
ACTA MATHEMATICA VIETNAMICA 601
Volume 36, Number 3, 2011, pp. 601–610

UPPER AND LOWER ESTIMATES FOR A FRÉCHET

NORMAL CONE

NGUYEN THANH QUI

Abstract. This paper investigates upper and lower estimates for the Fréchet
normal cone to the graph of a normal cone mapping related to a linear inequal-
ity system in a reflexive Banach space under right-hand side perturbations.
Our results develop some material in the recent papers of Yao and Yen [8], and
Nam [6]. In particular, by constructing suitable counterexamples, we solve the
two open questions of [8] in the negative.

1. Introduction

Let X be a real Banach space with the dual denoted by X∗. Consider a set of
indices T = {1, 2, . . . ,m}, a vector system {a∗i ∈ X∗ | i ∈ T}, and a polyhedral
convex set

(1.1) Θ(b) =
{

x ∈ X | 〈a∗i , x〉 ≤ βi for all i ∈ T
}

depending on the parameter b = (β1, . . . , βm) ∈ R
m. The numbers β1, . . . , βm ∈ R

are interpreted as right-hand side perturbations of the linear inequality system

(1.2) 〈a∗i , x〉 ≤ βi, i ∈ T.

For a pair (x, b) ∈ X × R
m, we call

(1.3) I(x, b) =
{
i ∈ T | 〈a∗i , x〉 = βi

}

the active index set of Θ(b) at x. For any I ⊂ T , let I = T\I. The symbol bI

(resp., bI) denotes the vector with the components βi where i ∈ I (resp., i ∈ I).

Our aim is to obtain upper and lower estimates for the Fréchet normal cone

[4, p. 4] (the definition will be recalled in the next section) to the graph of the
multifunction F : X × R

m ⇒ X∗ with

(1.4) F(x, b) := N(x; Θ(b)) ∀(x, b) ∈ X × R
m,

where

N(x; Θ(b)) =
{

x∗ ∈ X∗ | 〈x∗, u − x〉 ≤ 0 for all u ∈ Θ(b)
}
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denotes the normal cone to Θ(b) at x in the sense of convex analysis. Such
estimates of the Fréchet normal cone

(1.5) N̂
(
(x, b, x∗); gphF

)
,

where (x, b, x∗) belongs to the graph

gphF :=
{

(x, b, x∗) ∈ X × R
m × X∗ | x∗ ∈ F(x, b)

}
,

yield upper and lower estimates of the values of the Fréchet coderivative [4, p. 41]

D̂F(x, b, x∗)(·) of the multifunction F . If both X and X∗ are Asplund spaces
(this happens, for instance, when X is a reflexive Banach space or a separable
Banach space) and the inequality system (1.2) satisfies the Slater condition, then
each value of the normal coderivative (also called the limiting coderivative or the
Mordukhovich coderivative) DF(x, b, x∗)(·) is defined as a Painlevé-Kuratowski
limit of the values of a family of Fréchet coderivatives of F (see [4, Corollary 2.36]).
Since the normal coderivative has an important role [4, 5, 7] in characterizing
the local behavior of the multifunction under consideration, the investigation on

the Fréchet normal cone N̂
(
(x, b, x∗); gphF

)
can be considered as a major step

towards a comprehensive differentiation of the map (x, b) 7→ F(x, b).

Extending Dontchev and Rockafellar’s results [2], where b is fixed, to the case
where b is changing, Yao and Yen [8] have found an upper estimate for the Fréchet
normal cone (1.5) in the case X is a finite dimensional Euclidean space and b is
a moving vector. In [9], the results of [8] are applied to the stability analysis of
parametric variational inequalities whose constraint sets are perturbed polyhedra.
Some arguments of [8] in employing active index sets for calculating Fréchet
and limiting normal cones have been used in [3] for the second-order analysis of
polyhedral systems in finite and infinite dimensional Banach spaces.

Recently, Nam [6] has studied the Lipschitzian stability of parametric varia-
tional inequalities on reflexive Banach spaces by invoking the Farkas lemma in
[1], the generalized differentiation theory in [4, 5], and a technique in [8].

