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PROBABILITY CAPACITIES IN Rd

AND THE CHOQUET INTEGRAL FOR CAPACITIES

NGUYEN NHUY AND LE XUAN SON

Abstract. A notion of capacity in Rd is introduced and a concept of Choquet
integral of measurable functions f : Rd → R is defined and investigated.

1. Introduction

The Choquet theorem gives a tool to specify probability measures on the mea-
surable spaces. Namely, there exists a bijection between probability measures and
capacity functionals (see Choquet [1], Matheron [7]). Therefore, it seems natural
to use capacities instead of probability measures in many problems of mathemat-
ical statistics and geometric probability. Note that the notion of capacities has
been investigated by several authors (see G. Choquet [1], S. Graf [2], P. J. Huber
[3], P. J. Huber and V. Strassen [4], Hung T. Nguyen, Nhu T. Nguyen and T.
Wang [5], J. B. Kodane and L. Wasserman [6], Matheron [7], and T. Norberg
[9]). However, the probabilistic aspects of the theory of capacities have not been
developed to a level comparable with the standards of measure theory.

In this note we introduce a notion of capacity, that generalizes the notion
of measure in Rd. The note can be viewed as a step toward generalizing the
probability measures to capacities. In Section 2 we give the notion of capacity in
Rd and show that the capacity theory is, in fact, a generalization of the measure
theory in Rd. Some important examples of capacities are considered. In this
section, the capacity and the measure with finite support are characterized. In
Section 3, we define the Choquet integral and describe some of their properties
for the purpose of studying the weak topology [8]. In Section 4, we show the
difference between the notion of capacity introduced in this note and the one in
the sense of Graf.

2. Probability capacities in Rd

Let K(Rd), F(Rd), G(Rd), B(Rd) denote the families of all compact sets, closed
sets, open sets and Borel sets in Rd, respectively.

Definition 2.1. A set function T : B(Rd) → [0, +∞) is called a capacity in Rd if
the following conditions hold:
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1. T (∅) = 0.
2. T is alternating of infinite order: For any Borel sets Ai, i = 1, . . . , n, n ≥ 2,

we have

T
( n⋂

i=1

Ai

) ≤
∑

I∈I(n)

(−1)#I+1T
( ⋃

i∈I

Ai),(2.1)

where I(n) =
{
I ⊂ {1, . . . , n}, I 6= ∅} and #I denotes the cardinality of I.

3. T (A) = sup{T (C) : C ∈ K(Rd), C ⊂ A}, for any Borel set A ∈ B(Rd).
4. T (C) = inf{T (G) : G ∈ G(Rd), G ⊃ C}, for any compact set C ∈ K(Rd).

In comparison with the notion of measure we have the following theorem.

Theorem 2.1. If µ is a measure defined on B(Rd), then µ has the following
property: For any Borel sets Ai, i = 1, . . . , n, n ≥ 2, we have

µ
( n⋂

i=1

Ai

)
=

∑

I∈I(n)

(−1)#I+1µ
( ⋃

i∈I

Ai

)
.(2.2)

Thus, a capacity is similar to a measure, except that the equality (2.2) is replaced
by the inequality (2.1).

Proof. We will prove the theorem by induction. For Borel sets A1, A2, we have

µ(A1 ∩A2) = µ(A1) + µ(A2)− µ(A1 ∪A2),

i.e., (2.2) holds for n = 2. Suppose that the statement has been verified up to n,
we will show that it is true for n + 1.

Note that I(n + 1) = I(n) ∪ {n + 1} ∪ {(I(n), n + 1)}. Let A =
n⋂

i=1
Ai. Then

by the induction hypothesis we have

µ
( n+1⋂

i=1

Ai

)
= µ(A ∩An+1)

= µ(A) + µ(An+1)− µ(A ∪An+1)

= µ(A) + µ(An+1)− µ
(( n⋂

i=1

Ai

) ∪An+1

)

= µ
( n⋂

i=1

Ai

)
+ µ(An+1)− µ

( n⋂

i=1

(Ai ∪An+1)
)
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=
∑

I∈I(n)

(−1)#I+1µ
( ⋃

i∈I

Ai

)
+ µ(An+1)−

∑

I∈I(n)

