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TYPES OF VARIETIES OF RECOGNIZABLE ω-LANGUAGES
AND EILENBERG CORRESPONDENCES

PHAN TRUNG HUY

Abstract. In this paper, we prove that the correspondences V ⇒ V ω, V ⇒
~V , proposed by D. Perrin (1982) between M -varieties V ’s of finite monoids and

varieties of recognizable omega-languages V ω ’s and ~V ’s are one-to-one. New
definitions of saturation and syntactic monoid of adherences of ω-languages
basing on the limit operation are introduced. As consequence, a new type of
varieties generated by adherences of ω-languages is defined and studied.

1. Introduction

S. Eilenberg (1976) established the two famous one-to-one correspondences be-
tween the M -varieties of finite monoids (S-varieties of finite semigroups) and the
∗-varieties (+-varieties) of regular languages. To obtain these correspondences,
the important notions of syntactic monoids (syntactic semigroup) of languages
are defined. These one-to-one correspondences immediately play a very funda-
mental role in the theory of varieties of regular languages and varieties of finite
monoids (semigroups) (see [Ei]). Many deep works have been developed from
Eilenberg’s results in period 80’s-90’s. In the case of infinite words, recognizable
ω-languages has been considered by J. R. Büchi 1962 [Bu], D. Müller 1963 [Mu].
D. Perrin 1982-84 [Pe82, Pe84] considered some types of classes of recognizable
ω-languages basing on the ω-operation, limit operation, and the notion of sat-
uration of recognizable ω-languages. These classes are defined by M -varieties
and S-varieties and provided some kinds of Eilenberg correspondences which are
subjects of this paper.

To achieve deeper researchs on this subject, one has to face with the following
natural questions:
• Does a one-to-one correspondence between M -varieties (also, S-variesties)

and some type of varieties of recognizable ω-languages exist ?
• Do the Eilenberg Correspondences introduced by D. Perrin are one-to-one ?
However, the situation seems to be more complicated than that of regular

languages (see [Pec, HV93]). Considering the correspondences V ⇒ V N , V ω, ~V
between varieties of finite monoids (or finite semigroups) V ’s and three types of
varieties of recognizable ω-languages V N ’s, V ω’s, ~V ’s established by D. Perrin
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[Pe82]. J. Pecuchet 1986 [Pec] showed that in the case of S-varieties of finite
semigroups, these correspondences are not one-to-one.

To overcome these situations, T. Wilke 1991 [Wi] proposed another approach
based on a new kind of algebraic structure called binoids instead of traditional
semigroups. This allows Wilke to define a new kind of variety of finite binoids
and variety of infinitary languages (i.e. the languages consist of finite words and
infinite words) and to establish a one-to-one Eilenberg correspondence between
those varieties. Essentially, the one-to-one property in Wilke’s result is induced
from the one-to-one property in Eilenberg’s result, because in each variety of
infinitary languages considered by T. Wilke, the component consists of languages
of finite words is nothing but a +-variety of languages in Eilenberg’s work. It
may be that some varieties of infinitary languages possess the same component
of ω-languages of infinite words (see [Wi,Pec]). Hence, one can see that Wilke’s
result can not provide a direct proof of the one-to-one correspondence for the case
of pure ω-languages considered by Perrin if we take monoid structure instead of
binoid structure.

Dealing with the case of monoids, in [HV93] we showed that the Perrin corre-
spondence V ⇒ V N for the case of finite monoids is one-to-one. This result is
obtained by studying thoroughly (see [HLV]) the notion of syntactic monoids of
recognizable ω-languages which has been proposed by A. Arnold 1985 [Ar]. The
correspondence V ⇒ V N between the M -varieties, which is not a G-variety, and
the N -varieties of recognizable ω-languages is one-to-one (for the case of all G-
varieties, as shown by Perrin [Pe84], all corresponding N -varieties identify with
the same trivial N -variety).

