TYPES OF VARIETIES OF RECOGNIZABLE ω -LANGUAGES AND EILENBERG CORRESPONDENCES

PHAN TRUNG HUY

ABSTRACT. In this paper, we prove that the correspondences $\underline{V} \Rightarrow V^{\omega}, \underline{V} \Rightarrow \vec{V}$, proposed by D. Perrin (1982) between *M*-varieties \underline{V} 's of finite monoids and varieties of recognizable *omega*-languages V^{ω} 's and \vec{V} 's are one-to-one. New definitions of saturation and syntactic monoid of adherences of ω -languages basing on the limit operation are introduced. As consequence, a new type of varieties generated by adherences of ω -languages is defined and studied.

1. INTRODUCTION

S. Eilenberg (1976) established the two famous one-to-one correspondences between the M-varieties of finite monoids (S-varieties of finite semigroups) and the *-varieties (+-varieties) of regular languages. To obtain these correspondences, the important notions of syntactic monoids (syntactic semigroup) of languages are defined. These one-to-one correspondences immediately play a very fundamental role in the theory of varieties of regular languages and varieties of finite monoids (semigroups) (see [Ei]). Many deep works have been developed from Eilenberg's results in period 80's-90's. In the case of infinite words, recognizable ω -languages has been considered by J. R. Büchi 1962 [Bu], D. Müller 1963 [Mu]. D. Perrin 1982-84 [Pe82, Pe84] considered some types of classes of recognizable ω -languages basing on the ω -operation, limit operation, and the notion of saturation of recognizable ω -languages. These classes are defined by M-varieties and S-varieties and provided some kinds of Eilenberg correspondences which are subjects of this paper.

To achieve deeper researchs on this subject, one has to face with the following natural questions:

• Does a one-to-one correspondence between M-varieties (also, S-variesties) and some type of varieties of recognizable ω -languages exist?

• Do the Eilenberg Correspondences introduced by D. Perrin are one-to-one?

However, the situation seems to be more complicated than that of regular languages (see [Pec, HV93]). Considering the correspondences $\underline{V} \Rightarrow V^N, V^{\omega}, \vec{V}$ between varieties of finite monoids (or finite semigroups) \underline{V} 's and three types of varieties of recognizable ω -languages V^N 's, V^{ω} 's, \vec{V} 's established by D. Perrin

Received April 22, 2003; in revised form July 22, 2003.

[Pe82]. J. Pecuchet 1986 [Pec] showed that in the case of S-varieties of finite semigroups, these correspondences are not one-to-one.

To overcome these situations, T. Wilke 1991 [Wi] proposed another approach based on a new kind of algebraic structure called *binoids* instead of traditional semigroups. This allows Wilke to define a new kind of variety of finite binoids and variety of infinitary languages (i.e. the languages consist of finite words and infinite words) and to establish a one-to-one Eilenberg correspondence between those varieties. Essentially, the one-to-one property in Wilke's result is induced from the one-to-one property in Eilenberg's result, because in each variety of infinitary languages considered by T. Wilke, the component consists of languages of finite words is nothing but a +-variety of languages in Eilenberg's work. It may be that some varieties of infinitary languages possess the same component of ω -languages of infinite words (see [Wi,Pec]). Hence, one can see that Wilke's result can not provide a direct proof of the one-to-one correspondence for the case of pure ω -languages considered by Perrin if we take monoid structure instead of binoid structure.

Dealing with the case of monoids, in [HV93] we showed that the Perrin correspondence $\underline{V} \Rightarrow V^N$ for the case of finite monoids is one-to-one. This result is obtained by studying thoroughly (see [HLV]) the notion of syntactic monoids of recognizable ω -languages which has been proposed by A. Arnold 1985 [Ar]. The correspondence $\underline{V} \Rightarrow V^N$ between the *M*-varieties, which is not a *G*-variety, and the *N*-varieties of recognizable ω -languages is one-to-one (for the case of all *G*varieties, as shown by Perrin [Pe84], all corresponding *N*-varieties identify with the same trivial *N*-variety).

For the case of traditional monoids, this paper gives a positive answer to all cases mentioned above by showing that the correspondences $\underline{V} \Rightarrow V^{\omega}$, \vec{V} and $\underline{V} \Rightarrow \overline{V^{\omega}}$ (the boolean closure of V^{ω}) are one-to-one without any restriction on the *M*-varieties (Theorems 2.7, 2.9 and Corollary 2.8). These results make use of the notion of the trace of ω -languages which has been considered in [HV93] and some properties of traces (Lemma 2.5, 2.6). To study adherences of languages (which are considered by L. Boasson and M. Nivat [BN]), a type of varieties of recognizable ω -languages generated by adherences of languages is proposed and one can see (Theorem 2.12) that these varieties are closely related to *N*-varieties. For this, a new notion of saturation of ω -languages based on the limit operation \rightarrow is introduced and studied.