Concerning the above-mentioned upper estimate for (1.5) given in [8], two open
questions were stated in the same paper. Imposing an additional assumption,
Nam [6] has solved the first question in the affirmative. Namely, he proved that if
the vectors a∗i , i ∈ I(x̄, b̄), are linearly independent, then the upper estimate holds
as an equality; i.e. the Fréchet normal cone (1.5) can be computed exactly by an
explicit formula. It is of interest to find out whether Nam’s linear independence
assumption is essential for that exact computation of the Fréchet normal cone. We
will show that even if the vectors a∗i , i ∈ I(x̄, b̄), are positively linearly independent

(see Section 3) and the Slater condition is satisfied for (1.2), the desired formula
may not hold.

Since exact formulae for computing the cone in (1.5) are not available, one
may wish to have some lower estimate for the Fréchet normal cone. Interestingly,
Lemma 4.2 in [8] and its proof can lead us to such a lower estimate. This result is
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given in Section 4, where we also solve the second question of [8] in the negative
by constructing a counterexample.

The rest of this paper has three sections. Section 2 recalls some basic definitions
and notations from [4]. Section 3 discusses an upper estimate for the normal
cone (1.5) and gives a complete solution to Question 1 from [8, p. 169]. A lower
estimate for the cone (1.5) and our solution for Question 2 from [8, p. 169] are
presented in Section 4.

2. Basic definitions and preliminaries

For a multifunction Ψ : X ⇒ X∗, the expression Lim sup
x→x

Ψ(x) denotes the

sequential Kuratowski-Painlevé upper limit with respect to the norm topology of
X and the weak∗ topology of X∗, i.e.,

Lim sup
x→x

Ψ(x) =
{
x∗ ∈ X∗ | ∃ sequences xk → x, x∗

k

w∗

→ x∗,

with x∗
k ∈ Ψ(xk) for all k = 1, 2, . . .

}
.

Normal cones to sets and coderivatives of multifunctions are defined [4] as
follows. The set

(2.1) N̂ε(x; Ω) :=

{
x∗ ∈ X∗ | lim sup

x
Ω→x

〈x∗, x − x〉
||x − x|| ≤ ε

}
,

where the notation x
Ω→ x means x → x and x ∈ Ω, contains the Fréchet ε-

normals to Ω at x ∈ Ω. For ε = 0, the set in (2.1) is a closed convex cone which

is called the Fréchet normal cone to Ω at x and is denoted by N̂(x; Ω). One puts

N̂ε(x; Ω) = ∅ for all ε ≥ 0 when x /∈ Ω. The cone

(2.2) N(x; Ω) := Lim sup
x→x, ε↓0

N̂ε(x; Ω),

which is generally nonconvex and nonclosed [4, Example 1.7], is said to be the
limiting normal cone (also called the basic normal cone, or the Mordukhovich

normal cone) to Ω at x. If x /∈ Ω, then one puts N(x; Ω) = ∅.
If X is an Asplund space [4, Definition 2.17], the expression on the right-hand-

side of (2.2) can be simplified. Namely, if X is Asplund and Ω is locally closed
around x then, according to [4, Theorem 2.35],

(2.3) N(x; Ω) = Lim sup
x→x

N̂(x; Ω).

From (2.1) and (2.2), it follows that N̂(x; Ω) ⊂ N(x; Ω). If Ω is convex then,
according to [4, Propositions 1.3 and 1.5],

(2.4) N̂(x; Ω) = N(x; Ω) =
{
x∗ ∈ X∗ | 〈x∗, x − x〉 ≤ 0 for all x ∈ Ω

}
;

thus, both the Fréchet and the limiting normal cones coincide with the normal
cone of convex analysis.



604 NGUYEN THANH QUI

Let F : X ⇒ Y be a multifunction between Banach spaces. For any (x, y) ∈
X×Y and ε ≥ 0, the ε-coderivative of F at (x, y) is the multifunction D̂∗

εF (x, y) :
Y ∗ ⇒ X∗ defined by

(2.5) D̂∗
εF (x, y)(y∗) :=

{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N̂ε

(
(x, y); gphF

)}
.