For the case of traditional monoids, this paper gives a positive answer to all
cases mentioned above by showing that the correspondences V ⇒ V ω, ~V and
V ⇒ V ω (the boolean closure of V ω) are one-to-one without any restriction on
the M -varieties (Theorems 2.7, 2.9 and Corollary 2.8). These results make use of
the notion of the trace of ω-languages which has been considered in [HV93] and
some properties of traces (Lemma 2.5, 2.6). To study adherences of languages
(which are considered by L. Boasson and M. Nivat [BN]), a type of varieties of
recognizable ω-languages generated by adherences of languages is proposed and
one can see (Theorem 2.12) that these varieties are closely related to N -varieties.
For this, a new notion of saturation of ω-languages based on the limit operation
→ is introduced and studied.

In this paper, we consider only finite or free objects: finite alphabets, finite (or
free) monoids, taking finite number of operations etc. For the basis notions and
definitions we refer to [Ei,La,Pe82,Pe84].

For each alphabet A, denote by A∗ the free monoid on A with the unit ε, RecA∗
(RecAω) the set of regular (recognizable ω-) languages on A. Let X ⊆ A∗. We
define the sets:

Xω = {x1x2 · · · ∈ Aω|x1, x2, · · · ∈ X − {ε}};
~X = {x1x2 · · · ∈ Aω|x1x2 · · ·xk ∈ X − {ε}, k ≥ 1}.
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For monoids M , N , we denote M ≺ N whenever M is a homomorphic image
of a submonoid of N . A class V of finite monoids is called an M -variety if for any
M , N ∈ V , for every monoid P , P ≺ M ×N implies P ∈ V . Given a morphism
h : A∗ → M , for the sake of brevity, for any B ⊆ M we denote by hB the sets
h−1(B), and for e, f ∈ M , and by he,f the set h−1(e)[h−1(f)]ω. The morphism
h is said to saturate a language L ⊆ A∗ (resp. W ⊆ Aω) if for every e, f ∈ M ,
he ∩ L 6= ∅ implies he ⊆ L (resp. he,f ∩W 6= ∅ implies he,f ⊆ W ). We then also

say that the kernel congruence h∼ and the monoid M saturate L (resp. saturate
W ). The largest congruence which saturates L (resp. W ), denoted by ∼L (resp.
by ∼W ), is called the syntactic congruence of L (resp. of W ). It is well-known
(see [Ei]) that ∼L is defined by

∀u, v ∈ A∗ : u ∼L v iff “∀x, y ∈ A∗ : xuy ∈ L ⇔ xvy ∈ L”,(1.1)

and due to [Ar,HLV], ∼W is defined by the following congruences on A∗:





RW = {(u, v) ∈ A∗ ×A∗| ∀x, y, z ∈ A∗ : xuyzω ∈ W ⇔ xvyzω ∈ W}
TW = {(u, v) ∈ A∗ ×A∗| ∀x ∈ A∗, y, z ∈ A+ : x(yuz)ω ∈ W ⇔ x(yvz)ω ∈ W}
∼W = RW ∩ TW .

(1.2)

Denote A∗/ ∼L by ML and A∗/ ∼W by IW . We call them the syntactic monoid
of L and of W respectively. Given W ∈ RecAω, for each v ∈ A∗ we set

W (v,−) = {u ∈ A+| vuω ∈ W } ∪ {ε} : W (−, v) = {u ∈ A∗| uvω ∈ W }(1.3)

with a convention that W (−, ε) = ∅ and xεω 6∈ Aω for any x ∈ A∗. These sets
are nothing but languages in the trace of ω-language W which is considered in
[HV93]. Let M be a monoid. Define

E(M) = {e ∈ M |e2 = e},
P (M) = {(e, f) ∈ M ×M | ef = e, f2 = f}.

We say that a morphism h : A∗ → M recognizes an ω-language W ∈ Aω if
W =

⋃
(e,f)∈I

he,f for some I ⊆ P (M) (or that W is recognized by M). Given an

M -variety V , for each alphabet A, due to Eilenberg [Ei] and D. Perrin [Pe82,84]
we define

AV ∗ = { X ⊆ A∗| MX ∈ V },(1.4)





AV ω = {W ∈ RecAω|W is recognized by some M ∈ V }
A~V = { ~X| X ∈ AV ∗}B the boolean closure of ~X ′s, X ∈ AV ∗,
AV ω = (AV ω)B the boolean closure of the set AV ω.