In this paper, we consider only finite or free objects: finite alphabets, finite (or free) monoids, taking finite number of operations etc. For the basis notions and definitions we refer to [Ei,La,Pe82,Pe84].

For each alphabet A, denote by A^* the free monoid on A with the unit ε , $RecA^*$ $(RecA^{\omega})$ the set of regular (recognizable ω -) languages on A. Let $X \subseteq A^*$. We define the sets:

$$\begin{split} X^{\omega} &= \{x_1 x_2 \cdots \in A^{\omega} | x_1, x_2, \cdots \in X - \{\varepsilon\}\};\\ \vec{X} &= \{x_1 x_2 \cdots \in A^{\omega} | x_1 x_2 \cdots x_k \in X - \{\varepsilon\}, k \geq 1\}. \end{split}$$

TYPES OF VARIETIES

For monoids M, N, we denote $M \prec N$ whenever M is a homomorphic image of a submonoid of N. A class \underline{V} of finite monoids is called an M-variety if for any $M, N \in \underline{V}$, for every monoid $P, P \prec M \times N$ implies $P \in \underline{V}$. Given a morphism $h: A^* \to M$, for the sake of brevity, for any $B \subseteq M$ we denote by h_B the sets $h^{-1}(B)$, and for $e, f \in M$, and by $h_{e,f}$ the set $h^{-1}(e)[h^{-1}(f)]^{\omega}$. The morphism h is said to saturate a language $L \subseteq A^*$ (resp. $W \subseteq A^{\omega}$) if for every $e, f \in M$, $h_e \cap L \neq \emptyset$ implies $h_e \subseteq L$ (resp. $h_{e,f} \cap W \neq \emptyset$ implies $h_{e,f} \subseteq W$). We then also say that the kernel congruence $\stackrel{h}{\sim}$ and the monoid M saturate L (resp. saturate W). The largest congruence which saturates L (resp. W), denoted by \sim_L (resp. by \sim_W), is called the syntactic congruence of L (resp. of W). It is well-known (see [Ei]) that \sim_L is defined by

(1.1)
$$\forall u, v \in A^* : u \sim_L v \text{ iff } ``\forall x, y \in A^* : xuy \in L \Leftrightarrow xvy \in L",$$

and due to [Ar,HLV], \sim_W is defined by the following congruences on A^* :

(1.2)

$$\begin{cases}
R_W = \{(u,v) \in A^* \times A^* | \ \forall x, y, z \in A^* : xuyz^\omega \in W \Leftrightarrow xvyz^\omega \in W\} \\
T_W = \{(u,v) \in A^* \times A^* | \ \forall x \in A^*, y, z \in A^+ : x(yuz)^\omega \in W \Leftrightarrow x(yvz)^\omega \in W\} \\
\sim_W = R_W \cap T_W.
\end{cases}$$

Denote A^*/\sim_L by M_L and A^*/\sim_W by I_W . We call them the syntactic monoid of L and of W respectively. Given $W \in RecA^{\omega}$, for each $v \in A^*$ we set

(1.3)
$$W(v, -) = \{ u \in A^+ | vu^\omega \in W \} \cup \{ \varepsilon \} : W(-, v) = \{ u \in A^* | uv^\omega \in W \}$$

with a convention that $W(-,\varepsilon) = \emptyset$ and $x\varepsilon^{\omega} \notin A^{\omega}$ for any $x \in A^*$. These sets are nothing but languages in the trace of ω -language W which is considered in [HV93]. Let M be a monoid. Define

$$E(M) = \{e \in M | e^2 = e\},\$$

$$P(M) = \{(e, f) \in M \times M | ef = e, f^2 = f\}.$$

We say that a morphism $h : A^* \to M$ recognizes an ω -language $W \in A^{\omega}$ if $W = \bigcup_{(e,f)\in I} h_{e,f}$ for some $I \subseteq P(M)$ (or that W is recognized by M). Given an