When ε = 0, the construction in (2.5) is called the Fréchet coderivative of F at

(x, y) and is denoted by D̂∗F (x, y). We put D̂∗
εF (x, y)(y∗) = ∅ for all ε ≥ 0 and

y∗ ∈ Y ∗ when (x, y) /∈ gphF . The multifunction D∗F (x, y) : Y ∗ ⇒ X∗ defined
by

(2.6) D∗F (x, y)(y∗) :=
{
x∗ ∈ X∗ | (x∗,−y∗) ∈ N

(
(x, y); gphF

)}

is said to be the Mordukhovich coderivative (also called the normal coderivative,
or the limiting coderivative) of F at (x, y). We put D∗F (x, y)(y∗) = ∅ for all
y∗ ∈ Y ∗ when (x, y) /∈ gphF .

From (2.3) and (2.6), it is clear that the computation of the Fréchet normal
cone to the graph of a multifunction between Asplund spaces is a crucial step
towards a complete differentiation of that multifunction.

Computation/estimation of Fréchet normal cones will be our main concern in
the subsequent sections.

3. Upper estimate

We are going to analyze the upper estimate for the Fréchet normal cone (1.5)
which was obtained in [8] for the case X = R

n and in [6] for the case X is an
arbitrary reflexive space.

From now on, we assume that the Banach space X is reflexive.

Recall that the tangent cone to a convex set Ω at x ∈ Ω is the topological
closure of the cone

{
λ(x − x) | x ∈ Ω, λ ≥ 0

}
.

The first claim of the following proposition was proved in [6] by using a gener-
alized version of the Farkas lemma [1].

Proposition 3.1. (See [6, Lemma 3.1]) Let b ∈ R
m, Θ(b) be given by (1.1),

x ∈ Θ(b), and I(x, b) defined by (1.3). Then

(3.1) N(x; Θ(b)) = pos
{
a∗i | i ∈ I(x, b)

}
:=

{
∑

i∈I(x,b)

λia
∗
i | λi ≥ 0 ∀i ∈ I(x, b

}

and

(3.2) T (x; Θ(b)) =
{
v ∈ X | 〈a∗i , v〉 ≤ 0 ∀i ∈ I(x, b)

}
.

For an element (x, b, x∗) ∈ gphF , where F has been defined in (1.4), we have

x∗ ∈ F(x, b) = N(x; Θ(b)).
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Hence, according to Proposition 3.1, there exist multipliers λi ≥ 0, i ∈ I(x, b),
such that

x∗ =
∑

i∈I(x,b)

λia
∗
i .

We write
I0(x, b, x∗) =

{
i ∈ I(x, b) | λi = 0

}
.

In some cases, we abbreviate I(x, b) and I0(x, b, x∗) to I and I0, respectively. Let

(3.3)

E(x, b, x∗) =

{
(x∗, b∗, v) | x∗ ∈

(
T (x; Θ(b)) ∩ {x∗}⊥

)∗
,

v ∈ T (x; Θ(b)) ∩ {x∗}⊥,

x∗ = −∑
i∈I b∗i a

∗
i , b∗

I
= 0, b∗I0 ≤ 0

}
,

(3.4)

E0(x, b, x∗) =

{
(x∗, b∗, v) | x∗ ∈

(
T (x; Θ(b)) ∩ {x∗}⊥

)∗
,

v ∈ T (x; Θ(b)) ∩ {x∗}⊥,

x∗ = −∑
i∈I b∗i a

∗
i , b∗

I
= 0, b∗I ≤ 0

}
,

where b∗ = (b∗1, . . . , b
∗
m) ∈ R

m,

Ω∗ :=
{
x∗ ∈ X∗ | 〈x∗, u〉 ≤ 0 for every u ∈ Ω

}

for any Ω ⊂ X, and
{x∗}⊥ :=

{
v ∈ X | 〈x∗, v〉 = 0

}

for any x∗ ∈ X∗.