(−1)#I+1µ
(⋃

i∈I

(Ai ∪An+1)
)

=
∑

I∈I(n)

(−1)#I+1µ
( ⋃

i∈I

Ai

)
+ µ(An+1)−

∑

I∈I(n)

(−1)#I+1µ
( ⋃

i∈I′
Ai

)

=
∑

I∈I(n)

(−1)#I+1µ
( ⋃

i∈I

Ai

)
+ µ(An+1) +

∑

I′∈{(I(n),n+1)}
(−1)#I′+1µ

( ⋃

i∈I′
Ai

)

=
∑

I∈I(n+1)

(−1)#I+1µ
( ⋃

i∈I

Ai

)
,

where I ′ = (I, n + 1), I ∈ I(n).

Definition 2.2. ([5]) We say that a set function T is maxitive if

T (A ∪B) = max{T (A), T (B)} for A,B ∈ B(Rd).

Proposition 2.1. If T is the maxitive set function defined on Borel sets B(Rd),
then for any Borel sets Ai, i = 1, . . . n, n ≥ 2, we have∑

I∈I(n)

(−1)#I+1T
( ⋃

i∈I

Ai

)
= min

i
{T (Ai)}.(2.3)

Proof. We will prove the proposition by induction. For any Borel sets A1, A2,
we have

T (A1) + T (A2)− T (A1 ∪A2) = T (A1) + T (A2)−max{T (A1), T (A2)}
= min{T (A1), T (A2)},

i.e., the proposition is true for n = 2. Assume that the proposition is true up to
n, we will prove it holds for n + 1. For Ai ∈ B(Rd), i = 1, . . . , n + 1, without loss
of generality, we may assume that

T (A1) = min
1≤i≤n+1

{T (Ai)}; T (An+1) = max
1≤i≤n+1

{T (Ai)}.

Then, by the hypothesis of induction we have∑

I∈I(n+1)

(−1)#I+1T
( ⋃

i∈I

Ai

)
=

∑

I∈I(n)

(−1)#I+1T
( ⋃

i∈I

Ai

)
+ T (An+1)

+
∑

I′=(I,n+1), I∈I(n)

(−1)#I′+1T
( ⋃

i∈I′
Ai

)

= T (A1) + T (An+1)

+ (−C1
n + C2

n − · · ·+ (−1)nCn
n)T (An+1)

= T (A1)

+ (C0
n − C1

n + C2
n − · · ·+ (−1)nCn

n)T (An+1)

= T (A1) = min
1≤i≤n+1

{T (Ai)},
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and the proposition is proved.

Definition 2.3. A maxitive function T is called to be a maxitive measure if the
conditions 1., 3., 4. of Definition 2.1. hold.

The following theorem was shown in [5]

Theorem 2.2. Any maxitive set function is alternating of infinite order. Con-
sequently, the class of capacity in Rd contains both classes: the class of measures
and the class of maxitive measures.

Proposition 2.2. Any capacity is a non-decreasing set function on Borel sets of
Rd.

Proof. Assume that A,B are Borel sets of Rd such that A ⊂ B. Let

K(A) := {C : C ∈ K(Rd), C ⊂ A}.
Observe that

K(A) ⊂ K(B).

Therefore, by Definition 2.1(3.) we have

T (A) = sup
C∈K(A)

{T (C)} ≤ sup
C∈K(B)

{T (C)} = T (B).

Corollary 2.1. Let T be a capacity in Rd. If A ∈ B(Rd) with T (A) = 0, then

T (B) = T (A ∪B) for B ∈ B(Rd).

Proof. By Proposition 2.2, T (B ∪ A) ≥ T (B). On the other hand, since T is
alternating of infinite order,

T (B ∪A) ≤ T (A) + T (B)− T (A ∩B) = T (B).

Consequently,

T (B ∪A) = T (B).

Definition 2.4. By support of a capacity T we mean the smallest closed set
S ⊂ Rd such that T (Rd \ S) = 0.

We denote the support of a capacity T by supp T . It is easy to obtain the
following

Corollary 2.2. If T is a capacity in Rd, then

T (suppT ) ≥ T (B) for all B ∈ B(Rd).