M-variety \underline{V} , for each alphabet *A*, due to Eilenberg [Ei] and D. Perrin [Pe82,84] we define

$$(1.4) AV^* = \{ X \subseteq A^* | M_X \in \underline{V} \},$$

(1.5)
$$\begin{cases} AV^{\omega} = \{W \in RecA^{\omega} | W \text{ is recognized by some } M \in \underline{V}\} \\ A\overline{V} = \{\overline{X} | X \in AV^*\}^{\mathcal{B}} \text{ the boolean closure of } \overline{X}'s, \ X \in AV^*, \\ A\overline{V^{\omega}} = (AV^{\omega})^{\mathcal{B}} \text{ the boolean closure of the set } AV^{\omega}. \end{cases}$$

Then we call the family $V^{\omega} = \{AV^{\omega} | \forall A\}$ an ω -variety, the family $\vec{V} = \{A\vec{V} | \forall A\}$ an L-variety and $\overline{V^{\omega}} = \{A\overline{V^{\omega}} | \forall A\}$ an $\overline{\omega}$ -variety. For each $X, Y \subseteq V$

 $A^{\infty} = A^* \cup A^{\omega}$ we define the *shuffle product* of X and Y by

$$X \amalg Y = \{ x_1 y_1 x_2 y_2 \cdots \in A^{\infty} | x_1 x_2 \cdots \in X, y_1 y_2 \cdots \in Y \}$$

Similar to (1.1), we associate to each subset A of a monoid M a congruence \sim_A on M defined by:

 $\forall a, b \in M : a \sim_A b \text{ iff } ``\forall p, q \in M : paq \in A \Leftrightarrow pbq \in A"$

and denote M/\sim_A by M//A (and by M//a if $A = \{a\}$).

2. Main results

We first need some lemmas.

Lemma 2.1. [Ei] Let M be a monoid and $X \subseteq A^*$. The following conditions are equivalent:

- (1) $M_A \prec M$;
- (2) There exist a morphism $h: A^* \to M$ and $B \subseteq M$ such that $h_B = X$.

Lemma 2.2. [Ei] Let $h : S \to T$ be a surjective morphism and M a monoid. Then

(1) $\forall B \subseteq T : S//h_B \cong T//B.$ (2) $\forall a \in M : M//a \prec M \prec \prod_{e \in M} M//e.$

Given $X \subseteq A^*$. We define the left and right quotients of X by an element v in A^* , the sets

$$v^{-1}X = \{ u \in A^* | vu \in X \},\$$

$$Xv^{-1} = \{ u \in A^* | uv \in X \}.$$

Lemma 2.3. [Ei] Let $X, Y \in RecA^*$. Then

- (1) X, Y are saturated by $\sim_X \cap \sim_Y$;
- (2) The family of regular languages saturated by h is closed under the Boolean operations and the formation of "left, right quotients" by elements of A^* .

Due to Ramsey-Büchi we can deduce

Lemma 2.4. Let $h : A^* \to M$ be a surjective morphism and n the index of M (*i.e.* $e^n \in E(M)$ for every $e \in M$). Then

- (1) $A^{\omega} = \bigcup_{(e,f)\in P(M)} h_{e,f};$
- (2) For any $x, v \in A^*, v \neq \varepsilon$, $(e, f) \in P(M)$, then $xv^{\omega} \in h_{e,f}$ iff v admits a factorization $v^n = ab$ such that $xv^n a \in h_e$, $ba \in h_f$.

Proof. (1) This is a well-known result.

(2) Since the "if" part is clear, it suffices to check the "only if" part. Suppose that $xv^{\omega} \in h_{e,f}$ for some $(e, f) \in P(M)$. It implies that there exist $m, k \in \mathbb{N}$, $1 \leq m, k; z, t \in A^*$ such that v = zt and $xv^m z, xv^{m+k}z \in h_e, (tz)^k \in h_f$. Then

338

 $(tz)^{kn} = ((tz)^n)^k$ implies $(tz)^n \in h_f$. The proof then is completed by taking $a = z, b = (tz)^{n-1}t$.

By the definition (1.3), one immediately has the following result:

Lemma 2.5. For any $X, Y \in RecA^{\omega}$ and $v \in A^+$, we have

- (1) $(X \cup Y)(-, v) = X(-, v) \cup Y(-, v);$
- (2) $(X \cap Y)(-, v) = X(-, v) \cap Y(-, v);$
- (3) (X Y)(-, v) = X(-, v) Y(-, v).

Lemma 2.6. Let $h : A^* \to M$ be a surjective morphism, $X \subseteq A^*$ a language saturated by h and n the index of M. Then

(1) For any $(e, f) \in P(M)$

(2.1)
$$h_{e,f}(-,v) = \bigcup_{v^n = ab, ba \in h_f} h_e(v^n a)^{-1};$$

- (2) For any $v \in A^+$ and $(e, f) \in P(M)$, $h_{e,f}(-, v)$ is saturated by h;
- (3) $\vec{X}(-,v)$ is saturated by h.