(1.5)

Then we call the family V ω = {AV ω|∀A} an ω-variety, the family ~V =
{A~V | ∀A} an L-variety and V ω = {AV ω|∀A} an ω-variety. For each X,Y ⊆
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A∞ = A∗ ∪Aω we define the shuffle product of X and Y by

X x Y = { x1y1x2y2 · · · ∈ A∞| x1x2 · · · ∈ X, y1y2 · · · ∈ Y }.
Similar to (1.1), we associate to each subset A of a monoid M a congruence ∼A

on M defined by:

∀ a, b ∈ M : a ∼A b iff “∀ p, q ∈ M : paq ∈ A ⇔ pbq ∈ A”

and denote M/ ∼A by M//A (and by M//a if A = {a}).
2. Main results

We first need some lemmas.

Lemma 2.1. [Ei] Let M be a monoid and X ⊆ A∗. The following conditions
are equivalent:

(1) MA ≺ M ;
(2) There exist a morphism h : A∗ → M and B ⊆ M such that hB = X.

Lemma 2.2. [Ei] Let h : S → T be a surjective morphism and M a monoid.
Then

(1) ∀B ⊆ T : S//hB
∼= T//B.

(2) ∀a ∈ M : M//a ≺ M ≺ ∏
e∈M

M//e.

Given X ⊆ A∗. We define the left and right quotients of X by an element v in
A∗, the sets

v−1X = {u ∈ A∗| vu ∈ X},
Xv−1 = {u ∈ A∗| uv ∈ X}.

Lemma 2.3. [Ei] Let X,Y ∈ RecA∗. Then

(1) X, Y are saturated by ∼X ∩ ∼Y ;
(2) The family of regular languages saturated by h is closed under the Boolean

operations and the formation of “left, right quotients” by elements of A∗.

Due to Ramsey-Büchi we can deduce

Lemma 2.4. Let h : A∗ → M be a surjective morphism and n the index of M
(i.e. en ∈ E(M) for every e ∈ M). Then

(1) Aω =
⋃

(e,f)∈P (M)

he,f ;

(2) For any x, v ∈ A∗, v 6= ε, (e, f) ∈ P (M), then xvω ∈ he,f iff v admits a
factorization vn = ab such that xvna ∈ he, ba ∈ hf .

Proof. (1) This is a well-known result.
(2) Since the “if” part is clear, it suffices to check the “only if” part. Suppose

that xvω ∈ he,f for some (e, f) ∈ P (M). It implies that there exist m, k ∈ N,
1 ≤ m, k; z, t ∈ A∗ such that v = zt and xvmz, xvm+kz ∈ he, (tz)k ∈ hf . Then



TYPES OF VARIETIES 339

(tz)kn = ((tz)n)k implies (tz)n ∈ hf . The proof then is completed by taking
a = z, b = (tz)n−1t.

By the definition (1.3), one immediately has the following result:

Lemma 2.5. For any X, Y ∈ RecAω and v ∈ A+, we have
(1) (X ∪ Y )(−, v) = X(−, v) ∪ Y (−, v);
(2) (X ∩ Y )(−, v) = X(−, v) ∩ Y (−, v);
(3) (X − Y )(−, v) = X(−, v)− Y (−, v).

Lemma 2.6. Let h : A∗ → M be a surjective morphism, X ⊆ A∗ a language
saturated by h and n the index of M . Then

(1) For any (e, f) ∈ P (M)

he,f (−, v) =
⋃

vn=ab,ba∈hf

he(vna)−1;(2.1)

(2) For any v ∈ A+ and (e, f) ∈ P (M), he,f (−, v) is saturated by h;

(3) ~X(−, v) is saturated by h.

Proof. (1) Denote by S the right-hand side of (2.1). If x ∈ S, then v admits
some factorization vn = ab so that ba ∈ hf and x ∈ he(vna)−1, i.e. x(vna) ∈ he.
Consequently, xvω ∈ he,f . Thus x ∈ he,f (−, v). Conversely, if x ∈ he,f (−, v),
then xvω ∈ he,f . Using Lemma 2.4 one deduces xvna ∈ he, ba ∈ hf for some
a, b ∈ A∗ with vn = ab. Hence x ∈ he(vna)−1 and x belongs to S.