Moreover, we have
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Proposition 2.3. It holds

suppT = Rd \
⋃
{G : G ∈ G(T )},

where

G(T ) = {G ∈ G(Rd) : T (G) = 0}.

Definition 2.5. We say that T is a probability capacity in Rd if T (suppT ) =
T (Rd) = 1.

Example 2.1. For any x ∈ Rd, we define the set function Tx = δx, by

δx(B) =

{
1 if x ∈ B

0 if x /∈ B.

It is clear that Tx is a capacity in Rd. The corresponding x → Tx is one-to-one
between Rd and the set of the probability capacities {Tx : x ∈ Rd} ⊂ P, where P
denotes the family of all probability capacities in Rd. Therefore, in some sense,
the class of capacities in Rd also contains Rd.

Example 2.2. Let R+ = [0,∞). For a finite set A = {(x1, t1), . . . , (xk, tk)} ⊂
Rd × R+ we define the set function TA by

TA(B) =

{
max{ti : xi ∈ B} if B ∩A0 6= ∅
0 if B ∩A0 = ∅,

where A0 = {x1, . . . , xk} ⊂ Rd. Clearly, TA is a capacity in Rd. We call TA

a capacity with finite support and the number ti is called the weight of xi for
i = 1, . . . , k.

If max{ti, i = 1, . . . , k} = 1, then TA is a probability capacity. Note that
supp TA = A0 = {x1, . . . , xk}.

Definition 2.6. We say that a measure T is a probability measure if T (supp T ) =
1.

Note that the two capacities given in Examples 2.1 and 2.2 are maxitive mea-
sures. The capacity in the next example is a probability measure.

Example 2.3. For a finite set A = {(x1, t1), . . . , (xk, tk)} ⊂ Rd × R+, we define

the capacity TA =
k∑

i=1
tiδxi by setting

TA(B) =
∑

xi∈B∩A0

ti

for B ∈ B(Rd), where A0 = {x1, . . . , xk} ⊂ Rd. It is easy to see that TA is a
measure in Rd. We call TA a measure with finite support and the number ti is
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called the weight of xi for i = 1, . . . , k. If
k∑

i=1
ti = 1, then TA is a probability

measure with finite support and supp TA = {x1, . . . , xk}.

Definition 2.7. We say that a set function T is upper semi-continuous provided
it satisfies the condition: If C1 ⊃ . . . ⊃ Cn ⊃ . . . is a decreasing sequence of Borel

sets in Rd and
∞⋂

n=1
Cn = C0, then

lim
n→∞T (Cn) = T (C0).

In notation: Cn ↘ C0 ⇒ T (Cn) ↘ T (C0).
The following example shows that, in general, capacities are not upper semi-

continuous.

Example 2.4. We define the set function µ : B(Rd) → [0, 1] by setting

µ(A) =

{
0 if A = ∅
1 if A 6= ∅

for A ∈ B(Rd). Then µ is maxitive. Hence µ is alternating of infinite order.
Let x ∈ A. Then

µ({x}) = 1 = µ(A).

Therefore

µ(A) = sup{µ(C) : C ∈ K(Rd), C ⊂ A}.
Finally, if C is a compact set in Rd, we have µ(C) = 1 and µ(G) = 1 for any

open G containing C. Hence

µ(C) = inf{µ(G) : G ∈ G(Rd), G ⊃ C}.
Thus, conditions (1) - (4) of Definition 2.1 are satisfied. We will show that µ is
not upper semi-continuous. For each n = 1, 2, . . . , define

An =
{

x ∈ Rd : 0 < ‖x‖ <
1
n

}
.

Then {An} is a decreasing sequence in B(Rd) and
∞⋂

n=1
An = ∅. We have

µ(An) = 1 for every n ∈ N and µ
( ∞⋂

n=1

An

)
= 0.

Hence

lim
n→∞µ(An) = 1 > µ

( ∞⋂

n=1

An

)
.

This means that µ is not upper semi-continuous. However, on compact sets the
situation will be different as shown in the following theorem.
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Theorem 2.3. Any capacity is upper semi-continuous on compact sets.