Proof. (1) Denote by S the right-hand side of (2.1). If $x \in S$, then v admits some factorization $v^n = ab$ so that $ba \in h_f$ and $x \in h_e(v^n a)^{-1}$, i.e. $x(v^n a) \in h_e$. Consequently, $xv^{\omega} \in h_{e,f}$. Thus $x \in h_{e,f}(-,v)$. Conversely, if $x \in h_{e,f}(-,v)$, then $xv^{\omega} \in h_{e,f}$. Using Lemma 2.4 one deduces $xv^n a \in h_e$, $ba \in h_f$ for some $a, b \in A^*$ with $v^n = ab$. Hence $x \in h_e(v^n a)^{-1}$ and x belongs to S.

(2) This is a direct consequence of the equality (2.1) and Lemma 2.3.

(3) By lemma 2.4, we obtain

$$\vec{X} = \bigcup_{h_e \subseteq X} \overset{longrightarrow}{h_e} = \bigcup_{h_e \subseteq X, (e,f) \in P(M)} h_{e,f}.$$

From Lemma 2.5 we have

(2.2)
$$\vec{X}(-,v) = \bigcup_{h_e \subseteq X, (e,f) \in P(M)} h_{e,f}(-,v).$$

By Lemma 2.3 and the part (2) above, we deduce that $\vec{X}(-,v)$ is saturated by h.

For each *M*-variety \underline{V} , by (1.5) we define the varieties V^{ω} , \vec{V} , $\overline{V^{\omega}}$ and then the *Eilenberg Correspondences* $\underline{V} \Rightarrow V^{\omega}$, $\underline{V} \Rightarrow \vec{V}$, $\underline{V} \Rightarrow \overline{V^{\omega}}$. We now state the main results for Eilenberg correspondences.

Theorem 2.1. The correspondence $\underline{V} \Rightarrow V^{\omega}$ from the class of all *M*-varieties to the class of all ω -varieties is one-to-one.

Proof. By definition, it suffices to shows that if $\underline{V}_1 \Rightarrow V_1^{\omega}$, $\underline{V}_2 \Rightarrow V_2^{\omega}$ and $V_1^{\omega} = V_2^{\omega}$, then $\underline{V}_1 = \underline{V}_2$. Letting $M \in \underline{V}_1$, we prove that $M \in \underline{V}_2$. Choose an alphabet A_0 with a surjective morphism $h' : A_0^* \to M$ (for example $A_0 = \{a_m | m \in M\}$

with $h'(a_m) = m$). Take $A = A_0 \cup \{a\}$ for some $a \notin A_0$ and $h : A^* \to M$ is an extension of h' defined by $h|A_0 = h'$, h(a) = 1. Then $(e, 1) \in P(M)$ for each $e \in M$. It follows from (2.1) that

$$h_{e,1}(-,a) = \bigcup_{u_i v_i = a, v_i u_i \in h_1} h_e(au_i)^{-1}.$$

Since h(a) = 1 and either $u_i = \varepsilon$ or $u_i = a$, it implies that $h_e a^{-1} = h_e$ and then $h_e(au_i)^{-1} = h_e$. This shows that $h_{e,1}(-, a) = h_e$. Because $h_{e,1} \in AV_1^{\omega}$, by assumption $V_1^{\omega} = V_2^{\omega}$ one has $h_{e,1} \in AV_2^{\omega}$. Hence, there exists $N \in \underline{V}_2$ with a surjective morphism $g: A^* \to N$ such that

(2.3)
$$h_{e,1} = \bigcup_{(p,q)\in I} g_{p,q} \text{ for some } I \subseteq P(N).$$

By lemma 2.5 one gets $h_{e,1}(-,a) = \bigcup_{(p,q) \in I} g_{p,q}(-,a)$. It follows from Lemma 2.6

with the fact $h_e = h_{e,1}(-, a)$ that h_e is saturated by g. In turn, Lemmas 1, 2 yield $M//e = M_{h_e} \prec N$. Using Lemma 2.2 one obtains $M \prec \prod_{e \in M} M//e \prec N^{(m)}$ where $N^{(m)}$ is the *m*-fold Cartesian product of N and m = cardM. This shows

that $M \in \underline{V}_2$, therefore $\underline{V}_1 \subseteq \underline{V}_2$. A similar verification gives $\underline{V}_2 \subseteq \underline{V}_1$. This shows completes the proof of $\underline{V}_1 = \underline{V}_2$.