(2) This is a direct consequence of the equality (2.1) and Lemma 2.3.
(3) By lemma 2.4, we obtain

~X =
⋃

he⊆X

longrightarrow

he =
⋃

he⊆X,(e,f)∈P (M)

he,f .

From Lemma 2.5 we have
~X(−, v) =

⋃

he⊆X,(e,f)∈P (M)

he,f (−, v).(2.2)

By Lemma 2.3 and the part (2) above, we deduce that ~X(−, v) is saturated by
h.

For each M -variety V , by (1.5) we define the varieties V ω, ~V , V ω and then the
Eilenberg Correspondences V ⇒ V ω, V ⇒ ~V , V ⇒ V ω. We now state the main
results for Eilenberg correspondences.

Theorem 2.1. The correspondence V ⇒ V ω from the class of all M -varieties
to the class of all ω-varieties is one-to-one.

Proof. By definition, it suffices to shows that if V 1 ⇒ V ω
1 , V 2 ⇒ V ω

2 and V ω
1 =

V ω
2 , then V 1 = V 2. Letting M ∈ V 1, we prove that M ∈ V 2. Choose an alphabet

A0 with a surjective morphism h′ : A∗0 → M (for example A0 = {am|m ∈ M}
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with h′(am) = m). Take A = A0 ∪ {a} for some a 6∈ A0 and h : A∗ → M is an
extension of h′ defined by h|A0 = h′, h(a) = 1. Then (e, 1) ∈ P (M) for each
e ∈ M . It follows from (2.1) that

he,1(−, a) =
⋃

uivi=a,viui∈h1

he(aui)−1.

Since h(a) = 1 and either ui = ε or ui = a, it implies that hea
−1 = he and

then he(aui)−1 = he. This shows that he,1(−, a) = he. Because he,1 ∈ AV ω
1 , by

assumption V ω
1 = V ω

2 one has he,1 ∈ AV ω
2 . Hence, there exists N ∈ V 2 with a

surjective morphism g : A∗ → N such that

he,1 =
⋃

(p,q)∈I

gp,q for some I ⊆ P (N).(2.3)

By lemma 2.5 one gets he,1(−, a) =
⋃

(p,q)∈I

gp,q(−, a). It follows from Lemma 2.6

with the fact he = he,1(−, a) that he is saturated by g. In turn, Lemmas 1, 2
yield M//e = Mhe ≺ N . Using Lemma 2.2 one obtains M ≺ ∏

e∈M

M//e ≺ N (m)

where N (m) is the m-fold Cartesian product of N and m = cardM . This shows
that M ∈ V 2, therefore V 1 ⊆ V 2. A similar verification gives V 2 ⊆ V 1. This
completes the proof of V 1 = V 2.

Corollary 2.1. The correspondence V ⇒ V ω from the class of all M -varieties
of finite monoids to the class of all ω-varieties is one-to-one.

Proof. It suffices to prove that V ω
1 = V ω

2 implies V 1 = V 2. Using the same
method as the above proof, the only different thing one might meet is that instead
of (2.3), in this proof he,1 is obtained from gp,q, (p, q) ∈ P (N) by taking a finite
number of Boolean operations. But according to Lemma 2.5, the fact that g
saturates he,1(−, a) remains valid. Hence one also deduces that V 1 ⊆ V 2. A
similar verification completes the proof of V 1 = V 2.

Theorem 2.2. The correspondence V ⇒ ~V from the class of all M -varieties of
finite monoids to the class of L-varieties of recognizable ω-languages is one-to-
one.