Theorem 3.2. (See [6, Proposition 3.2]) If (x, b, x∗) ∈ gphF , then

(3.5) N̂
(
(x, b, x∗); gphF

)
⊂ E(x, b, x∗),

where E(x, b, x∗) is given by (3.3). Also, if the vectors {a∗i | i ∈ I} are linearly

independent then

(3.6) N̂
(
(x, b, x∗); gphF

)
= E(x, b, x∗).

For the case X = R
n, the upper estimate (3.5) was obtained in [8]. In our

notation, Question 1 of [8] can be restated as follows.

Question 1. Does the inclusion (3.5) always hold as an equality?

The second assertion of Theorem 3.2 solves this question in the affirmative
under the condition that {a∗i | i ∈ I} are linearly independent. We are going to
show that, in general, the inclusion (3.5) does not hold as an equality.

Definition 1. Let {vj}j∈J be a family of finitely many vectors of a vector space
V over the real number. We say that {vj}j∈J is positively linearly independent if
from the conditions

∑
j∈J λjvj = 0 and λj ≥ 0 for all j ∈ J it follows that λj = 0

for all j ∈ J .
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Proposition 3.3. The inclusion (3.5) may be strict in some cases.

Proof. Let X = R
2 and let a∗1 = (0, 1), a∗2 = (0, 2) ∈ X∗ = R

2, b = (0, 0) ∈
R

2, x = (0, 0) ∈ X. We have

Θ(b) =
{

x = (x1, x2) ∈ R
2 | 〈a∗i , x〉 ≤ 0, i = 1, 2

}
= R × (−∞, 0],

I(x, b) =
{
i | 〈a∗i , x〉 = 0

}
= {1, 2},

F(x, b) = N(x; Θ(b)) = pos{a∗1, a∗2} =
{
λ1a

∗
1 + λ2a

∗
2 | λi ≥ 0, i = 1, 2

}

= {0} × [0,+∞),

T (x; Θ(b)) =
(
N(x; Θ(b))

)∗
=

{
v = (v1, v2) ∈ R

2 | 〈a∗i , v〉 ≤ 0, i = 1, 2
}

= R × (−∞, 0].

For α > 0, since x∗ = (0, α) ∈ {0}× [0,+∞) = F(x, b), we have (x, b, x∗) ∈ gphF .
To describe the set E(x, b, x∗), we observe that

{x∗}⊥ = {(0, α)}⊥ = R × {0},
T (x; Θ(b)) ∩ {x∗}⊥ = R × {0},
(
T (x; Θ(b)) ∩ {x∗}⊥

)∗
= {0} × R.

If we use the representation

x∗ = (0, α) = αa∗1 + 0a∗2,

then I0 = I0(x, b, x∗) = {2}. Choose b∗ = (b∗1, b
∗
2) ∈ R

2, where b∗2 ≤ 0. (The value
b∗1 will be determined later.) For every γ ∈ R, we have

v = (γ, 0) ∈ T (x; Θ(b)) ∩ {x∗}⊥.

Let

x∗ = −(b∗1a
∗
1 + b∗2a

∗
2) = (0,−b∗1 − 2b∗2) ∈

(
T (x; Θ(b)) ∩ {x∗}⊥

)∗
.

Hence, (x∗, b∗, v) ∈ E(x, b, x∗).

We now show that (x∗, b∗, v) does not belong to the cone N̂
(
(x, b, x∗); gphF

)
.

Consider the sequences {bk} and {xk}, where bk = ( 1
k
, 1

k
) and xk = ( 1

2k
, 1

2k
),

k ∈ N = {1, 2, 3, . . . }. We see that bk → b, xk → x as k → ∞. For every k ∈ N,

Θ(bk) =

{
x = (x1, x2) ∈ R

2
∣∣ x2 ≤ 1

k
, 2x2 ≤ 1

k

}
= R ×

(
−∞,

1

2k

]
.