Corollary 2.1. The correspondence $\underline{V} \Rightarrow \overline{V^{\omega}}$ from the class of all *M*-varieties of finite monoids to the class of all $\overline{\omega}$ -varieties is one-to-one.

Proof. It suffices to prove that $\overline{V^{\omega}}_1 = \overline{V^{\omega}}_2$ implies $\underline{V}_1 = \underline{V}_2$. Using the same method as the above proof, the only different thing one might meet is that instead of (2.3), in this proof $h_{e,1}$ is obtained from $g_{p,q}$, $(p,q) \in P(N)$ by taking a finite number of Boolean operations. But according to Lemma 2.5, the fact that g saturates $h_{e,1}(-,a)$ remains valid. Hence one also deduces that $\underline{V}_1 \subseteq \underline{V}_2$. A similar verification completes the proof of $\underline{V}_1 = \underline{V}_2$.

Theorem 2.2. The correspondence $\underline{V} \Rightarrow \vec{V}$ from the class of all *M*-varieties of finite monoids to the class of *L*-varieties of recognizable ω -languages is one-to-one.

Proof. Supposing that $\underline{V}_1 \Rightarrow \vec{V}_1$, $\underline{V}_2 \Rightarrow \vec{V}_2$, $\vec{V}_1 = \vec{V}_2$, we have to prove that $\underline{V}_1 = \underline{V}_2$. First we proceed to check that $\underline{V}_1 \subseteq \underline{V}_2$. For this, considering an arbitrary $M \in \underline{V}_1$, we show that $M \in \underline{V}_2$. By a similar method of the proof of Theorem 2.1, we take an appropriate alphabet A_0 with a surjective morphism $h': A_0^* \to M$ and the extension h' of $h: A^* \to M$ defined by $h|A_0 = h', h(a) = 1$. For any $e \in M$, using the equality h(a) = 1 with some simple verifications we obtain $h_e = \vec{h}_e(-, a)$ and then

(2.4)
$$(h_e.a^{\omega})(-,a) = h_e = h_e(-,a)$$

Since $\vec{h}_e \in A\vec{V}_1$, by assumption $\vec{V}_1 = \vec{V}_2$, one has $\vec{h}_e \in A\vec{V}_2$. Applying Lemma 2.3 one can verify that there exists a monoid $N \in \underline{V}_2$, a surjective morphism

 $g: A^* \to N$ with some regular languages L_1, L_2, \cdots, L_k saturated by g such that \vec{h}_e is obtained from \vec{L}_i by taking a finite number of Boolean operations. By Lemma 2.6, $\vec{L}_i(-, a)$ is saturated by g. It follows from Lemmas 2.3, 2.5 and (2.4) that h_e is saturated by g. This with Lemmas 2.1, 2.2 give $M//e = M_{h_e} \prec N$. Hence $M \prec \prod_{e \in M} M//e \prec N^{(m)}$ with m = cardM. Thus $M \in \underline{V}_2$, hence $\underline{V}_1 \subseteq \underline{V}_2$. In turn, a similar verification gives $\underline{V}_2 \subseteq \underline{V}_1$. The proof is completed.

Next, we introduce a new type of varieties of recognizable ω -languages which is generated by adherences of languages. Given a morphism $h : A^* \to M$ and $W \in RecA^{\omega}$, we say that W is *l*-saturated by h if the following condition is satisfied

(2.5)
$$\vec{h_e} \cap W \neq \emptyset \Rightarrow \vec{h}_e \subseteq W$$

For any alphabet, we denote by $DRecA^{\omega}$ the subclass of $RecA^{\omega}$ containing all recognizable ω -languages of the form $\vec{X}, X \in RecA^*$. Let \underline{V} be a U_1 -variety (i.e. an *M*-variety containing the monoid $\{0,1\}$) (see [6]), for each alphabet A we define

(2.6)
$$\begin{cases} AV^N = \{ W \in RecA^{\omega} | \ I_W \in \underline{V} \}, \\ AV^L = \{ W \in RecA^{\omega} | \ W \text{ is l-saturated by some } M \in \underline{V} \}, \\ ADV^N = AV^N \cap DRecA^{\omega}. \end{cases}$$

To get a relationship between AV^L , AV^N , $DRecA^{\omega}$ we first need some technical Lemmas. By definition with some simple verifications, one has

Lemma 2.7. Let $h : A^* \to M$ be a surjective mmorphism. For any $e, f \in M$, $\vec{h}_e \neq \emptyset$, then $\vec{h}_e \cap \vec{h}_f \neq \emptyset$ iff $e \mathcal{R} f$, where \mathcal{R} is the Green's relation on M.