Proof. Assume that C1 ⊃ . . . ⊃ Cn ⊃ . . . is a decreasing sequence of compact

sets of Rd and
∞⋂

n=1
Cn = C0. Since T is a non-decreasing set function, lim

n→∞T (Cn)

exists and

T (C0) ≤ lim
n→∞T (Cn).(2.5)

By Definition 2.1 we have

T (C0) = inf{T (G) : G ∈ G(Rd), C0 ⊂ G}.
Therefore, for a given ε > 0 there is G ∈ G(Rd), G ⊃ C0, such that

T (C0) + ε > T (G).

Since C0 =
∞⋂

n=1
Cn is a compact set and G is a open set containing C0, there is

n0 ∈ N such that G ⊃ Cn for all n ≥ n0. By Proposition 2.2, T (G) ≥ T (Cn) for
all n ≥ n0. Hence

T (G) ≥ lim
n→∞T (Cn).

Therefore

T (C0) + ε > lim
n→∞T (Cn).

Since ε is an arbitrarily small positive number, we have

T (C0) ≥ lim
n→∞T (Cn).

From the latter and (2.5), the assertion follows.

3. Choquet integral for capacities

Let T be a capacity in Rd. Then for any measurable function f : Rd → R+ =
[0, +∞) and A ∈ B(Rd), the function fA : R→ R defined by

fA(t) = T ({x ∈ A : f(x) ≥ t}) for t ∈ R
is a non-increasing function in t. Therefore we can define the Choquet integral∫
A

fdT of f with respect to T by

∫

A

fdT =

∞∫

0

fA(t)dt =

∞∫

0

T ({x ∈ A : f(x) ≥ t})dt.

This notion of integral is originated from Choquet (1953). One should note
that the function fA(t) = T ({x ∈ A : f(x) ≥ t}) is well defined because f is
measurable. Furthermore, as T is monotone, the function fA is nonincreasing. As
any nonincreasing function has an extended Riemann integral, the definition is
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valid. If
∫
A fdT < ∞, then we say that f is integrable. In particular, for A = Rd

we write
∫

Rd

fdT =
∫

fdT.

Observe that if f is bounded, then

∫

A

fdT =

α∫

0

T ({x ∈ A : f(x) ≥ t})dt,(3.1)

where α = sup{f(x) : x ∈ A}. In fact, since {x ∈ A : f(x) ≥ t} = ∅ for every
t > α, we have

T ({x ∈ A : f(x) ≥ t}) = 0.

Hence

∫

A

fdT =

α∫

0

T ({x ∈ A : f(x) ≥ t})dt +

+∞∫

α

T ({x ∈ A : f(x) ≥ t})dt

=

α∫

0

T ({x ∈ A : f(x) ≥ t})dt.

In the general case, if f : Rd → R is a measurable function, then we define
∫

A

fdT =
∫

A

f+dT −
∫

A

f−dT,

where f+(x) = max{f(x), 0} and f−(x) = max{−f(x), 0}.
By using Choquet integrals we are able to evalute intergrals for the capacities

defined in Examples 2.1 - 2.3.

Theorem 3.1. For x ∈ Rd, let Tx be the capacity defined in Example 2.1. Then
for any measurable function f : Rd → R+ we have

∫
fdTx = f(x) for every x ∈ Rd.(3.2)

Conversely, if T is a capacity in Rd such that for some x ∈ Rd we have

f(x) =
∫

fdT for every f ∈ C+
0 (Rd),(3.3)

where C+
0 (Rd) denotes of all continuous non-negative real valued functions with

compact support in Rd, then T = Tx.
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Proof. The equality (3.2) can be proved as follows

∫
fdTx =

∞∫

0

Tx({y ∈ Rd : f(y) ≥ t})dt

=

f(x)∫

0

Tx({y ∈ Rd : f(y) ≥ t})dt +

∞∫

f(x)

Tx({y ∈ Rd : f(y) ≥ t})dt

=

f(x)∫

0

dt = f(x).

To obtain second part of the theorem we now establish two claims.

Claim 3.1. Let T be the capacity defined on Borel sets of Rd. Assume that for
C ∈ K(Rd), fC : Rd → R is a function defined by

fC(y) =

{
1 if y ∈ C

0 if y /∈ C.
(3.4)

Then
∫

fCdT = T (C).