Proof. Supposing that V 1 ⇒ ~V1, V 2 ⇒ ~V2, ~V1 = ~V2, we have to prove that
V 1 = V 2. First we proceed to check that V 1 ⊆ V 2. For this, considering an
arbitrary M ∈ V 1, we show that M ∈ V 2. By a similar method of the proof of
Theorem 2.1, we take an appropriate alphabet A0 with a surjective morphism
h′ : A∗0 → M and the extension h′ of h : A∗ → M defined by h|A0 = h′, h(a) = 1.
For any e ∈ M , using the equality h(a) = 1 with some simple verifications we
obtain he = ~he(−, a) and then

(he.a
ω)(−, a) = he = ~he(−, a)(2.4)

Since ~he ∈ A~V1, by assumption ~V1 = ~V2, one has ~he ∈ A~V2. Applying Lemma
2.3 one can verify that there exists a monoid N ∈ V 2, a surjective morphism
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g : A∗ → N with some regular languages L1, L2, · · · , Lk saturated by g such
that ~he is obtained from ~Li by taking a finite number of Boolean operations. By
Lemma 2.6, ~Li(−, a) is saturated by g. It follows from Lemmas 2.3, 2.5 and (2.4)
that he is saturated by g. This with Lemmas 2.1, 2.2 give M//e = Mhe ≺ N .
Hence M ≺ ∏

e∈M

M//e ≺ N (m) with m = cardM . Thus M ∈ V 2, hence V 1 ⊆ V 2.

In turn, a similar verification gives V 2 ⊆ V 1. The proof is completed.

Next, we introduce a new type of varieties of recognizable ω-languages which
is generated by adherences of languages. Given a morphism h : A∗ → M and
W ∈ RecAω, we say that W is l-saturated by h if the following condition is
satisfied

~he ∩W 6= ∅ ⇒ ~he ⊆ W(2.5)

For any alphabet, we denote by DRecAω the subclass of RecAω containing all
recognizable ω-languages of the form ~X, X ∈ RecA∗. Let V be a U1-variety
(i.e. an M -variety containing the monoid {0, 1}) (see [6]), for each alphabet A
we define 




AV N = {W ∈ RecAω| IW ∈ V },
AV L = {W ∈ RecAω| W is l-saturated by some M ∈ V },
ADV N = AV N ∩DRecAω.

(2.6)

To get a relationship between AV L, AV N , DRecAω we first need some technical
Lemmas. By definition with some simple verifications, one has

Lemma 2.7. Let h : A∗ → M be a surjective mmorphism. For any e, f ∈ M ,
~he 6= ∅, then ~he ∩ ~hf 6= ∅ iff eRf , where R is the Green’s relation on M .

Using this lemma one gets

Lemma 2.8. Let W ∈ RecAω and h : A∗ → M be a surjective morphism satu-
rating W . If W and Aω−W in DRecAω, then there exists L ∈ RecA∗ such that

L is saturated by h and ~L = W ,
−−−−→
A∗ − L = Aω −W .

Proof. First, without loss of generality we may assume that W , Aω−W 6= ∅ and
W = ~X, Aω −W = ~Y for some X,Y ∈ RecA∗. Put

W ′ = Aω −W, ∼=∼W ∩ ∼X ∩ ∼Y

where ∼W , ∼X , ∼Y are defined by (1.1), (1.2). Considering the quotient monoid
A∗/ ∼ we define the following subsets of A∗:

(X ∼ R) =
⋃

[y]∼R[x]∼,x∈X

[y]∼; U =
⋃

u∈A∗,
−→
[u]∼=∅

[u]∼,(2.7)

where [y]∼ is the class of y modulo ∼ and R is the Green’s relation on A∗/ ∼.
From Lemma 2.7 one can see that U = (U ∼ R). By definition, using again
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Lemma 2.7 one deduces (Y ∼ R)∩ (X ∼ R)−U = ∅. Taking Y0 = (Y ∼ R)−U ,
X0 = (X ∼ R)− U we obtain

X0 = (X0 ∼ R); Y0 = (Y0 ∼ R); X0 ∩ Y0 = ∅.(2.8)

Hence, W ′ ⊆ ~Y0, W ⊆ ~X0, this implies ~Y0 = W ′, ~X0 = W . Furthermore, we have
the following facts as obvious consequences of Lemma 2.7

(i) ∀u ∈ X0 ∪ Y0 :
−→
[u]∼ 6= ∅.