Using this lemma one gets

Lemma 2.8. Let $W \in \operatorname{Rec} A^{\omega}$ and $h : A^* \to M$ be a surjective morphism saturating W. If W and $A^{\omega} - W$ in $\operatorname{DRec} A^{\omega}$, then there exists $L \in \operatorname{Rec} A^*$ such that L is saturated by h and $\vec{L} = W$, $\overrightarrow{A^* - L} = A^{\omega} - W$.

Proof. First, without loss of generality we may assume that $W, A^{\omega} - W \neq \emptyset$ and $W = \vec{X}, A^{\omega} - W = \vec{Y}$ for some $X, Y \in RecA^*$. Put

$$W' = A^{\omega} - W, \quad \sim = \sim_W \cap \sim_X \cap \sim_Y$$

where \sim_W, \sim_X, \sim_Y are defined by (1.1), (1.2). Considering the quotient monoid A^*/\sim we define the following subsets of A^* :

(2.7)
$$(X \sim \mathcal{R}) = \bigcup_{[y]_{\sim} \mathcal{R}[x]_{\sim}, x \in X} [y]_{\sim}; \quad U = \bigcup_{u \in A^*, [u]_{\sim} = \emptyset} [u]_{\sim},$$

where $[y]_{\sim}$ is the class of y modulo ~ and \mathcal{R} is the Green's relation on A^*/\sim . From Lemma 2.7 one can see that $U = (U \sim \mathcal{R})$. By definition, using again Lemma 2.7 one deduces $(Y \sim \mathcal{R}) \cap (X \sim \mathcal{R}) - U = \emptyset$. Taking $Y_0 = (Y \sim \mathcal{R}) - U$, $X_0 = (X \sim \mathcal{R}) - U$ we obtain

(2.8)
$$X_0 = (X_0 \sim \mathcal{R}); \quad Y_0 = (Y_0 \sim \mathcal{R}); \quad X_0 \cap Y_0 = \emptyset.$$

Hence, $W' \subseteq \vec{Y}_0, W \subseteq \vec{X}_0$, this implies $\vec{Y}_0 = W', \vec{X}_0 = W$. Furthermore, we have the following facts as obvious consequences of Lemma 2.7

(i) $\forall u \in X_0 \cup Y_0 : [u]_{\sim} \neq \emptyset.$

(ii) If $u, v \in A^*$, $uv^{\omega} \in W$ (resp. $uv^{\omega} \in W'$), then $uv \sim u$ and $v^2 \sim v$ imply $u \in X_0$ (resp. $u \in Y_0$) (applying (2.8), $\vec{X_0} = W$, $\vec{Y_0} = W'$).

Now, we prove that $(X_0 \sim_W \mathcal{R}) \cap (Y_0 \sim_W \mathcal{R}) = \emptyset$. Indeed, assuming the contrary, there exists $u \in X_0$, $v \in Y_0$, $u', v' \in A^*$ such that $u \sim_W u'$, $v \sim_W v'$, $\exists \lambda, \gamma \in A^*$: $u'\lambda \sim_W v'$, $v'\gamma \sim_W u'$. Hence

(2.9)
$$u\lambda \sim_W v; \quad v\gamma \sim_W u, \quad \lambda, \gamma \neq \varepsilon.$$

Since $u \in X_0$, $v \in Y_0$, by (i) there exist $\alpha, \beta \in A^*$ such that

(2.10)
$$u\alpha^{\omega} \in W, \ u\alpha \sim u, \ \alpha^{2} \sim \alpha; \ v\beta^{\omega} \in W', \ v\beta \sim v, \ \beta^{2} \sim \beta.$$

Considering at the same time the two infinite words $w = u(\lambda\beta\gamma\alpha)^{\omega}$, $w_1 = v(\gamma\alpha\lambda\beta)^{\omega}$ we can assert that $w \in \vec{Y}_0 \cap \vec{X}_0$. Indeed:

(iii) By (2.9), (2.10) we have $u\lambda\beta \sim_W v\beta \sim v$. Since $\sim \subseteq \sim_W$, then $u\lambda\beta \sim_W v$. Similarly, $v\gamma\alpha \sim_W u$.

