorithm 2 with the following example on a personal computer
Intel 845 w, Celeron 1.7 GHZ, Ram 256 Mb.
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Example 4.1. In this example

C :=
{

(x1, ..., xn)T |2− 1
i
≤ xi ≤ 15 +

i

3i− 2
, ∀i = 1, ..., n

}

H(x) := (α1x1 + β1, ..., αnxn + βn)T ,

p(t) :=
ξ

t
, t ∈ (0, +∞),

where ξ > 0 is fixed. The numbers αi, βi (i = 1, ..., n) and ξ are randomly gen-
erated in the interval (0, 20). The tolerance ε = 10−5. We have computed this
model with several numbers of data and we have the following experiments on
the algorithm.
• The choice of the tolerance sequence {εk} effects very much on the efficiency of
the algorithm, especially on the time for the first outer iteration.
•. To enhance the convergence, we choose the sequence {εk} such that εk ≤ λε
for all k except several first k, where λ ∈ (0, 1) (of course εk much be satisfied the
condition in the convergence theorem). In Table 1 below we have chosen λ = 0.5
for all problems, and λ = 0.99 for those in Table 2,

Problem k j1 CPU-times/sec
1 9 1.4444 0.6
2 2 1.5 0.2
3 5 1.2 0.4
4 3 1.3333 0.3
5 4 1.25 0.4
6 5 1.4 0.3
7 4 1.5 0.4
8 5 1.4 0.2
9 8 1.75 0.4
10 4 1.5 0.6
11 3 1433 0.45
12 9 1.6667 0.6
13 81 1.1728 0.51
14 9 1.5556 0.4
15 2 1.5 0.2
16 3 1.6667 0.2
17 8 1.625 0.6
18 82 1.1585 0.21
19 7 1.254 0.25
20 6 1.211 0.2

k = 12.95 j = 1.4211 t = 0.3685

Table 1 (with n = 100)
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Problem k j1 CPU-times/sec
1 196 1.7959 2.31
2 8 1.75 0.1
3 106 1.4717 1.9
4 121 1.570 1.27
5 96 1.063 0.99
6 8 2 0.11
7 151 1.7020 1.69
8 141 1.6667 1.53
9 103 1.4175 0.99
10 132 1.6364 1.43
11 91 1.3407 0.88
12 40 1.075 0.32
13 176 1.7386 2.3
14 101 1.4555 0.98
15 85 1.2824 0.81
16 123 1.5935 1.31
17 163 1.7239 1.81
18 129 1.6202 1.43
19 150 1.68 1.69
20 127 1.6142 1.42

k = 112.35 j = 1.5599 t = 1.2635

Table 2 (with n = 800)

• The coefficient δk =

√
1− 2

αk
+

L2
k

α2
k

also effects very much the number of inner

iterations. Since αk ≥ (1 + ckL)2

2
, we have ck ≤

√
2αk − 1

L
. Hence if αk is

constant, then the boundedness away from zero of the sequence {ck} can be

ensured, by taking, for example, ck =
√

2αk − 1
L

for every k. For all tested
problems we have chosen αk = 1.1 for every k. Note that, for all computations
we do not need to chose ck.

Some preliminary computational results are reported in the Tables 1 and 2
below. The following headings are used in the tables:
• j: the average number of inner iterations.
• k: the number of outer iterations for each problem.
• k: the average number of outer iterations.
• j1: the average number of the inner iterations in each outer iterations k.
• t: the average of CPU times (in second) for each problem.

The results in Table 1 and Table 2 have been computed with the tolerance

εk =
1
k2

. For all computed examples, every component of the starting point is
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the midpoint of the corresponding edge of the rectangle C, i.e., the ith component

is
Li + Ui

2
·

From the computational experience and results we can conclude that Algorithm
BFP is efficient for this equilibrium model with problems of several hundreds
variables. For problems of thousand variables, the algorithm can be also used
efficiently with an appropriate tolerance sequence {εk}.
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