(ii) If u, v ∈ A∗, uvω ∈ W (resp. uvω ∈ W ′), then uv ∼ u and v2 ∼ v imply
u ∈ X0 (resp. u ∈ Y0) (applying (2.8), ~X0 = W , ~Y0 = W ′).

Now, we prove that (X0 ∼W R) ∩ (Y0 ∼W R) = ∅. Indeed, assuming the
contrary, there exists u ∈ X0, v ∈ Y0, u′, v′ ∈ A∗ such that u ∼W u′, v ∼W v′,
∃λ, γ ∈ A∗: u′λ ∼W v′, v′γ ∼W u′. Hence

uλ ∼W v; vγ ∼W u, λ, γ 6= ε.(2.9)

Since u ∈ X0, v ∈ Y0, by (i) there exist α, β ∈ A∗ such that

uαω ∈ W, uα ∼ u, α2 ∼ α; vβω ∈ W ′, vβ ∼ v, β2 ∼ β.(2.10)

Considering at the same time the two infinite words w = u(λβγα)ω, w1 =
v(γαλβ)ω we can assert that w ∈ ~Y0 ∩ ~X0. Indeed:

(iii) By (2.9), (2.10) we have uλβ ∼W vβ ∼ v. Since ∼⊆∼W , then uλβ ∼W v.
Similarly, vγα ∼W u.

(iv) Since uλ ∼W v, vβω ∈ W ′, ∼W≡∼W ′ , it follows that (uλβ)βω ∈ W ′. By
the fact (ii) one has u1 = uλβ ∈ Y0 and by analog fact, v1 = vγα ∈ X0.

(v) Using (vγα)λβ ∼W uλβ ∼W v, vβω ∈ W ′ one obtains (vγαλβ)βω ∈ W ′.
Then the fact (ii) yields v2 = vγαλβ ∈ Y0. Analogously, u2 = uλβγα ∈ X0.

By (iii), v2 ∼W v, u2 ∼W u. Applying again the same arguments as (iv), (v)
for u2, v2 one gets

(vi) u3 = u2λβ ∈ Y0, v3 = v2γα ∈ X0,
(vii) u4 = u2λβγα ∈ X0, v4 = v2γαλβ ∈ Y0,

and so on, using again and again the same arguments as (iv), (v) one obtains
the infinite chains of left factors of w and w1: u, u2, u4 · · · ∈ X0; u1, u3, · · · ∈ Y0;
v1, v3, · · · ∈ X0; v2, v4, · · · ∈ Y0. This shows that ~X0 ∩ ~Y0 6= ∅, a contradiction.
Thus

(X0 ∼W R) ∩ (Y0 ∼W R) = ∅.
Put L = (X0 ∼W R), L′ = (Y0 ∼W R). Then L, L′ are saturated by h. By
Lemma 2.7 it implies that

~L ∩ ~L′ = ∅, W = ~X0 ⊆ ~L, W ′ = ~Y0 ⊆ ~L′ ⊆
−−−−→
A∗ − L.

Consequently, W = ~L and W ′ =
−−−−→
A∗ − L.
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We call a recognizable ω-language W ∈ RecAω an adherence if W =
−−−−→
LF (X)

for some X ∈ RecA∗, where LF (X) is the set of all left factors of X. We have
the following relationship between L-varieties, N -varieties and adherences.

Theorem 2.3. Let V be a U1-variety. For every alphabet A, the following con-
ditions are equivalent:

(i) W ∈ AV L;
(ii) W and Aω −W belong to ADV N ;
(iii) W belongs to the boolean closure of all adherences in AV N .