(iv) Since $u\lambda \sim_W v$, $v\beta^{\omega} \in W'$, $\sim_W \equiv \sim_{W'}$, it follows that $(u\lambda\beta)\beta^{\omega} \in W'$. By the fact (ii) one has $u_1 = u\lambda\beta \in Y_0$ and by analog fact, $v_1 = v\gamma\alpha \in X_0$.

(v) Using $(v\gamma\alpha)\lambda\beta \sim_W u\lambda\beta \sim_W v$, $v\beta^{\omega} \in W'$ one obtains $(v\gamma\alpha\lambda\beta)\beta^{\omega} \in W'$. Then the fact (ii) yields $v_2 = v\gamma\alpha\lambda\beta \in Y_0$. Analogously, $u_2 = u\lambda\beta\gamma\alpha \in X_0$.

By (iii), $v_2 \sim_W v$, $u_2 \sim_W u$. Applying again the same arguments as (iv), (v) for u_2, v_2 one gets

(vi)
$$u_3 = u_2 \lambda \beta \in Y_0, v_3 = v_2 \gamma \alpha \in X_0$$
,

(vii) $u_4 = u_2 \lambda \beta \gamma \alpha \in X_0, v_4 = v_2 \gamma \alpha \lambda \beta \in Y_0,$

and so on, using again and again the same arguments as (iv), (v) one obtains the infinite chains of left factors of w and $w_1: u, u_2, u_4 \dots \in X_0; u_1, u_3, \dots \in Y_0;$ $v_1, v_3, \dots \in X_0; v_2, v_4, \dots \in Y_0$. This shows that $\vec{X}_0 \cap \vec{Y}_0 \neq \emptyset$, a contradiction. Thus

$$(X_0 \sim_W \mathcal{R}) \cap (Y_0 \sim_W \mathcal{R}) = \emptyset.$$

Put $L = (X_0 \sim_W \mathcal{R}), L' = (Y_0 \sim_W \mathcal{R})$. Then L, L' are saturated by h. By Lemma 2.7 it implies that

$$\vec{L} \cap \vec{L}' = \emptyset, \quad W = \vec{X}_0 \subseteq \vec{L}, \quad W' = \vec{Y}_0 \subseteq \vec{L}' \subseteq A^* - L.$$

Consequently, $W = \vec{L}$ and $W' = \overrightarrow{A^* - L}$.

We call a recognizable ω -language $W \in RecA^{\omega}$ an *adherence* if W = LF(X) for some $X \in RecA^*$, where LF(X) is the set of all left factors of X. We have the following relationship between L-varieties, N-varieties and adherences.

Theorem 2.3. Let \underline{V} be a U_1 -variety. For every alphabet A, the following conditions are equivalent:

- (i) $W \in AV^L$;
- (ii) W and $A^{\omega} W$ belong to ADV^N ;
- (iii) W belongs to the boolean closure of all adherences in AV^N .

Proof. (i) \Rightarrow (ii) Let $W \in AV^L$. There exist a surjective morphism $h : A^* \to M$ with $M \in \underline{V}$ such that W is *l*-saturated by h. Taking

$$I = \{e \in M | h_e \cap W \neq \emptyset\},\$$

$$P = I\mathcal{R} = \{e \in M | \exists f \in P : e\mathcal{R}f\},\$$

$$Q = M - P, X = h_P, Y = h_Q$$

by Lemma 2.7 we deduce that $\vec{X} = W$, $\vec{Y} = A^{\omega} - W$. Thus $W, A^{\omega} - W \in ADV^N$.

(ii) \Rightarrow (iii) Suppose that $W, A^{\omega} - W \in ADV^N$. By virtue of Lemma 2.8, there exist $M \in \underline{V}, P \subseteq M, Q = M - P$ such that $P = P\mathcal{R}, W = \vec{h}_P, A^{\omega} - W = \vec{h}_Q$. For each $m \in M$, we write $m \leq_{\mathcal{R}} e$ whenever $mM \subseteq eM, m <_{\mathcal{R}} e$ if $mM \subseteq eM$ and denote by $\langle m \rangle$ the set $\{e \in M \mid m \leq_{\mathcal{R}} e\}$. Then by a simple verification we get the equality

(2.11)
$$R_m = \langle m \rangle - \bigcup_{m <_{\mathcal{R}} e} \langle e \rangle.$$

where R_m is the *R*-class of *m* modulo \mathcal{R} . By Lemma 2.7 we obtain

(2.12)
$$\overrightarrow{h_{R_m}} = \overrightarrow{h_{\langle m \rangle}} - \bigcup_{m < \mathcal{R}^e} \overrightarrow{h_{\langle e \rangle}}.$$

Besides, one can verify that for each $e \in M$, $h_{\langle e \rangle} = LF(h_e)$ is the set of all left factors of h_e , i.e. $\overrightarrow{h_{\langle e \rangle}}$ is an adherence. This together with (2.12) implies (iii).