Indeed, for every α ∈ (0, 1] we have {y ∈ Rd : f(y) ≥ α} = C. Then by (3.1)
we have

∫
fCdT =

1∫

0

T ({y ∈ Rd : f(y) ≥ t})dt

=

1∫

0

T (C)dt = T (C).

Claim 3.2. Under the condition (3.3), we have

supp T = {x}.

Indeed, if it is not the case, then T (G) = δ > 0 for some open set G ⊂ Rd\{x}.
By Definition 2.1 we can find a compact C ⊂ G, such that T (C) >

δ

2
. Let

fC,G : Rd → [0, 1] be a continuous function such that

fC,G(x) =

{
1 if x ∈ C

0 if x /∈ G.
(3.5)
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Such a function exists by the Urysohn-Tietze Theorem. Then fC,G ∈ Rd. Since
x /∈ G, by (3.3) we have

0 = fC,G(x) =
∫

fC,GdT ≥
∫

fCdT = T (C) >
δ

2
> 0,

a contradiction. Therefore

supp T = {x}.
Now we are able to complete the proof of the theorem.
By Definition 2.1, for every ε > 0 there is an open set V 3 x such that

T (V ) < T ({x}) + ε.

We have

T ({x}) ≤
∫

f{x},V dT = f{x},V (x) = 1 ≤ T (V ) < T ({x}) + ε,

which implies T ({x}) = 1, and so T = Tx.

Using the arguments in the proof of Theorem 3.1 we obtain the following more
general result.

Theorem 3.2. For a compact set C in Rd, define

TC(A) =

{
1 if A ∩ C 6= ∅
0 if A ∩ C = ∅,

with A ∈ B(Rd). Then for any measurable function f : Rd → R, it holds∫
fdTC = sup{f(x) : x ∈ C}.

Conversely, if T is a capacity in Rd such that for some compact set C ∈ K(Rd)∫
fdT = sup{f(x) : x ∈ C} for every f ∈ C+

0 (Rd),(3.6)

then T = TC .

Proof. Let M := sup{f(x) : x ∈ C}. Then we have

∫
fdTC =

M∫

0

TC({x ∈ Rd : f(x) ≥ t})dt +

∞∫

M

TC({x ∈ Rd : f(x) ≥ t})dt

=

M∫

0

TC({x ∈ Rd : f(x) ≥ t})dt

=

M∫

0

dt = M.
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To obtain the second assertion we observe that

T (K) = TC(K) for every K ∈ K(Rd).

In fact, if K ∩ C = ∅ then TC(K) = 0. There is an open set G1 ⊃ K and
G1 ∩ C = ∅. Let fK,G1 be the function defined by (3.5),

T (K) =
∫

fKdT ≤
∫

fK,G1dT = sup{fK,G1(x) : x ∈ C} = 0.

If K ∩ C 6= ∅ then TC(K) = 1. For any ε > 0, there is an open set G2 ⊃ K such
that T (G2) < T (K) + ε. With fK,G2 defined by (3.5) we have

T (K) ≤
∫

fK,G2dT = sup{fK,G2(x) : x ∈ C} = 1 ≤ T (G2) < T (K) + ε,

which implies T (K) = 1.
Therefore, by Definition 2.1,

T (A) = sup{T (K) : K ∈ K(Rd), K ⊂ A}
= sup{TC(K) : K ∈ K(Rd), K ⊂ A}
= TC(A)

for every Borel set A.

Remark 3.1. Under the condition (3.6), we have

supp T = C.

Indeed, for every compact set K ⊂ Rd \ C, let G be an open set such that
K ⊂ G ⊂ Rd \ C. Then we have

T (K) ≤
∫

fK,GdT = sup{fK,G(x) : x ∈ C} = 0.

Hence

T (Rd \ C) = sup{T (K); K ∈ K(Rd), K ⊂ Rd \ C} = 0.

Therefore, by the definition of support, we have supp T ⊂ C. To obtain the
reverse inclusion, we first observe that

if T (G) = 0 then G ⊂ Rd \ C for every Borel set G ∈ B(Rd).