Then xk ∈ Θ(bk), I(xk, bk) = {2}, and

F(xk, bk) = N(xk; Θ(bk)) = pos{a∗2} = {0} × [0,+∞),

for all k ∈ N. Now, consider the sequence {u∗
k}k∈N where u∗

k = (0, α + 1
2k

) for

all k ∈ N. For every k ∈ N, we have u∗
k ∈ F(xk, bk), and u∗

k → (0, α) = x∗ as
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k → ∞. Note that

lim sup

(x,b,u∗)
gphF−→ (x,b,x∗)

〈x∗, x − x〉 + 〈b∗, b − b〉 + 〈v, u∗ − x∗〉
||x − x|| + ||b − b|| + ||u∗ − x∗||

≥ lim sup
k→∞

〈x∗, xk − x〉 + 〈b∗, bk − b〉 + 〈v, u∗
k − x∗〉

||xk − x|| + ||bk − b|| + ||u∗
k
− x∗||

= lim sup
k→∞

〈
(0,−b∗1 − 2b∗2), (

1
2k

, 1
2k

)
〉

+
〈
(b∗1, b

∗
2), (

1
k
, 1

k
)
〉

+
〈
(γ, 0), (0, 1

2k
)
〉

||( 1
2k

, 1
2k

)|| + ||( 1
k
, 1

k
)|| + ||(0, 1

2k
)||

= lim
k→∞

−b∗1−2b∗2
2k

+
b∗1+b∗2

k√
2

2k
+

√
2

k
+ 1

2k

=
b∗1√

2 + 2
√

2 + 1
=: µ.

For b∗1 := 1, we have

µ =
1√

2 + 2
√

2 + 1
> 0.

This implies that (x∗, b∗, v) 6∈ N̂
(
(x, b, x∗); gphF

)
, and hence,

E(x, b, x∗) 6⊂ N̂
(
(x, b, x∗); gphF

)
.

The proof is complete. �

Remark 1. We have seen that without the linear independence of {a∗i | i ∈
I(x, b)} the equality (3.6) may fail to hold. The vectors {a∗1, a∗2} in the above
proof are not linearly independent, but they are positively linearly independent.
Thus we have shown that the inclusion (3.5) may be strict even in the case where

the vectors {a∗i | i ∈ I(x, b)} are positively linearly independent.

Remark 2. As usual, we say that the inequality system (1.2) satisfies the Slater

condition if there exists x0 ∈ X with 〈a∗i , x0〉 < βi for all i ∈ T . This condition
is a significant sign of the stability of the given inequality system. One might
hope that (3.6) holds when the Slater condition is satisfied. But the proof of
Proposition 3.3 shows that this is not the case. Indeed, taking x0 = (0,−1)
we have 〈a∗i , x0〉 < bi for i = 1, 2 but, as shown in the proof, E(x, b, x∗) 6⊂
N̂

(
(x, b, x∗); gphF

)
.

4. Lower estimate

Using the set E0(x, b, x∗) defined by (3.4), we now provide a lower estimate

for the Fréchet normal cone N̂
(
(x, b, x∗); gphF

)
. Our result is an extension of [8,

Lemma 4.2], where it was assumed that X = R
n.

Theorem 4.1. If (x, b, x∗) ∈ gphF , then

(4.1) E0(x, b, x∗) ⊂ N̂
(
(x, b, x∗); gphF

)
.
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Proof. Let (x∗, b∗, v) ∈ E0(x, b, x∗). In order to show that

(x∗, b∗, v) ∈ N̂
(
(x, b, x∗); gphF

)
,

we need to verify the inequality

(4.2) lim sup

(x,b,u∗)
gphF−→ (x,b,x∗)

〈x∗, x − x〉 + 〈b∗, b − b〉 + 〈v, u∗ − x∗〉
||x − x|| + ||b − b|| + ||u∗ − x∗||

≤ 0.

Given any sequence (xk, bk, u∗
k)

gphF−→ (x, b, x∗). Since (xk, bk) → (x, b), we must

have I(xk, bk) ⊂ I(x, b) := I for all k sufficiently large. As

u∗
k ∈ pos

{
a∗i | i ∈ I(xk, bk)

}
⊂ pos

{
a∗i | i ∈ I(x, b)

}
= N(x; Θ(b)) = F(x, b),

the condition v ∈ T (x; Θ(b)) ∩ {x∗}⊥ implies that

(4.3) 〈v, u∗
k − x∗〉 = 〈v, u∗

k〉 ≤ 0.