Proof. (i) ⇒ (ii) Let W ∈ AV L. There exist a surjective morphism h : A∗ → M
with M ∈ V such that W is l-saturated by h. Taking

I = {e ∈ M | ~he ∩W 6= ∅},
P = IR = {e ∈ M | ∃ f ∈ P : eRf},
Q = M − P, X = hP , Y = hQ

by Lemma 2.7 we deduce that ~X = W , ~Y = Aω−W . Thus W , Aω−W ∈ ADV N .
(ii) ⇒ (iii) Suppose that W , Aω−W ∈ ADV N . By virtue of Lemma 2.8, there

exist M ∈ V , P ⊆ M , Q = M − P such that P = PR, W = ~hP , Aω −W = ~hQ.
For each m ∈ M , we write m ≤R e whenerver mM ⊆ eM , m <R e if mM ⊆ eM
and denote by 〈m〉 the set {e ∈ M | m ≤R e}. Then by a simple verification we
get the equality

Rm = 〈m〉 −
⋃

m<Re

〈e〉.(2.11)

where Rm is the R-class of m modulo R. By Lemma 2.7 we obtain
−→
hRm =

−→
h〈m〉 −

⋃
m<Re

−→
h〈e〉.(2.12)

Besides, one can verify that for each e ∈ M , h〈e〉 = LF (he) is the set of all left

factors of he, i.e.
−→
h〈e〉 is an adherence. This together with (2.12) implies (iii).

(iii)⇒ (i) First, let W be an adherence in AV N and X ∈ RecA∗ such that W =−−−−→
LF (X). Consider the suntactic morphism h : A∗ → MX of X. By definition,
X = hP for some P ⊆ MX . By a direct verification we obtain

LF (X) =
⋃

e∈P

h<e>, W =
⋃

e∈P

−→
h〈e〉 =

⋃

e≤Rm,e∈P

−→
hRm ,

hence from Lemma 2.7 it follows that W is l-saturated by h. Thus W ∈ AV L.
Second, using the fact that AV L is closed under Boolean operations, we deduce
that if W is in the boolean closure of adherences in AV N , then W ∈ AV L.

Remark. From Lemma 2.8 one can see that if W , Aω − W ∈ DRecAω, then
for any morphism h : A∗ → M , h saturates W iff h l-saturates W . Hence, we
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can obtain similar results as A. Arnold’s results by using the same method in
[Ar]. The main one is that the largest congruence, for which W is l-saturated, is
notthing but the syntactic congruence of W . Moreover, one can verify that each
A-variety is closed under boolean operations, inverse images of morphisms, the
formation of “left quotient” by finite words.
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[Bu] J. R. Büchi, On a decision method in restricted second order arithmetic, Proc. Internat.
Congress on Logic, Methodology and Philosophy. Stanford. Univ. Press, 1962, pp. 1–11.

[Ei] S. Eilenberg, Automata, Languages and Machines, Academic. Press., New York Vol B 1976.
[He] T. Head, The adherences of languages as topological spaces, Lect. Notes in Comp. Sci. 192

(1984), 147–163.
[HLV] Phan Trung Huy, Igor Litovsky and Do Long Van, Which finite monoids are syntactic

monoids of rational ω-languages, Information Processing Letters 42 (1992), 127–132.
[HV93] P. T. Huy and D. L. Van, Syntactic monoids of ω-languages and Eilenberg theorem

for ω-languages, A Supplement to Proceedings of the 17th Symposium on Semigroups,
Languages and their Related Fields, Tokyo, Japan, Nov. 1993.

[La] G. Lallement, Semigroups and Combinatorial Applications, Wiley New York 1979.
[LT] M. Latteux and E. Timmerman, Two characterizations of rational adherences, Theoretical

Computer Science 46 (1986), 101–106.
[Mc] R. Mcnaughton, Testing and generating infinite sequences by a finite automaton, J. Infor.

and Control 9 (1966), 521–530.
[Mu] D. Müller, Infinite sequences and finite machines, Switch. Theory and Logical Design,

(Proc. 4 th IEEE Symp.), 1963, pp. 3-16.
[Pec] J. P. Pecuchet, Automates Boustrophedons, langages reconnaissables de mots infinis et

varietes de semigroupes, These de Doctorat d’Etat, 1986.
[Pe82] D. Perrin, Varietes de semigroupes et mots infinis, C. R. Acad. Sci. Paris 295 (1982),

585–598.
[Pe84] D. Perrin, Comportement infini des automates finis, LITP. Laboratoire Informatique

Theorique et Programmation. Université Paris 7 (1984), 84-11.
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