In fact, if G ∩ C 6= ∅, let x ∈ G ∩ C. For any ε > 0, there is an open set V 3 x
such that T ({x}) > T (V )− ε. Let f{x},V be the function defined by (3.5),

T (G) ≥ T ({x}) > T (V )− ε ≥
∫

f{x},V dT − ε

= sup{f{x},V (y) : y ∈ C} − ε = 1− ε > 0,

a contradiction. Hence

supp T = Rd \
⋃
{T (G); G ∈ G(T )} ⊃ Rd \ (Rd \ C) = C,
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where

G(T ) = {G : G ∈ G(Rd), T (G) = 0}.
Theorem 3.3. Let TA be the capacity defined in Example 2.2, where

A = {(x1, t1), . . . , (xk, tk)} ⊂ Rd × R+.(3.7)

Then for any measurable function f : Rd → R+ we have
∫

fdTA =
k−1∑

i=0

(αi+1 − αi)max{tnj : j = i + 1, . . . , k},(3.8)

where {xni : i = 1, . . . , k} = {xi : i = 1, . . . , k} with

α0 = 0 ≤ α1 = f(xn1) ≤ α2 = f(xn2) ≤ · · · ≤ αk = f(xnk
).(3.9)

This means that we reorder the indices of xi, i = 1, . . . , k to get (3.9).
Conversely, if T is a capacity in Rd such that (3.8) holds for any measurable

function f : Rd → R+, then T = TA, where A is given by (3.7).

Proof. Observe that
∫

fdTA =

∞∫

0

TA({y ∈ Rd : f(y) ≥ t})dt

=

α∫

0

TA({y ∈ Rd : f(y) ≥ t})dt,

where α = αk = max{f(xi) : i = 1, . . . , k}.
By the definition of TA in Example 2.2, TA({y ∈ Rd : f(y) ≥ t}) is a step

function in t given by

TA({x : f(x) ≥ t}) = max{tnj : j = i + 1, . . . , k} for t ∈ (αi, αi+1],

where αi = f(xni), i = 0, 1, . . . , k are chosen to satisfy (3.9).
It follows that

∫
fdTA =

α∫

0

TA({y ∈ Rd : f(y) ≥ t})dt

=
k−1∑

i=0

αi+1∫

αi

max{tnj : j = i + 1, . . . , k}dt

=
k−1∑

i=0

(αi+1 − αi)max{tnj : j = i + 1, . . . , k},

so (3.8) is valid.
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Conversely, to have T = TA we need to show that

TA(K) = T (K) for any K ∈ K(Rd).

Assume that fK is defined as in (3.4). Without loss of gerality we may assume
that

fK(x1) ≤ fK(x2) ≤ · · · ≤ fK(xk).

We put

αi = fK(xi) for i = 1, . . . , k

and consider the following two cases:
a) A0 ∩K = ∅. Then TA(K) = 0 and

T (K) =
∫

fKdT =
k−1∑

i=0

(αi+1 − αi) max{tj : j = i + 1, . . . , k} = 0.

b) A0 ∩K 6= ∅. Let i be the smallest number that xi ∈ K ∩A0. Then

fK(xi) = 1 ≤ fK(xj) for every j = i + 1, . . . , k.

Hence

xj ∈ A0 ∩K for every j = i + 1, . . . , k.

Therefore

α1 = · · · = αi−1 = 0 and αi = · · ·αk = 1.

By the definition of TA we have

TA(K) = max{ti : xi ∈ A0 ∩K}
= max{tj : j = i, . . . , k}.

By Claim 3.1 we have

T (K) =
∫

fKdT

=
k−1∑

i=0

(αi+1 − αi)max{tj : j = i, . . . , k}

= (αi − αi−1)max{tj : j = i, . . . , k}
= max{tj : j = 1, . . . , k}
= TA(K).

Theorem 3.4. Let TA =
k∑

i=1
tiδxi be the capacity defined in Example 2.3, where

A = {(x1, t1), . . . , (xk, tk)} ⊂ Rd × R+.
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Then for any measurable function f : Rd → R we have
∫

fdTA =
k∑

i=1

tif(xi).

Proof. Without loss of generality we may assume that

f(x1) ≤ f(x2) ≤ · · · ≤ f(xk).