(iii) \Rightarrow (i) First, let W be an adherence in AV^N and $X \in RecA^*$ such that $W = \overrightarrow{LF(X)}$. Consider the suntactic morphism $h : A^* \to M_X$ of X. By definition, $X = h_P$ for some $P \subseteq M_X$. By a direct verification we obtain

$$LF(X) = \bigcup_{e \in P} h_{\langle e \rangle}, \quad W = \bigcup_{e \in P} \overrightarrow{h_{\langle e \rangle}} = \bigcup_{e \leq \mathcal{R}} \overrightarrow{h_{R_m}},$$

hence from Lemma 2.7 it follows that W is *l*-saturated by h. Thus $W \in AV^L$. Second, using the fact that AV^L is closed under Boolean operations, we deduce that if W is in the boolean closure of adherences in AV^N , then $W \in AV^L$. \Box

Remark. From Lemma 2.8 one can see that if W, $A^{\omega} - W \in DRecA^{\omega}$, then for any morphism $h : A^* \to M$, h saturates W iff h *l*-saturates W. Hence, we

PHAN TRUNG HUY

can obtain similar results as A. Arnold's results by using the same method in [Ar]. The main one is that the largest congruence, for which W is *l*-saturated, is notthing but the syntactic congruence of W. Moreover, one can verify that each A-variety is closed under boolean operations, inverse images of morphisms, the formation of "left quotient" by finite words.

Acknowledgements

The author would like to thank the referee by valuable suggestions. The presentation of this paper has been improved much on his remarks.

References

- [Ar] A. Arnold, A syntactic congruence for rational ω -languages, Theor. Comp. Sci. **39** (1985), 333–335.
- [BN] L. Boasson and M. Nivat, Adherences of languages, J. Comput. System. Sci. 20 (1980), 285–309.
- [Bu] J. R. Büchi, On a decision method in restricted second order arithmetic, Proc. Internat. Congress on Logic, Methodology and Philosophy. Stanford. Univ. Press, 1962, pp. 1–11.
- [Ei] S. Eilenberg, Automata, Languages and Machines, Academic. Press., New York Vol B 1976.
- [He] T. Head, The adherences of languages as topological spaces, Lect. Notes in Comp. Sci. 192 (1984), 147–163.
- [HLV] Phan Trung Huy, Igor Litovsky and Do Long Van, Which finite monoids are syntactic monoids of rational ω-languages, Information Processing Letters 42 (1992), 127–132.
- [HV93] P. T. Huy and D. L. Van, Syntactic monoids of ω -languages and Eilenberg theorem for ω -languages, A Supplement to Proceedings of the 17th Symposium on Semigroups, Languages and their Related Fields, Tokyo, Japan, Nov. 1993.
- [La] G. Lallement, Semigroups and Combinatorial Applications, Wiley New York 1979.
- [LT] M. Latteux and E. Timmerman, Two characterizations of rational adherences, Theoretical Computer Science 46 (1986), 101–106.
- [Mc] R. Mcnaughton, Testing and generating infinite sequences by a finite automaton, J. Infor. and Control 9 (1966), 521–530.
- [Mu] D. Müller, Infinite sequences and finite machines, Switch. Theory and Logical Design, (Proc. 4 th IEEE Symp.), 1963, pp. 3-16.
- [Pec] J. P. Pecuchet, Automates Boustrophedons, langages reconnaissables de mots infinis et varietes de semigroupes, These de Doctorat d'Etat, 1986.
- [Pe82] D. Perrin, Varietes de semigroupes et mots infinis, C. R. Acad. Sci. Paris 295 (1982), 585–598.
- [Pe84] D. Perrin, *Comportement infini des automates finis*, LITP. Laboratoire Informatique Theorique et Programmation. Université Paris 7 (1984), 84-11.
- [St] L. Staiger, Hierarchies of Recusive ω -languages, Elektron. Inf. verarb. Kybern. EIK. **22** (1986), 219–241.
- [Wi] T. Wilke, An Eilenberg theorem for ω -languages, Proc. of the 18th ICALP91, Universidad Complutense Spain, July 8-12, 1991.

FACULTY OF APPLIED MATHEMATICS HANOI UNIVERSITY OF TECHNOLOGY *E-mail address*: phanhuy@hn.vnn.vn