From the equalities x∗ = −∑
i∈I b∗i a

∗
i and b∗

I
= 0, we deduce that

〈x∗, xk − x〉 + 〈b∗, bk − b〉 =
〈
−

∑

i∈I

b∗i a
∗
i , x

k − x
〉

+ 〈b∗I , bk − b〉

=
∑

i∈I

b∗i
(
〈a∗i , x〉 − 〈a∗i , xk〉

)
+

∑

i∈I

b∗i
(
bk
i − bi

)

=
∑

i∈I

b∗i

(
〈a∗i , x〉 − bi + bk

i − 〈a∗i , xk〉
)

=
∑

i∈I

b∗i
(
bk
i − 〈a∗i , xk〉

)
.

Since b∗I ≤ 0 and 〈a∗i , xk〉 ≤ bk
i for all i ∈ I, this implies that

(4.4) 〈x∗, xk − x〉 + 〈b∗, bk − b〉 ≤ 0.

From (4.3) and (4.4), we obtain

lim sup
k→∞

〈x∗, xk − x〉 + 〈b∗, bk − b〉 + 〈v, u∗
k − x∗〉

||xk − x|| + ||bk − b|| + ||u∗
k
− x∗||

≤ 0,

which yields (4.2) because the sequence (xk, bk, u∗
k)

gphF−→ (x, b, x∗) was given arbi-
trarily. The proof is complete. �

Our next goal is to solve the following question.

Question 2. (See [8]) Does the inclusion (x∗, b∗, v) ∈ N̂
(
(x, b, x∗); gphF

)
imply

b∗I ≤ 0 where I = I(x, b)? In other words, does (4.1) always hold as an equality?

Proposition 4.2. The inclusion (4.1) may be strict in some cases.
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Proof. Let X = R
2 and a∗1 = (1, 0), a∗2 = (0, 1) ∈ X∗ = R

2. Choose b = (0, 0) ∈
R

2, x = (0, 0) ∈ X, and observe that

Θ(b) =
{

x = (x1, x2) ∈ R
2 | 〈a∗i , x〉 ≤ 0, i = 1, 2

}
= (−∞, 0] × (−∞, 0],

I(x, b) =
{
i | 〈a∗i , x〉 = 0

}
= {1, 2},

F(x, b) = N(x; Θ(b)) = pos{a∗1, a∗2} = [0,+∞) × [0,+∞).

For any α > 0, we have x∗ = (0, α) ∈ F(x, b). This means that (x, b, x∗) ∈ gphF .

We want to find a triplet (x∗, b∗, v) ∈ N̂
(
(x, b, x∗); gphF

)
with b∗I 6≤ 0, i.e., there

exists i ∈ I = I(x, b) such that b∗i > 0. Note that

{x∗}⊥ = {(0, α)}⊥ = R × {0},
T (x; Θ(b)) = (−∞, 0] × (−∞, 0],

T (x; Θ(b)) ∩ {x∗}⊥ = (−∞, 0] × {0},
(
T (x; Θ(b)) ∩ {x∗}⊥

)∗
= [0,+∞) × R.

We have x∗ = (0, α) = 0a∗1 + αa∗2. Hence I0 = I0(x, b, x∗) = {1}. Choose

x∗ = (1,−1) ∈
(
T (x; Θ(b)) ∩ {x∗}⊥

)∗
,

b∗ = (b∗1, b
∗
2) with b∗1 = −1 ≤ 0, b∗2 = 1, and

v = (γ, 0) ∈ T (x; Θ(b)) ∩ {x∗}⊥,

where γ ≤ 0. Observe that {a∗1, a∗2} are linearly independent. By the choice of
(x∗, b∗, v), we have x∗ = −(b∗1a

∗
1 + b∗2a

∗
2) and b∗I0 ≤ 0. According to Theorem 3.2,

we can infer that (x∗, b∗, v) ∈ N̂
(
(x, b, x∗); gphF

)
. Since b∗2 = 1 > 0 and 2 ∈ I\I0,

we have shown that the inclusion (x∗, b∗, v) ∈ N̂
(
(x, b, x∗); gphF

)
does not imply

b∗I ≤ 0. The proof is complete. �
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