For every i = 1, . . . , k, let

ai :=
k∑

n=i

tn.

Then

TA({y ∈ Rd : f(y) ≥ t}) = ai+1 for t ∈ (f(xi), f(xi+1)].

Therefore

∫
fdTA =

f(xk)∫

0

TA({y ∈ Rd : f(y) ≥ t})dt

=
k−1∑

i=0

f(xi+1)∫

f(xi)

TA({y ∈ Rd : f(y) ≥ t})dt

=
k−1∑

i=0

f(xi+1)∫

f(xi)

ai+1dt =
k−1∑

i=0

ai+1(f(xi+1)− f(xi))

=
k−1∑

i=1

(ai − ai+1)f(xi) + akf(xk) =
k∑

i=1

tif(xi),

where f(x0) = 0.

4. Capacities in the sense of Graf

In [2] Graf has introduced the class of capacities as follows.

Definition 4.1. Let (U,U) is a measurable space, i.e. U is a set and U is a
σ-field of subsets of U . A map ν : U → R+ is called a capacitiy if the following
conditions hold

1. ν(∅) = 0
2. For A,B ∈ U , ν(A ∪B) ≤ ν(A) + ν(B)
3. For A,B ∈ U , A ⊂ B implies ν(A) ≤ ν(B)

4. ν
( ∞⋃

n=1
An

)
= lim

n→∞ ν(An) for any increasing sequence {An} ⊂ U .
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The following example shows that the class of capacities in the sense of Graf
is different from the class of capacities in Rd introduced in Section 2.

Example 4.1. ([5]) We consider the monotone set-function ν : B(R) → [0, 1]
defined by

ν(A) =

{
0 if A ∩ N = ∅
min{1, 2−1

∑{x−1 : x ∈ A ∩ N} if A ∩ N 6= ∅
for A ∈ B(R), where N denotes the set of all positive integer numbers.

It was shown in [5] that ν is not alternating of infinite order. Therefore, ν is
not a capacity in R. However, ν is a capacity in the sense of Graf. Indeed, we
have

1. ν(∅) = 0
2. For A,B ∈ B(R) consider the following cases.

Case 1. A ∩ N = ∅ and B ∩ N 6= ∅. Then

ν(A ∪B) = min{1, 2−1
∑

{x−1 : x ∈ (A ∪B) ∩ N}}
= min{1, 2−1

∑
{x−1 : x ∈ B ∩ N}}

= ν(B) = ν(A) + ν(B).

Case 2. A ∩ N 6= ∅ and B ∩ N 6= ∅. Then

ν(A ∪B) = min{1, 2−1
∑

{x−1 : x ∈ (A ∪B) ∩ N}}
≤ min{1, 2−1

∑
{x−1 : x ∈ A ∩ N}}

+ min{1, 2−1
∑

{x−1 : x ∈ B ∩ N}}
= ν(A) + ν(B).

3. Let A1 ⊂ A2 ⊂ . . . ⊂ An ⊂ . . . be a increasing sequence of sets in B(R).
Putting

A =
∞⋃

n=1

An,

we will show that

ν(A) = lim
n→∞ ν(An).

Let

µ(A) =

{
0 if A ∩ N = ∅
2−1

∑{x−1 : x ∈ A ∩ N} if A ∩ N 6= ∅
for A ∈ B(R). Then µ is a measure on B(R) and ν(A) ≤ µ(A) for every A ∈ B(R).
It is straightforward to check that µ(A) = ν(A) if µ(A) ≤ 1 or ν(A) < 1. Consider
two cases:
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Case 1. There exists n0 ∈ N such that ν(An0) = 1. Then ν(An) = 1 for every
n ≥ n0. Hence

ν(A) = 1 = lim
n→∞ ν(An).

Case 2. ν(An) < 1 for every n ∈ N. Then

ν(An) = µ(An) for every n ∈ N.

Therefore

lim
n→∞ ν(An) = lim

n→∞µ(An) = µ(A) ≤ 1.

Consequently,

ν(A) = µ(A) = lim
n→∞ ν(An).

Thus, the conditions (1) - (4) of Definition 4.1 are satisfiied. So ν is a capacity
in the sense of Graf.
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